test_transforms_tensor.py 33 KB
Newer Older
1
import os
2
3

import numpy as np
4
import pytest
5
import torch
Nicolas Hug's avatar
Nicolas Hug committed
6
7
8
9
10
11
12
13
from common_utils import (
    get_tmp_dir,
    int_dtypes,
    float_dtypes,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
14
    cpu_and_gpu,
15
    assert_equal,
Nicolas Hug's avatar
Nicolas Hug committed
16
)
17
from PIL import Image
18
19
20
from torchvision import transforms as T
from torchvision.transforms import InterpolationMode
from torchvision.transforms import functional as F
21
from torchvision.transforms.autoaugment import _apply_op
22

23
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
24
25


26
27
28
29
30
31
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
32

33

34
35
36
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
37

38
39
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
40
        torch.manual_seed(12)
41
42
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
43

44
45
46
    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)
47
48


49
def _test_functional_op(f, device, channels=3, fn_kwargs=None, test_exact_match=True, **match_kwargs):
50
    fn_kwargs = fn_kwargs or {}
51

52
    tensor, pil_img = _create_data(height=10, width=10, channels=channels, device=device)
53
54
55
56
57
58
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
vfdev's avatar
vfdev committed
59
60


61
def _test_class_op(method, device, channels=3, meth_kwargs=None, test_exact_match=True, **match_kwargs):
62
63
    # TODO: change the name: it's not a method, it's a class.
    meth_kwargs = meth_kwargs or {}
64

65
66
67
    # test for class interface
    f = method(**meth_kwargs)
    scripted_fn = torch.jit.script(f)
68

69
    tensor, pil_img = _create_data(26, 34, channels, device=device)
70
71
72
73
74
75
76
77
78
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
79

80
81
82
83
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

84
    batch_tensors = _create_data_batch(height=23, width=34, channels=channels, num_samples=4, device=device)
85
86
87
88
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, f"t_{method.__name__}.pt"))
89

90

91
92
93
def _test_op(func, method, device, channels=3, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, channels, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, channels, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
94
95


96
@pytest.mark.parametrize("device", cpu_and_gpu())
97
@pytest.mark.parametrize(
98
99
    "func,method,fn_kwargs,match_kwargs",
    [
100
101
102
103
104
105
        (F.hflip, T.RandomHorizontalFlip, None, {}),
        (F.vflip, T.RandomVerticalFlip, None, {}),
        (F.invert, T.RandomInvert, None, {}),
        (F.posterize, T.RandomPosterize, {"bits": 4}, {}),
        (F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}),
        (F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}),
106
107
108
109
110
111
112
113
        (
            F.autocontrast,
            T.RandomAutocontrast,
            None,
            {"test_exact_match": False, "agg_method": "max", "tol": (1 + 1e-5), "allowed_percentage_diff": 0.05},
        ),
        (F.equalize, T.RandomEqualize, None, {}),
    ],
114
)
115
@pytest.mark.parametrize("channels", [1, 3])
116
117
def test_random(func, method, device, channels, fn_kwargs, match_kwargs):
    _test_op(func, method, device, channels, fn_kwargs, fn_kwargs, **match_kwargs)
118

119

120
@pytest.mark.parametrize("seed", range(10))
121
122
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
123
class TestColorJitter:
124
125
126
127
    @pytest.fixture(autouse=True)
    def set_random_seed(self, seed):
        torch.random.manual_seed(seed)

128
    @pytest.mark.parametrize("brightness", [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
129
    def test_color_jitter_brightness(self, brightness, device, channels):
130
131
132
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
133
134
135
136
137
138
139
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
140
141
        )

142
    @pytest.mark.parametrize("contrast", [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
143
    def test_color_jitter_contrast(self, contrast, device, channels):
144
145
146
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
147
148
149
150
151
152
153
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
154
155
        )

156
    @pytest.mark.parametrize("saturation", [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
157
    def test_color_jitter_saturation(self, saturation, device, channels):
158
159
160
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
161
162
163
164
165
166
167
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
168
169
        )

170
    @pytest.mark.parametrize("hue", [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
171
    def test_color_jitter_hue(self, hue, device, channels):
172
173
        meth_kwargs = {"hue": hue}
        _test_class_op(
174
175
176
177
178
179
180
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=16.1,
            agg_method="max",
            channels=channels,
181
182
        )

183
    def test_color_jitter_all(self, device, channels):
184
185
186
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        _test_class_op(
187
188
189
190
191
192
193
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=12.1,
            agg_method="max",
            channels=channels,
194
195
196
        )


197
198
199
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("m", ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize("mul", [1, -1])
200
201
202
203
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
204
    _test_functional_op(F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}, device=device)
205
    # Test functional.pad and transforms.Pad with padding as [int, ]
206
207
208
209
210
211
212
213
    fn_kwargs = meth_kwargs = {
        "padding": [
            mul * 2,
        ],
        "fill": fill,
        "padding_mode": m,
    }
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
214
215
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
216
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
217
218
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
219
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
220
221


222
@pytest.mark.parametrize("device", cpu_and_gpu())
223
224
225
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
226
227
228
229
230
231
    meth_kwargs = {
        "size": (4, 5),
        "padding": (4, 4),
        "pad_if_needed": True,
    }
    _test_op(F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "padding_config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
        {"padding_mode": "constant", "fill": 20},
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
    ],
)
@pytest.mark.parametrize(
    "size",
    [
        5,
        [
            5,
        ],
        [6, 6],
    ],
)
271
272
273
def test_crop_pad(size, padding_config, device):
    config = dict(padding_config)
    config["size"] = size
274
    _test_class_op(T.RandomCrop, device, meth_kwargs=config)
275
276


277
@pytest.mark.parametrize("device", cpu_and_gpu())
278
def test_center_crop(device, tmpdir):
279
    fn_kwargs = {"output_size": (4, 5)}
280
281
282
283
    meth_kwargs = {
        "size": (4, 5),
    }
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
284
    fn_kwargs = {"output_size": (5,)}
285
    meth_kwargs = {"size": (5,)}
286
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
287
288
289
290
291
292
293
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
294
295
296
297
298
    f = T.CenterCrop(
        size=[
            5,
        ]
    )
299
300
301
302
303
304
305
306
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

307
    scripted_fn.save(os.path.join(tmpdir, "t_center_crop.pt"))
308
309


310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fn, method, out_length",
    [
        # test_five_crop
        (F.five_crop, T.FiveCrop, 5),
        # test_ten_crop
        (F.ten_crop, T.TenCrop, 10),
    ],
)
@pytest.mark.parametrize(
    "size",
    [
        (5,),
        [
            5,
        ],
        (4, 5),
        [4, 5],
    ],
)
331
def test_x_crop(fn, method, out_length, size, device):
332
    meth_kwargs = fn_kwargs = {"size": size}
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    scripted_fn = torch.jit.script(fn)

    tensor, pil_img = _create_data(height=20, width=20, device=device)
    transformed_t_list = fn(tensor, **fn_kwargs)
    transformed_p_list = fn(pil_img, **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_p_list)
    assert len(transformed_t_list) == out_length
    for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)

    transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_t_list_script)
    assert len(transformed_t_list_script) == out_length
    for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
        assert_equal(transformed_tensor, transformed_tensor_script)

    # test for class interface
    fn = method(**meth_kwargs)
    scripted_fn = torch.jit.script(fn)
    output = scripted_fn(tensor)
    assert len(output) == len(transformed_t_list_script)

    # test on batch of tensors
    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    torch.manual_seed(12)
    transformed_batch_list = fn(batch_tensors)

    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        torch.manual_seed(12)
        transformed_img_list = fn(img_tensor)
        for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
            assert_equal(transformed_img, transformed_batch[i, ...])


368
@pytest.mark.parametrize("method", ["FiveCrop", "TenCrop"])
369
def test_x_crop_save(method, tmpdir):
370
371
372
373
374
    fn = getattr(T, method)(
        size=[
            5,
        ]
    )
375
    scripted_fn = torch.jit.script(fn)
376
    scripted_fn.save(os.path.join(tmpdir, f"t_op_list_{method}.pt"))
377
378
379


class TestResize:
380
    @pytest.mark.parametrize("size", [32, 34, 35, 36, 38])
381
382
383
384
385
386
387
388
389
390
391
    def test_resize_int(self, size):
        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=size)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        assert isinstance(y, torch.Tensor)
        assert y.shape[1] == size
        assert y.shape[2] == int(size * 46 / 32)

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", [None, torch.float32, torch.float64])
    @pytest.mark.parametrize(
        "size",
        [
            [
                32,
            ],
            [32, 32],
            (32, 32),
            [34, 35],
        ],
    )
    @pytest.mark.parametrize("max_size", [None, 35, 1000])
    @pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST])
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
    def test_resize_scripted(self, dt, size, max_size, interpolation, device):
        tensor, _ = _create_data(height=34, width=36, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

        if dt is not None:
            # This is a trivial cast to float of uint8 data to test all cases
            tensor = tensor.to(dt)
        if max_size is not None and len(size) != 1:
            pytest.xfail("with max_size, size must be a sequence with 2 elements")

        transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

422
    def test_resize_save(self, tmpdir):
423
424
425
426
427
        transform = T.Resize(
            size=[
                32,
            ]
        )
428
        s_transform = torch.jit.script(transform)
429
        s_transform.save(os.path.join(tmpdir, "t_resize.pt"))
430

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
    @pytest.mark.parametrize("ratio", [(0.75, 1.333), [0.75, 1.333]])
    @pytest.mark.parametrize(
        "size",
        [
            (32,),
            [
                44,
            ],
            [
                32,
            ],
            [32, 32],
            (32, 32),
            [44, 55],
        ],
    )
    @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
450
451
452
453
454
455
456
457
    def test_resized_crop(self, scale, ratio, size, interpolation, device):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
        transform = T.RandomResizedCrop(size=size, scale=scale, ratio=ratio, interpolation=interpolation)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

458
    def test_resized_crop_save(self, tmpdir):
459
460
461
462
463
        transform = T.RandomResizedCrop(
            size=[
                32,
            ]
        )
464
        s_transform = torch.jit.script(transform)
465
        s_transform.save(os.path.join(tmpdir, "t_resized_crop.pt"))
466
467


468
469
470
471
472
473
474
475
476
477
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


478
@pytest.mark.parametrize("device", cpu_and_gpu())
479
def test_random_affine(device, tmpdir):
480
481
    transform = T.RandomAffine(degrees=45.0)
    s_transform = torch.jit.script(transform)
482
    s_transform.save(os.path.join(tmpdir, "t_random_affine.pt"))
483
484


485
486
487
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("shear", [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
488
489
490
491
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)


492
493
494
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
495
496
497
498
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)


499
500
501
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("translate", [(0.1, 0.2), [0.2, 0.1]])
502
503
504
505
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)


506
507
508
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
509
510
511
512
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)


513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize(
    "fill",
    [
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
528
529
530
531
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)


532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("center", [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize(
    "fill",
    [
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
550
551
552
553
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

554
    transform = T.RandomRotation(degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill)
555
556
557
558
559
560
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


561
def test_random_rotate_save(tmpdir):
562
563
    transform = T.RandomRotation(degrees=45.0)
    s_transform = torch.jit.script(transform)
564
    s_transform.save(os.path.join(tmpdir, "t_random_rotate.pt"))
565
566


567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("distortion_scale", np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize(
    "fill",
    [
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
583
584
585
586
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

587
    transform = T.RandomPerspective(distortion_scale=distortion_scale, interpolation=interpolation, fill=fill)
588
589
590
591
592
593
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


594
def test_random_perspective_save(tmpdir):
595
596
    transform = T.RandomPerspective()
    s_transform = torch.jit.script(transform)
597
    s_transform.save(os.path.join(tmpdir, "t_perspective.pt"))
598
599


600
601
602
603
604
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "Klass, meth_kwargs",
    [(T.Grayscale, {"num_output_channels": 1}), (T.Grayscale, {"num_output_channels": 3}), (T.RandomGrayscale, {})],
)
605
606
def test_to_grayscale(device, Klass, meth_kwargs):
    tol = 1.0 + 1e-10
607
    _test_class_op(Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, tol=tol, agg_method="max")
608
609


610
611
612
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("in_dtype", int_dtypes() + float_dtypes())
@pytest.mark.parametrize("out_dtype", int_dtypes() + float_dtypes())
613
614
615
616
617
618
619
620
621
622
def test_convert_image_dtype(device, in_dtype, out_dtype):
    tensor, _ = _create_data(26, 34, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    in_tensor = tensor.to(in_dtype)
    in_batch_tensors = batch_tensors.to(in_dtype)

    fn = T.ConvertImageDtype(dtype=out_dtype)
    scripted_fn = torch.jit.script(fn)

623
624
625
    if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or (
        in_dtype == torch.float64 and out_dtype == torch.int64
    ):
626
627
628
629
630
631
632
633
634
635
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
        return

    _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)


636
def test_convert_image_dtype_save(tmpdir):
637
638
    fn = T.ConvertImageDtype(dtype=torch.uint8)
    scripted_fn = torch.jit.script(fn)
639
    scripted_fn.save(os.path.join(tmpdir, "t_convert_dtype.pt"))
640
641


642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("policy", [policy for policy in T.AutoAugmentPolicy])
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
658
659
660
661
662
663
664
665
666
667
668
def test_autoaugment(device, policy, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.AutoAugment(policy=policy, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
686
687
688
689
690
691
692
693
694
695
696
def test_randaugment(device, num_ops, magnitude, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fill",
    [
        None,
        85,
        (10, -10, 10),
        0.7,
        [0.0, 0.0, 0.0],
        [
            1,
        ],
        1,
    ],
)
712
713
714
715
716
717
718
719
720
721
722
def test_trivialaugmentwide(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.TrivialAugmentWide(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


723
@pytest.mark.parametrize("augmentation", [T.AutoAugment, T.RandAugment, T.TrivialAugmentWide])
724
725
def test_autoaugment_save(augmentation, tmpdir):
    transform = augmentation()
726
    s_transform = torch.jit.script(transform)
727
    s_transform.save(os.path.join(tmpdir, "t_autoaugment.pt"))
728
729


730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
@pytest.mark.parametrize("interpolation", [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR])
@pytest.mark.parametrize("mode", ["X", "Y"])
def test_autoaugment__op_apply_shear(interpolation, mode):
    # We check that torchvision's implementation of shear is equivalent
    # to official CIFAR10 autoaugment implementation:
    # https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L290
    image_size = 32

    def shear(pil_img, level, mode, resample):
        if mode == "X":
            matrix = (1, level, 0, 0, 1, 0)
        elif mode == "Y":
            matrix = (1, 0, 0, level, 1, 0)
        return pil_img.transform((image_size, image_size), Image.AFFINE, matrix, resample=resample)

    t_img, pil_img = _create_data(image_size, image_size)

    resample_pil = {
        F.InterpolationMode.NEAREST: Image.NEAREST,
        F.InterpolationMode.BILINEAR: Image.BILINEAR,
    }[interpolation]

    level = 0.3
    expected_out = shear(pil_img, level, mode=mode, resample=resample_pil)

    # Check pil output vs expected pil
    out = _apply_op(pil_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    assert out == expected_out

    if interpolation == F.InterpolationMode.BILINEAR:
        # We skip bilinear mode for tensors as
        # affine transformation results are not exactly the same
        # between tensors and pil images
        # MAE as around 1.40
        # Max Abs error can be 163 or 170
        return

    # Check tensor output vs expected pil
    out = _apply_op(t_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    _assert_approx_equal_tensor_to_pil(out, expected_out)


772
@pytest.mark.parametrize("device", cpu_and_gpu())
773
@pytest.mark.parametrize(
774
775
    "config",
    [{"value": 0.2}, {"value": "random"}, {"value": (0.2, 0.2, 0.2)}, {"value": "random", "ratio": (0.1, 0.2)}],
776
777
778
779
780
781
782
783
784
785
786
)
def test_random_erasing(device, config):
    tensor, _ = _create_data(24, 32, channels=3, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    fn = T.RandomErasing(**config)
    scripted_fn = torch.jit.script(fn)
    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)


787
def test_random_erasing_save(tmpdir):
788
789
    fn = T.RandomErasing(value=0.2)
    scripted_fn = torch.jit.script(fn)
790
    scripted_fn.save(os.path.join(tmpdir, "t_random_erasing.pt"))
791
792
793
794
795
796
797
798
799
800


def test_random_erasing_with_invalid_data():
    img = torch.rand(3, 60, 60)
    # Test Set 0: invalid value
    random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
    with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"):
        random_erasing(img)


801
@pytest.mark.parametrize("device", cpu_and_gpu())
802
def test_normalize(device, tmpdir):
803
804
805
806
807
808
809
810
811
812
813
814
815
816
    fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    tensor, _ = _create_data(26, 34, device=device)

    with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
        fn(tensor)

    batch_tensors = torch.rand(4, 3, 44, 56, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
    # test for class interface
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

817
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
818
819


820
@pytest.mark.parametrize("device", cpu_and_gpu())
821
def test_linear_transformation(device, tmpdir):
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
    c, h, w = 3, 24, 32

    tensor, _ = _create_data(h, w, channels=c, device=device)

    matrix = torch.rand(c * h * w, c * h * w, device=device)
    mean_vector = torch.rand(c * h * w, device=device)

    fn = T.LinearTransformation(matrix, mean_vector)
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)

    batch_tensors = torch.rand(4, c, h, w, device=device)
    # We skip some tests from _test_transform_vs_scripted_on_batch as
    # results for scripted and non-scripted transformations are not exactly the same
    torch.manual_seed(12)
    transformed_batch = fn(batch_tensors)
    torch.manual_seed(12)
    s_transformed_batch = scripted_fn(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch)

843
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
844
845


846
@pytest.mark.parametrize("device", cpu_and_gpu())
847
848
849
def test_compose(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
850
851
852
853
854
855
    transforms = T.Compose(
        [
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ]
    )
856
857
858
859
860
861
862
    s_transforms = torch.nn.Sequential(*transforms.transforms)

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
863
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
864

865
866
867
868
869
    t = T.Compose(
        [
            lambda x: x,
        ]
    )
870
    with pytest.raises(RuntimeError, match="cannot call a value of type 'Tensor'"):
871
872
873
        torch.jit.script(t)


874
@pytest.mark.parametrize("device", cpu_and_gpu())
875
876
877
878
def test_random_apply(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0

879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
    transforms = T.RandomApply(
        [
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ],
        p=0.4,
    )
    s_transforms = T.RandomApply(
        torch.nn.ModuleList(
            [
                T.RandomHorizontalFlip(),
                T.ColorJitter(),
            ]
        ),
        p=0.4,
    )
895
896
897
898
899
900

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
901
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
902
903
904
905

    if device == "cpu":
        # Can't check this twice, otherwise
        # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
906
907
908
909
910
911
        transforms = T.RandomApply(
            [
                T.ColorJitter(),
            ],
            p=0.3,
        )
912
913
914
915
        with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
            torch.jit.script(transforms)


916
917
918
919
920
921
922
923
924
925
926
927
928
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "meth_kwargs",
    [
        {"kernel_size": 3, "sigma": 0.75},
        {"kernel_size": 23, "sigma": [0.1, 2.0]},
        {"kernel_size": 23, "sigma": (0.1, 2.0)},
        {"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
        {"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
        {"kernel_size": [23], "sigma": 0.75},
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
929
def test_gaussian_blur(device, channels, meth_kwargs):
930
    tol = 1.0 + 1e-10
931
    torch.manual_seed(12)
932
    _test_class_op(
933
934
935
936
937
938
939
        T.GaussianBlur,
        meth_kwargs=meth_kwargs,
        channels=channels,
        test_exact_match=False,
        device=device,
        agg_method="max",
        tol=tol,
940
    )