test_transforms_tensor.py 28.8 KB
Newer Older
1
import os
2
3
4
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
5
from torchvision.transforms import InterpolationMode
6
7
8
9

import numpy as np

import unittest
10
import pytest
11
from typing import Sequence
12

Nicolas Hug's avatar
Nicolas Hug committed
13
14
15
16
17
18
19
20
from common_utils import (
    get_tmp_dir,
    int_dtypes,
    float_dtypes,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
21
    cpu_and_gpu,
22
    cpu_only
Nicolas Hug's avatar
Nicolas Hug committed
23
)
24
from _assert_utils import assert_equal
25
26


27
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
28
29


30
31
32
33
34
35
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
36

37

38
39
40
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
41

42
43
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
44
        torch.manual_seed(12)
45
46
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
47

48
49
50
    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)
51
52


53
54
def _test_functional_op(f, device, fn_kwargs=None, test_exact_match=True, **match_kwargs):
    fn_kwargs = fn_kwargs or {}
55

56
57
58
59
60
61
62
    tensor, pil_img = _create_data(height=10, width=10, device=device)
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
vfdev's avatar
vfdev committed
63
64


65
66
67
def _test_class_op(method, device, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    # TODO: change the name: it's not a method, it's a class.
    meth_kwargs = meth_kwargs or {}
68

69
70
71
    # test for class interface
    f = method(**meth_kwargs)
    scripted_fn = torch.jit.script(f)
72

73
74
75
76
77
78
79
80
81
82
    tensor, pil_img = _create_data(26, 34, device=device)
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
83

84
85
86
87
88
89
90
91
92
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, f"t_{method.__name__}.pt"))
93

94
95
96
97
98
99
100
101
102
103

def _test_op(func, method, device, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)


class Tester(unittest.TestCase):

    def setUp(self):
        self.device = "cpu"
104
105

    def test_random_horizontal_flip(self):
106
        _test_op(F.hflip, T.RandomHorizontalFlip, device=self.device)
107
108

    def test_random_vertical_flip(self):
109
        _test_op(F.vflip, T.RandomVerticalFlip, device=self.device)
110

111
    def test_random_invert(self):
112
        _test_op(F.invert, T.RandomInvert, device=self.device)
113
114
115

    def test_random_posterize(self):
        fn_kwargs = meth_kwargs = {"bits": 4}
116
117
118
        _test_op(
            F.posterize, T.RandomPosterize, device=self.device, fn_kwargs=fn_kwargs,
            meth_kwargs=meth_kwargs
119
120
121
122
        )

    def test_random_solarize(self):
        fn_kwargs = meth_kwargs = {"threshold": 192.0}
123
124
125
        _test_op(
            F.solarize, T.RandomSolarize, device=self.device, fn_kwargs=fn_kwargs,
            meth_kwargs=meth_kwargs
126
127
128
129
        )

    def test_random_adjust_sharpness(self):
        fn_kwargs = meth_kwargs = {"sharpness_factor": 2.0}
130
131
132
        _test_op(
            F.adjust_sharpness, T.RandomAdjustSharpness, device=self.device, fn_kwargs=fn_kwargs,
            meth_kwargs=meth_kwargs
133
134
135
        )

    def test_random_autocontrast(self):
136
137
        # We check the max abs difference because on some (very rare) pixels, the actual value may be different
        # between PIL and tensors due to floating approximations.
138
139
140
141
        _test_op(
            F.autocontrast, T.RandomAutocontrast, device=self.device, test_exact_match=False,
            agg_method='max', tol=(1 + 1e-5), allowed_percentage_diff=.05
        )
142
143

    def test_random_equalize(self):
144
        _test_op(F.equalize, T.RandomEqualize, device=self.device)
145

vfdev's avatar
vfdev committed
146
147
148
149
150
151
152
153
    def test_random_erasing(self):
        img = torch.rand(3, 60, 60)

        # Test Set 0: invalid value
        random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
        with self.assertRaises(ValueError, msg="If value is a sequence, it should have either a single value or 3"):
            random_erasing(img)

Nicolas Hug's avatar
Nicolas Hug committed
154
        tensor, _ = _create_data(24, 32, channels=3, device=self.device)
vfdev's avatar
vfdev committed
155
156
157
158
159
160
161
162
163
164
165
166
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        test_configs = [
            {"value": 0.2},
            {"value": "random"},
            {"value": (0.2, 0.2, 0.2)},
            {"value": "random", "ratio": (0.1, 0.2)},
        ]

        for config in test_configs:
            fn = T.RandomErasing(**config)
            scripted_fn = torch.jit.script(fn)
167
168
            _test_transform_vs_scripted(fn, scripted_fn, tensor)
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)
vfdev's avatar
vfdev committed
169

170
171
172
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt"))

173
    def test_convert_image_dtype(self):
Nicolas Hug's avatar
Nicolas Hug committed
174
        tensor, _ = _create_data(26, 34, device=self.device)
175
176
177
178
179
180
181
182
183
184
185
186
187
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        for in_dtype in int_dtypes() + float_dtypes():
            in_tensor = tensor.to(in_dtype)
            in_batch_tensors = batch_tensors.to(in_dtype)
            for out_dtype in int_dtypes() + float_dtypes():

                fn = T.ConvertImageDtype(dtype=out_dtype)
                scripted_fn = torch.jit.script(fn)

                if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \
                        (in_dtype == torch.float64 and out_dtype == torch.int64):
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
188
                        _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
189
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
190
                        _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
191
192
                    continue

193
194
                _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
195
196
197
198

        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt"))

199
200
201
202
    def test_autoaugment(self):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)

203
        s_transform = None
204
205
        for policy in T.AutoAugmentPolicy:
            for fill in [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
206
207
                transform = T.AutoAugment(policy=policy, fill=fill)
                s_transform = torch.jit.script(transform)
208
                for _ in range(25):
209
210
                    _test_transform_vs_scripted(transform, s_transform, tensor)
                    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
211

212
213
214
        if s_transform is not None:
            with get_tmp_dir() as tmp_dir:
                s_transform.save(os.path.join(tmp_dir, "t_autoaugment.pt"))
215

216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
@pytest.mark.parametrize('device', cpu_and_gpu())
class TestColorJitter:

    @pytest.mark.parametrize('brightness', [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
    def test_color_jitter_brightness(self, brightness, device):
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=tol, agg_method="max"
        )

    @pytest.mark.parametrize('contrast', [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
    def test_color_jitter_contrast(self, contrast, device):
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=tol, agg_method="max"
        )

    @pytest.mark.parametrize('saturation', [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
    def test_color_jitter_saturation(self, saturation, device):
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=tol, agg_method="max"
        )

    @pytest.mark.parametrize('hue', [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
    def test_color_jitter_hue(self, hue, device):
        meth_kwargs = {"hue": hue}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=16.1, agg_method="max"
        )

    def test_color_jitter_all(self, device):
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        _test_class_op(
            T.ColorJitter, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
            tol=12.1, agg_method="max"
        )


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('m', ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize('mul', [1, -1])
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
    _test_functional_op(
        F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m},
        device=device
    )
    # Test functional.pad and transforms.Pad with padding as [int, ]
    fn_kwargs = meth_kwargs = {"padding": [mul * 2, ], "fill": fill, "padding_mode": m}
    _test_op(
        F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
    _test_op(
        F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
    _test_op(
        F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
    meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
    _test_op(
        F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
    )

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('padding_config', [
    {"padding_mode": "constant", "fill": 0},
    {"padding_mode": "constant", "fill": 10},
    {"padding_mode": "constant", "fill": 20},
    {"padding_mode": "edge"},
    {"padding_mode": "reflect"}
])
@pytest.mark.parametrize('size', [5, [5, ], [6, 6]])
def test_crop_pad(size, padding_config, device):
    config = dict(padding_config)
    config["size"] = size
    _test_class_op(T.RandomCrop, device, config)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_center_crop(device):
    fn_kwargs = {"output_size": (4, 5)}
    meth_kwargs = {"size": (4, 5), }
    _test_op(
        F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs,
        meth_kwargs=meth_kwargs
    )
    fn_kwargs = {"output_size": (5,)}
    meth_kwargs = {"size": (5, )}
    _test_op(
        F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs,
        meth_kwargs=meth_kwargs
    )
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
    f = T.CenterCrop(size=[5, ])
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, "t_center_crop.pt"))


367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('fn, method, out_length', [
    # test_five_crop
    (F.five_crop, T.FiveCrop, 5),
    # test_ten_crop
    (F.ten_crop, T.TenCrop, 10)
])
@pytest.mark.parametrize('size', [(5, ), [5, ], (4, 5), [4, 5]])
def test_x_crop(fn, method, out_length, size, device):
    meth_kwargs = fn_kwargs = {'size': size}
    scripted_fn = torch.jit.script(fn)

    tensor, pil_img = _create_data(height=20, width=20, device=device)
    transformed_t_list = fn(tensor, **fn_kwargs)
    transformed_p_list = fn(pil_img, **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_p_list)
    assert len(transformed_t_list) == out_length
    for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)

    transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_t_list_script)
    assert len(transformed_t_list_script) == out_length
    for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
        assert_equal(transformed_tensor, transformed_tensor_script)

    # test for class interface
    fn = method(**meth_kwargs)
    scripted_fn = torch.jit.script(fn)
    output = scripted_fn(tensor)
    assert len(output) == len(transformed_t_list_script)

    # test on batch of tensors
    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    torch.manual_seed(12)
    transformed_batch_list = fn(batch_tensors)

    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        torch.manual_seed(12)
        transformed_img_list = fn(img_tensor)
        for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
            assert_equal(transformed_img, transformed_batch[i, ...])


@cpu_only
@pytest.mark.parametrize('method', ["FiveCrop", "TenCrop"])
def test_x_crop_save(method):
    fn = getattr(T, method)(size=[5, ])
    scripted_fn = torch.jit.script(fn)
    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, "t_op_list_{}.pt".format(method)))


class TestResize:
    @cpu_only
    @pytest.mark.parametrize('size', [32, 34, 35, 36, 38])
    def test_resize_int(self, size):
        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=size)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        assert isinstance(y, torch.Tensor)
        assert y.shape[1] == size
        assert y.shape[2] == int(size * 46 / 32)

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('dt', [None, torch.float32, torch.float64])
    @pytest.mark.parametrize('size', [[32, ], [32, 32], (32, 32), [34, 35]])
    @pytest.mark.parametrize('max_size', [None, 35, 1000])
    @pytest.mark.parametrize('interpolation', [BILINEAR, BICUBIC, NEAREST])
    def test_resize_scripted(self, dt, size, max_size, interpolation, device):
        tensor, _ = _create_data(height=34, width=36, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

        if dt is not None:
            # This is a trivial cast to float of uint8 data to test all cases
            tensor = tensor.to(dt)
        if max_size is not None and len(size) != 1:
            pytest.xfail("with max_size, size must be a sequence with 2 elements")

        transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

    @cpu_only
    def test_resize_save(self):
        transform = T.Resize(size=[32, ])
        s_transform = torch.jit.script(transform)
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resize.pt"))

    @pytest.mark.parametrize('device', cpu_and_gpu())
    @pytest.mark.parametrize('scale', [(0.7, 1.2), [0.7, 1.2]])
    @pytest.mark.parametrize('ratio', [(0.75, 1.333), [0.75, 1.333]])
    @pytest.mark.parametrize('size', [(32, ), [44, ], [32, ], [32, 32], (32, 32), [44, 55]])
    @pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR, BICUBIC])
    def test_resized_crop(self, scale, ratio, size, interpolation, device):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
        transform = T.RandomResizedCrop(size=size, scale=scale, ratio=ratio, interpolation=interpolation)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

    @cpu_only
    def test_resized_crop_save(self):
        transform = T.RandomResizedCrop(size=[32, ])
        s_transform = torch.jit.script(transform)
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt"))


483
484
485
486
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
487
        torch.set_deterministic(False)
488
489
490
        self.device = "cuda"


491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_random_affine(device):
    transform = T.RandomAffine(degrees=45.0)
    s_transform = torch.jit.script(transform)
    with get_tmp_dir() as tmp_dir:
        s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('shear', [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('scale', [(0.7, 1.2), [0.7, 1.2]])
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('translate', [(0.1, 0.2), [0.2, 0.1]])
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('degrees', [45, 35.0, (-45, 45), [-90.0, 90.0]])
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('fill', [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1])
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('center', [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize('expand', [True, False])
@pytest.mark.parametrize('degrees', [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('fill', [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1])
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandomRotation(
        degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill
    )
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


def test_random_rotate_save():
    transform = T.RandomRotation(degrees=45.0)
    s_transform = torch.jit.script(transform)
    with get_tmp_dir() as tmp_dir:
        s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('distortion_scale', np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize('interpolation', [NEAREST, BILINEAR])
@pytest.mark.parametrize('fill', [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1])
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandomPerspective(
        distortion_scale=distortion_scale,
        interpolation=interpolation,
        fill=fill
    )
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


def test_random_perspective_save():
    transform = T.RandomPerspective()
    s_transform = torch.jit.script(transform)
    with get_tmp_dir() as tmp_dir:
        s_transform.save(os.path.join(tmp_dir, "t_perspective.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('Klass, meth_kwargs', [
    (T.Grayscale, {"num_output_channels": 1}),
    (T.Grayscale, {"num_output_channels": 3}),
    (T.RandomGrayscale, {})
])
def test_to_grayscale(device, Klass, meth_kwargs):

    tol = 1.0 + 1e-10
    _test_class_op(
        Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device,
        tol=tol, agg_method="max"
    )


611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
@pytest.mark.parametrize('device', cpu_and_gpu())
def test_normalize(device):
    fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    tensor, _ = _create_data(26, 34, device=device)

    with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
        fn(tensor)

    batch_tensors = torch.rand(4, 3, 44, 56, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
    # test for class interface
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_linear_transformation(device):
    c, h, w = 3, 24, 32

    tensor, _ = _create_data(h, w, channels=c, device=device)

    matrix = torch.rand(c * h * w, c * h * w, device=device)
    mean_vector = torch.rand(c * h * w, device=device)

    fn = T.LinearTransformation(matrix, mean_vector)
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)

    batch_tensors = torch.rand(4, c, h, w, device=device)
    # We skip some tests from _test_transform_vs_scripted_on_batch as
    # results for scripted and non-scripted transformations are not exactly the same
    torch.manual_seed(12)
    transformed_batch = fn(batch_tensors)
    torch.manual_seed(12)
    s_transformed_batch = scripted_fn(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch)

    with get_tmp_dir() as tmp_dir:
        scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_compose(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0

    transforms = T.Compose([
        T.CenterCrop(10),
        T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
    ])
    s_transforms = torch.nn.Sequential(*transforms.transforms)

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))

    t = T.Compose([
        lambda x: x,
    ])
    with pytest.raises(RuntimeError, match="Could not get name of python class object"):
        torch.jit.script(t)


@pytest.mark.parametrize('device', cpu_and_gpu())
def test_random_apply(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0

    transforms = T.RandomApply([
        T.RandomHorizontalFlip(),
        T.ColorJitter(),
    ], p=0.4)
    s_transforms = T.RandomApply(torch.nn.ModuleList([
        T.RandomHorizontalFlip(),
        T.ColorJitter(),
    ]), p=0.4)

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script, msg="{}".format(transforms))

    if device == "cpu":
        # Can't check this twice, otherwise
        # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
        transforms = T.RandomApply([
            T.ColorJitter(),
        ], p=0.3)
        with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
            torch.jit.script(transforms)


@pytest.mark.parametrize('device', cpu_and_gpu())
@pytest.mark.parametrize('meth_kwargs', [
    {"kernel_size": 3, "sigma": 0.75},
    {"kernel_size": 23, "sigma": [0.1, 2.0]},
    {"kernel_size": 23, "sigma": (0.1, 2.0)},
    {"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
    {"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
    {"kernel_size": [23], "sigma": 0.75}
])
def test_gaussian_blur(device, meth_kwargs):
    tol = 1.0 + 1e-10
    _test_class_op(
        T.GaussianBlur, meth_kwargs=meth_kwargs,
        test_exact_match=False, device=device, agg_method="max", tol=tol
    )


731
732
if __name__ == '__main__':
    unittest.main()