test_ops.py 46.1 KB
Newer Older
1
from common_utils import needs_cuda, cpu_only
2
3
import math
import unittest
4
import pytest
5

6
import numpy as np
7

8
import torch
9
from functools import lru_cache
10
from torch import Tensor
11
from torch.autograd import gradcheck
12
from torch.nn.modules.utils import _pair
13
from torchvision import ops
14
from typing import Tuple
15
16


17
class OpTester(object):
18
19
20
21
    @classmethod
    def setUpClass(cls):
        cls.dtype = torch.float64

22
23
    def test_forward_cpu_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=True)
24

25
26
    def test_forward_cpu_non_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=False)
27

28
29
    def test_backward_cpu_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=True)
30

31
32
    def test_backward_cpu_non_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=False)
33

34
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
35
36
    def test_forward_cuda_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=True)
37

38
39
40
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_forward_cuda_non_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=False)
41

42
43
44
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_backward_cuda_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=True)
45
46

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
47
48
49
    def test_backward_cuda_non_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=False)

50
51
52
53
54
55
56
57
    def _test_forward(self, device, contiguous):
        pass

    def _test_backward(self, device, contiguous):
        pass


class RoIOpTester(OpTester):
58
    def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None, **kwargs):
59
60
        x_dtype = self.dtype if x_dtype is None else x_dtype
        rois_dtype = self.dtype if rois_dtype is None else rois_dtype
61
62
63
        pool_size = 5
        # n_channels % (pool_size ** 2) == 0 required for PS opeartions.
        n_channels = 2 * (pool_size ** 2)
64
        x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
65
66
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
67
68
69
70
        rois = torch.tensor([[0, 0, 0, 9, 9],  # format is (xyxy)
                             [0, 0, 5, 4, 9],
                             [0, 5, 5, 9, 9],
                             [1, 0, 0, 9, 9]],
71
                            dtype=rois_dtype, device=device)
72

73
        pool_h, pool_w = pool_size, pool_size
74
        y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs)
75
76
        # the following should be true whether we're running an autocast test or not.
        self.assertTrue(y.dtype == x.dtype)
77
        gt_y = self.expected_fn(x, rois, pool_h, pool_w, spatial_scale=1,
78
                                sampling_ratio=-1, device=device, dtype=self.dtype, **kwargs)
79

80
81
        tol = 1e-3 if (x_dtype is torch.half or rois_dtype is torch.half) else 1e-5
        self.assertTrue(torch.allclose(gt_y.to(y.dtype), y, rtol=tol, atol=tol))
82
83
84
85
86
87
88
89
90
91

    def _test_backward(self, device, contiguous):
        pool_size = 2
        x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True)
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
        rois = torch.tensor([[0, 0, 0, 4, 4],  # format is (xyxy)
                             [0, 0, 2, 3, 4],
                             [0, 2, 2, 4, 4]],
                            dtype=self.dtype, device=device)
92

93
94
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
95

96
        script_func = self.get_script_fn(rois, pool_size)
97

98
99
        self.assertTrue(gradcheck(func, (x,)))
        self.assertTrue(gradcheck(script_func, (x,)))
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    def test_boxes_shape(self):
        self._test_boxes_shape()

    def _helper_boxes_shape(self, func):
        # test boxes as Tensor[N, 5]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
            func(a, boxes, output_size=(2, 2))

        # test boxes as List[Tensor[N, 4]]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
            ops.roi_pool(a, [boxes], output_size=(2, 2))

117
118
    def fn(*args, **kwargs):
        pass
119

120
121
    def get_script_fn(*args, **kwargs):
        pass
122

123
124
    def expected_fn(*args, **kwargs):
        pass
125

126
127
128
129
130
131
132
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for x_dtype in (torch.float, torch.half):
            for rois_dtype in (torch.float, torch.half):
                with torch.cuda.amp.autocast():
                    self._test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)

133

134
135
136
class RoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
137

138
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
139
140
        scriped = torch.jit.script(ops.roi_pool)
        return lambda x: scriped(x, rois, pool_size)
141

142
143
144
145
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
146

147
148
        n_channels = x.size(1)
        y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
149

150
151
        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
152

153
154
155
156
        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]
157

158
159
160
            roi_h, roi_w = roi_x.shape[-2:]
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w
161

162
163
164
165
166
167
            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
        return y
168

169
170
171
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_pool)

172

173
174
175
class PSRoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
176

177
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
178
179
        scriped = torch.jit.script(ops.ps_roi_pool)
        return lambda x: scriped(x, rois, pool_size)
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
        n_input_channels = x.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))

        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]

            roi_height = max(i_end - i_begin, 1)
            roi_width = max(j_end - j_begin, 1)
            bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)

            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        area = bin_x.size(-2) * bin_x.size(-1)
                        for c_out in range(0, n_output_channels):
                            c_in = c_out * (pool_h * pool_w) + pool_w * i + j
                            t = torch.sum(bin_x[c_in, :, :])
                            y[roi_idx, c_out, i, j] = t / area
        return y
212

213
214
215
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_pool)

216

217
218
def bilinear_interpolate(data, y, x, snap_border=False):
    height, width = data.shape
219

220
221
222
223
224
    if snap_border:
        if -1 < y <= 0:
            y = 0
        elif height - 1 <= y < height:
            y = height - 1
225

226
227
228
229
        if -1 < x <= 0:
            x = 0
        elif width - 1 <= x < width:
            x = width - 1
230

231
232
233
234
    y_low = int(math.floor(y))
    x_low = int(math.floor(x))
    y_high = y_low + 1
    x_high = x_low + 1
235

236
237
    wy_h = y - y_low
    wx_h = x - x_low
238
    wy_l = 1 - wy_h
239
    wx_l = 1 - wx_h
240

241
    val = 0
242
243
244
245
    for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
        for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
            if 0 <= yp < height and 0 <= xp < width:
                val += wx * wy * data[yp, xp]
246
    return val
247
248


249
class RoIAlignTester(RoIOpTester, unittest.TestCase):
AhnDW's avatar
AhnDW committed
250
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
251
        return ops.RoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
AhnDW's avatar
AhnDW committed
252
                            sampling_ratio=sampling_ratio, aligned=aligned)(x, rois)
253

254
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
255
256
        scriped = torch.jit.script(ops.roi_align)
        return lambda x: scriped(x, rois, pool_size)
257

AhnDW's avatar
AhnDW committed
258
    def expected_fn(self, in_data, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False,
259
                    device=None, dtype=torch.float64):
260
261
        if device is None:
            device = torch.device("cpu")
262
263
264
        n_channels = in_data.size(1)
        out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)

AhnDW's avatar
AhnDW committed
265
266
        offset = 0.5 if aligned else 0.

267
268
        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
AhnDW's avatar
AhnDW committed
269
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))

                    for channel in range(0, n_channels):

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
290
                                val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
291
292
293
                        val /= grid_h * grid_w

                        out_data[r, channel, i, j] = val
294
295
        return out_data

296
297
298
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_align)

299
300
301
302
    def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None, **kwargs):
        for aligned in (True, False):
            super()._test_forward(device, contiguous, x_dtype, rois_dtype, aligned=aligned)

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    def test_qroialign(self):
        """Make sure quantized version of RoIAlign is close to float version"""
        pool_size = 5
        img_size = 10
        n_channels = 2
        num_imgs = 1
        dtype = torch.float

        def make_rois(num_rois=1000):
            rois = torch.randint(0, img_size // 2, size=(num_rois, 5)).to(dtype)
            rois[:, 0] = torch.randint(0, num_imgs, size=(num_rois,))  # set batch index
            rois[:, 3:] += rois[:, 1:3]  # make sure boxes aren't degenerate
            return rois

        for aligned in (True, False):
            for scale, zero_point in ((1, 0), (2, 10), (0.1, 50)):
                for qdtype in (torch.qint8, torch.quint8, torch.qint32):

                    x = torch.randint(50, 100, size=(num_imgs, n_channels, img_size, img_size)).to(dtype)
                    qx = torch.quantize_per_tensor(x, scale=scale, zero_point=zero_point, dtype=qdtype)

                    rois = make_rois()
                    qrois = torch.quantize_per_tensor(rois, scale=scale, zero_point=zero_point, dtype=qdtype)

                    x, rois = qx.dequantize(), qrois.dequantize()  # we want to pass the same inputs

                    y = ops.roi_align(
                        x,
                        rois,
                        output_size=pool_size,
                        spatial_scale=1,
                        sampling_ratio=-1,
                        aligned=aligned,
                    )
                    qy = ops.roi_align(
                        qx,
                        qrois,
                        output_size=pool_size,
                        spatial_scale=1,
                        sampling_ratio=-1,
                        aligned=aligned,
                    )

                    # The output qy is itself a quantized tensor and there might have been a loss of info when it was
                    # quantized. For a fair comparison we need to quantize y as well
                    quantized_float_y = torch.quantize_per_tensor(y, scale=scale, zero_point=zero_point, dtype=qdtype)

                    try:
                        # Ideally, we would assert this, which passes with (scale, zero) == (1, 0)
                        self.assertTrue((qy == quantized_float_y).all())
                    except AssertionError:
                        # But because the computation aren't exactly the same between the 2 RoIAlign procedures, some
                        # rounding error may lead to a difference of 2 in the output.
                        # For example with (scale, zero) = (2, 10), 45.00000... will be quantized to 44
                        # but 45.00000001 will be rounded to 46. We make sure below that:
                        # - such discrepancies between qy and quantized_float_y are very rare (less then 5%)
                        # - any difference between qy and quantized_float_y is == scale
                        diff_idx = torch.where(qy != quantized_float_y)
                        num_diff = diff_idx[0].numel()
                        self.assertTrue(num_diff / qy.numel() < .05)

                        abs_diff = torch.abs(qy[diff_idx].dequantize() - quantized_float_y[diff_idx].dequantize())
                        t_scale = torch.full_like(abs_diff, fill_value=scale)
                        self.assertTrue(torch.allclose(abs_diff, t_scale, atol=1e-5))

        x = torch.randint(50, 100, size=(2, 3, 10, 10)).to(dtype)
        qx = torch.quantize_per_tensor(x, scale=1, zero_point=0, dtype=torch.qint8)
        rois = make_rois(10)
        qrois = torch.quantize_per_tensor(rois, scale=1, zero_point=0, dtype=torch.qint8)
        with self.assertRaisesRegex(RuntimeError, "Only one image per batch is allowed"):
            ops.roi_align(qx, qrois, output_size=pool_size)

375

376
377
378
379
class PSRoIAlignTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
                              sampling_ratio=sampling_ratio)(x, rois)
380

381
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
382
383
        scriped = torch.jit.script(ops.ps_roi_align)
        return lambda x: scriped(x, rois, pool_size)
384

385
386
    def expected_fn(self, in_data, rois, pool_h, pool_w, device, spatial_scale=1,
                    sampling_ratio=-1, dtype=torch.float64):
387
388
        if device is None:
            device = torch.device("cpu")
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
        n_input_channels = in_data.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
                    for c_out in range(0, n_output_channels):
                        c_in = c_out * (pool_h * pool_w) + pool_w * i + j

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
417
                                val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
418
419
420
421
                        val /= grid_h * grid_w

                        out_data[r, c_out, i, j] = val
        return out_data
422

423
424
425
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_align)

426

427
428
429
430
431
432
433
434
435
436
437
438
439
440
class MultiScaleRoIAlignTester(unittest.TestCase):
    def test_msroialign_repr(self):
        fmap_names = ['0']
        output_size = (7, 7)
        sampling_ratio = 2
        # Pass mock feature map names
        t = ops.poolers.MultiScaleRoIAlign(fmap_names, output_size, sampling_ratio)

        # Check integrity of object __repr__ attribute
        expected_string = (f"MultiScaleRoIAlign(featmap_names={fmap_names}, output_size={output_size}, "
                           f"sampling_ratio={sampling_ratio})")
        self.assertEqual(t.__repr__(), expected_string)


441
442
class TestNMS:
    def _reference_nms(self, boxes, scores, iou_threshold):
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
        """
        Args:
            box_scores (N, 5): boxes in corner-form and probabilities.
            iou_threshold: intersection over union threshold.
        Returns:
             picked: a list of indexes of the kept boxes
        """
        picked = []
        _, indexes = scores.sort(descending=True)
        while len(indexes) > 0:
            current = indexes[0]
            picked.append(current.item())
            if len(indexes) == 1:
                break
            current_box = boxes[current, :]
            indexes = indexes[1:]
            rest_boxes = boxes[indexes, :]
            iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
            indexes = indexes[iou <= iou_threshold]

        return torch.as_tensor(picked)

465
466
467
468
469
    def _create_tensors_with_iou(self, N, iou_thresh):
        # force last box to have a pre-defined iou with the first box
        # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
        # then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
        # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
470
471
472
        # Adjust the threshold upward a bit with the intent of creating
        # at least one box that exceeds (barely) the threshold and so
        # should be suppressed.
473
        boxes = torch.rand(N, 4) * 100
474
475
476
        boxes[:, 2:] += boxes[:, :2]
        boxes[-1, :] = boxes[0, :]
        x0, y0, x1, y1 = boxes[-1].tolist()
477
        iou_thresh += 1e-5
478
        boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
479
480
481
        scores = torch.rand(N)
        return boxes, scores

482
483
484
    @cpu_only
    @pytest.mark.parametrize("iou", (.2, .5, .8))
    def test_nms_ref(self, iou):
485
        err_msg = 'NMS incompatible between CPU and reference implementation for IoU={}'
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        keep_ref = self._reference_nms(boxes, scores, iou)
        keep = ops.nms(boxes, scores, iou)
        assert torch.allclose(keep, keep_ref), err_msg.format(iou)

    @cpu_only
    def test_nms_input_errors(self):
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(4), torch.rand(3), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 5), torch.rand(3), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 4), torch.rand(3, 2), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 4), torch.rand(4), 0.5)

    @cpu_only
    @pytest.mark.parametrize("iou", (.2, .5, .8))
    @pytest.mark.parametrize("scale, zero_point", ((1, 0), (2, 50), (3, 10)))
    def test_qnms(self, iou, scale, zero_point):
506
507
508
509
        # Note: we compare qnms vs nms instead of qnms vs reference implementation.
        # This is because with the int convertion, the trick used in _create_tensors_with_iou
        # doesn't really work (in fact, nms vs reference implem will also fail with ints)
        err_msg = 'NMS and QNMS give different results for IoU={}'
510
511
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        scores *= 100  # otherwise most scores would be 0 or 1 after int convertion
512

513
514
        qboxes = torch.quantize_per_tensor(boxes, scale=scale, zero_point=zero_point, dtype=torch.quint8)
        qscores = torch.quantize_per_tensor(scores, scale=scale, zero_point=zero_point, dtype=torch.quint8)
515

516
517
        boxes = qboxes.dequantize()
        scores = qscores.dequantize()
518

519
520
        keep = ops.nms(boxes, scores, iou)
        qkeep = ops.nms(qboxes, qscores, iou)
521

522
        assert torch.allclose(qkeep, keep), err_msg.format(iou)
523

524
525
526
    @needs_cuda
    @pytest.mark.parametrize("iou", (.2, .5, .8))
    def test_nms_cuda(self, iou, dtype=torch.float64):
527
        tol = 1e-3 if dtype is torch.half else 1e-5
528
529
        err_msg = 'NMS incompatible between CPU and CUDA for IoU={}'

530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        r_cpu = ops.nms(boxes, scores, iou)
        r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou)

        is_eq = torch.allclose(r_cpu, r_cuda.cpu())
        if not is_eq:
            # if the indices are not the same, ensure that it's because the scores
            # are duplicate
            is_eq = torch.allclose(scores[r_cpu], scores[r_cuda.cpu()], rtol=tol, atol=tol)
        assert is_eq, err_msg.format(iou)

    @needs_cuda
    @pytest.mark.parametrize("iou", (.2, .5, .8))
    @pytest.mark.parametrize("dtype", (torch.float, torch.half))
    def test_autocast(self, iou, dtype):
        with torch.cuda.amp.autocast():
            self.test_nms_cuda(iou=iou, dtype=dtype)

    @needs_cuda
549
550
551
552
553
554
555
556
557
    def test_nms_cuda_float16(self):
        boxes = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                              [285.1472, 188.7374, 1192.4984, 851.0669],
                              [279.2440, 197.9812, 1189.4746, 849.2019]]).cuda()
        scores = torch.tensor([0.6370, 0.7569, 0.3966]).cuda()

        iou_thres = 0.2
        keep32 = ops.nms(boxes, scores, iou_thres)
        keep16 = ops.nms(boxes.to(torch.float16), scores.to(torch.float16), iou_thres)
558
        assert torch.all(torch.eq(keep32, keep16))
559

560
    @cpu_only
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
    def test_batched_nms_implementations(self):
        """Make sure that both implementations of batched_nms yield identical results"""

        num_boxes = 1000
        iou_threshold = .9

        boxes = torch.cat((torch.rand(num_boxes, 2), torch.rand(num_boxes, 2) + 10), dim=1)
        assert max(boxes[:, 0]) < min(boxes[:, 2])  # x1 < x2
        assert max(boxes[:, 1]) < min(boxes[:, 3])  # y1 < y2

        scores = torch.rand(num_boxes)
        idxs = torch.randint(0, 4, size=(num_boxes,))
        keep_vanilla = ops.boxes._batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
        keep_trick = ops.boxes._batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)

        err_msg = "The vanilla and the trick implementation yield different nms outputs."
577
        assert torch.allclose(keep_vanilla, keep_trick), err_msg
578
579
580

        # Also make sure an empty tensor is returned if boxes is empty
        empty = torch.empty((0,), dtype=torch.int64)
581
        assert torch.allclose(empty, ops.batched_nms(empty, None, None, None))
582

583

584
class DeformConvTester(OpTester, unittest.TestCase):
585
    def expected_fn(self, x, weight, offset, mask, bias, stride=1, padding=0, dilation=1):
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
        stride_h, stride_w = _pair(stride)
        pad_h, pad_w = _pair(padding)
        dil_h, dil_w = _pair(dilation)
        weight_h, weight_w = weight.shape[-2:]

        n_batches, n_in_channels, in_h, in_w = x.shape
        n_out_channels = weight.shape[0]

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
        in_c_per_offset_grp = n_in_channels // n_offset_grps

        n_weight_grps = n_in_channels // weight.shape[1]
        in_c_per_weight_grp = weight.shape[1]
        out_c_per_weight_grp = n_out_channels // n_weight_grps

        out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
        for b in range(n_batches):
            for c_out in range(n_out_channels):
                for i in range(out_h):
                    for j in range(out_w):
                        for di in range(weight_h):
                            for dj in range(weight_w):
                                for c in range(in_c_per_weight_grp):
                                    weight_grp = c_out // out_c_per_weight_grp
                                    c_in = weight_grp * in_c_per_weight_grp + c

                                    offset_grp = c_in // in_c_per_offset_grp
616
617
                                    mask_idx = offset_grp * (weight_h * weight_w) + di * weight_w + dj
                                    offset_idx = 2 * mask_idx
618
619
620
621

                                    pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
                                    pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]

622
623
624
625
626
                                    mask_value = 1.0
                                    if mask is not None:
                                        mask_value = mask[b, mask_idx, i, j]

                                    out[b, c_out, i, j] += (mask_value * weight[c_out, c, di, dj] *
627
628
629
630
                                                            bilinear_interpolate(x[b, c_in, :, :], pi, pj))
        out += bias.view(1, n_out_channels, 1, 1)
        return out

631
    @lru_cache(maxsize=None)
632
    def get_fn_args(self, device, contiguous, batch_sz, dtype):
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
        n_in_channels = 6
        n_out_channels = 2
        n_weight_grps = 2
        n_offset_grps = 3

        stride = (2, 1)
        pad = (1, 0)
        dilation = (2, 1)

        stride_h, stride_w = stride
        pad_h, pad_w = pad
        dil_h, dil_w = dilation
        weight_h, weight_w = (3, 2)
        in_h, in_w = (5, 4)

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

651
        x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=dtype, requires_grad=True)
652
653

        offset = torch.randn(batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w,
654
                             device=device, dtype=dtype, requires_grad=True)
655

656
657
658
        mask = torch.randn(batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w,
                           device=device, dtype=dtype, requires_grad=True)

659
        weight = torch.randn(n_out_channels, n_in_channels // n_weight_grps, weight_h, weight_w,
660
                             device=device, dtype=dtype, requires_grad=True)
661

662
        bias = torch.randn(n_out_channels, device=device, dtype=dtype, requires_grad=True)
663
664
665
666

        if not contiguous:
            x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
667
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
668
669
            weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)

670
        return x, weight, offset, mask, bias, stride, pad, dilation
671

672
673
    def _test_forward(self, device, contiguous, dtype=None):
        dtype = self.dtype if dtype is None else dtype
674
        for batch_sz in [0, 33]:
675
            self._test_forward_with_batchsize(device, contiguous, batch_sz, dtype)
676

677
    def _test_forward_with_batchsize(self, device, contiguous, batch_sz, dtype):
678
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(device, contiguous, batch_sz, dtype)
679
680
681
682
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
Nicolas Hug's avatar
Nicolas Hug committed
683
        tol = 2e-3 if dtype is torch.half else 1e-5
684
685

        layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
686
                                 dilation=dilation, groups=groups).to(device=x.device, dtype=dtype)
687
        res = layer(x, offset, mask)
688
689
690

        weight = layer.weight.data
        bias = layer.bias.data
691
692
693
694
695
696
697
698
        expected = self.expected_fn(x, weight, offset, mask, bias, stride=stride, padding=padding, dilation=dilation)

        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))

        # no modulation test
        res = layer(x, offset)
        expected = self.expected_fn(x, weight, offset, None, bias, stride=stride, padding=padding, dilation=dilation)
699

700
701
        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))
702

703
704
705
706
707
        # test for wrong sizes
        with self.assertRaises(RuntimeError):
            wrong_offset = torch.rand_like(offset[:, :2])
            res = layer(x, wrong_offset)

708
709
710
711
        with self.assertRaises(RuntimeError):
            wrong_mask = torch.rand_like(mask[:, :2])
            res = layer(x, offset, wrong_mask)

712
    def _test_backward(self, device, contiguous):
713
714
715
716
        for batch_sz in [0, 33]:
            self._test_backward_with_batchsize(device, contiguous, batch_sz)

    def _test_backward_with_batchsize(self, device, contiguous, batch_sz):
717
718
719
720
721
722
        x, weight, offset, mask, bias, stride, padding, dilation = self.get_fn_args(device, contiguous,
                                                                                    batch_sz, self.dtype)

        def func(x_, offset_, mask_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=mask_)
723

724
725
726
727
728
729
730
731
732
733
734
735
736
        gradcheck(func, (x, offset, mask, weight, bias), nondet_tol=1e-5)

        def func_no_mask(x_, offset_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=None)

        gradcheck(func_no_mask, (x, offset, weight, bias), nondet_tol=1e-5)

        @torch.jit.script
        def script_func(x_, offset_, mask_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=mask_)
737

738
739
        gradcheck(lambda z, off, msk, wei, bi: script_func(z, off, msk, wei, bi, stride, padding, dilation),
                  (x, offset, mask, weight, bias), nondet_tol=1e-5)
740
741

        @torch.jit.script
742
743
744
745
        def script_func_no_mask(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=None)
746

747
        gradcheck(lambda z, off, wei, bi: script_func_no_mask(z, off, wei, bi, stride, padding, dilation),
748
749
                  (x, offset, weight, bias), nondet_tol=1e-5)

750
751
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_compare_cpu_cuda_grads(self):
752
753
        # Test from https://github.com/pytorch/vision/issues/2598
        # Run on CUDA only
754
        for contiguous in [False, True]:
755
756
757
758
759
760
            # compare grads computed on CUDA with grads computed on CPU
            true_cpu_grads = None

            init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
            img = torch.randn(8, 9, 1000, 110)
            offset = torch.rand(8, 2 * 3 * 3, 1000, 110)
761
            mask = torch.rand(8, 3 * 3, 1000, 110)
762
763
764
765

            if not contiguous:
                img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
                offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
766
                mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
767
768
769
770
771
772
                weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
            else:
                weight = init_weight

            for d in ["cpu", "cuda"]:

773
                out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1, mask=mask.to(d))
774
775
776
777
778
779
780
781
782
                out.mean().backward()
                if true_cpu_grads is None:
                    true_cpu_grads = init_weight.grad
                    self.assertTrue(true_cpu_grads is not None)
                else:
                    self.assertTrue(init_weight.grad is not None)
                    res_grads = init_weight.grad.to("cpu")
                    self.assertTrue(true_cpu_grads.allclose(res_grads))

783
784
785
786
787
788
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for dtype in (torch.float, torch.half):
            with torch.cuda.amp.autocast():
                self._test_forward(torch.device("cuda"), False, dtype=dtype)

789

790
791
792
class FrozenBNTester(unittest.TestCase):
    def test_frozenbatchnorm2d_repr(self):
        num_features = 32
793
794
        eps = 1e-5
        t = ops.misc.FrozenBatchNorm2d(num_features, eps=eps)
795
796

        # Check integrity of object __repr__ attribute
797
        expected_string = f"FrozenBatchNorm2d({num_features}, eps={eps})"
798
799
        self.assertEqual(t.__repr__(), expected_string)

800
801
802
803
804
805
806
807
808
    def test_frozenbatchnorm2d_eps(self):
        sample_size = (4, 32, 28, 28)
        x = torch.rand(sample_size)
        state_dict = dict(weight=torch.rand(sample_size[1]),
                          bias=torch.rand(sample_size[1]),
                          running_mean=torch.rand(sample_size[1]),
                          running_var=torch.rand(sample_size[1]),
                          num_batches_tracked=torch.tensor(100))

809
        # Check that default eps is equal to the one of BN
810
811
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
        fbn.load_state_dict(state_dict, strict=False)
812
        bn = torch.nn.BatchNorm2d(sample_size[1]).eval()
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
        bn.load_state_dict(state_dict)
        # Difference is expected to fall in an acceptable range
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

        # Check computation for eps > 0
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
        bn.load_state_dict(state_dict)
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

    def test_frozenbatchnorm2d_n_arg(self):
        """Ensure a warning is thrown when passing `n` kwarg
        (remove this when support of `n` is dropped)"""
        self.assertWarns(DeprecationWarning, ops.misc.FrozenBatchNorm2d, 32, eps=1e-5, n=32)

829

830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
class BoxConversionTester(unittest.TestCase):
    @staticmethod
    def _get_box_sequences():
        # Define here the argument type of `boxes` supported by region pooling operations
        box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
        box_list = [torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
                    torch.tensor([[0, 0, 100, 100]], dtype=torch.float)]
        box_tuple = tuple(box_list)
        return box_tensor, box_list, box_tuple

    def test_check_roi_boxes_shape(self):
        # Ensure common sequences of tensors are supported
        for box_sequence in self._get_box_sequences():
            self.assertIsNone(ops._utils.check_roi_boxes_shape(box_sequence))

    def test_convert_boxes_to_roi_format(self):
        # Ensure common sequences of tensors yield the same result
        ref_tensor = None
        for box_sequence in self._get_box_sequences():
            if ref_tensor is None:
                ref_tensor = box_sequence
            else:
                self.assertTrue(torch.equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence)))


855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
class BoxTester(unittest.TestCase):
    def test_bbox_same(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        exp_xyxy = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        box_same = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xyxy")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="xywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="cxcywh", out_fmt="cxcywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

    def test_bbox_xyxy_xywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_xywh = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        self.assertEqual(exp_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, exp_xywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_xywh, in_fmt="xywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xyxy_cxcywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xywh_cxcywh(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        # This is wrong
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xywh = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xywh")
        self.assertEqual(box_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(box_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, box_tensor)).item()

935
936
937
938
939
940
941
942
943
944
945
946
947
    def test_bbox_invalid(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        invalid_infmts = ["xwyh", "cxwyh"]
        invalid_outfmts = ["xwcx", "xhwcy"]
        for inv_infmt in invalid_infmts:
            for inv_outfmt in invalid_outfmts:
                self.assertRaises(ValueError, ops.box_convert, box_tensor, inv_infmt, inv_outfmt)

    def test_bbox_convert_jit(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
948

949
950
        scripted_fn = torch.jit.script(ops.box_convert)
        TOLERANCE = 1e-3
951

952
953
954
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        scripted_xywh = scripted_fn(box_tensor, 'xyxy', 'xywh')
        self.assertTrue((scripted_xywh - box_xywh).abs().max() < TOLERANCE)
955

956
957
958
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        scripted_cxcywh = scripted_fn(box_tensor, 'xyxy', 'cxcywh')
        self.assertTrue((scripted_cxcywh - box_cxcywh).abs().max() < TOLERANCE)
959
960


Aditya Oke's avatar
Aditya Oke committed
961
962
class BoxAreaTester(unittest.TestCase):
    def test_box_area(self):
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
        def area_check(box, expected, tolerance=1e-4):
            out = ops.box_area(box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int8, torch.int16, torch.int32, torch.int64]:
            box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=dtype)
            expected = torch.tensor([10000, 0])
            area_check(box_tensor, expected)

        # Check for float32 and float64 boxes
        for dtype in [torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([604723.0806, 600965.4666, 592761.0085], dtype=torch.float64)
            area_check(box_tensor, expected, tolerance=0.05)

        # Check for float16 box
        box_tensor = torch.tensor([[285.25, 185.625, 1194.0, 851.5],
                                   [285.25, 188.75, 1192.0, 851.0],
                                   [279.25, 198.0, 1189.0, 849.0]], dtype=torch.float16)
        expected = torch.tensor([605113.875, 600495.1875, 592247.25])
        area_check(box_tensor, expected)
Aditya Oke's avatar
Aditya Oke committed
988
989
990
991


class BoxIouTester(unittest.TestCase):
    def test_iou(self):
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
        def iou_check(box, expected, tolerance=1e-4):
            out = ops.box_iou(box, box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]])
            iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-4)
Aditya Oke's avatar
Aditya Oke committed
1010
1011
1012
1013


class GenBoxIouTester(unittest.TestCase):
    def test_gen_iou(self):
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        def gen_iou_check(box, expected, tolerance=1e-4):
            out = ops.generalized_box_iou(box, box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611], [-0.7778, -0.8611, 1.0]])
            gen_iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            gen_iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-3)
Aditya Oke's avatar
Aditya Oke committed
1032
1033


1034
1035
if __name__ == '__main__':
    unittest.main()