"tests/pytorch/sparse/test_elementwise_op_diag.py" did not exist on "3d01340d2327f6f771d4a34f53a9231d8ee78030"
models.rst 28.2 KB
Newer Older
1
2
.. _models:

3
4
Models and pre-trained weights
##############################
5
6


7
The ``torchvision.models`` subpackage contains definitions of models for addressing
8
different tasks, including: image classification, pixelwise semantic
9
segmentation, object detection, instance segmentation, person
10
keypoint detection, video classification, and optical flow.
11

12
13
.. note ::
    Backward compatibility is guaranteed for loading a serialized 
14
    ``state_dict`` to the model created using old PyTorch version. 
15
    On the contrary, loading entire saved models or serialized 
16
17
    ``ScriptModules`` (seralized using older versions of PyTorch) 
    may not preserve the historic behaviour. Refer to the following 
18
19
20
    `documentation 
    <https://pytorch.org/docs/stable/notes/serialization.html#id6>`_   

21
22
23

Classification
==============
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
24

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
25
The models subpackage contains definitions for the following model
26
architectures for image classification:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
27
28
29
30
31
32
33

-  `AlexNet`_
-  `VGG`_
-  `ResNet`_
-  `SqueezeNet`_
-  `DenseNet`_
-  `Inception`_ v3
34
-  `GoogLeNet`_
Bar's avatar
Bar committed
35
-  `ShuffleNet`_ v2
36
37
-  `MobileNetV2`_
-  `MobileNetV3`_
38
-  `ResNeXt`_
39
-  `Wide ResNet`_
40
-  `MNASNet`_
41
-  `EfficientNet`_
42
-  `RegNet`_
43
-  `VisionTransformer`_
44
-  `ConvNeXt`_
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
45
46
47
48
49
50
51
52
53
54

You can construct a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18()
    alexnet = models.alexnet()
    vgg16 = models.vgg16()
    squeezenet = models.squeezenet1_0()
Ahmed Abdo's avatar
Ahmed Abdo committed
55
    densenet = models.densenet161()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
56
    inception = models.inception_v3()
57
    googlenet = models.googlenet()
58
    shufflenet = models.shufflenet_v2_x1_0()
59
60
61
    mobilenet_v2 = models.mobilenet_v2()
    mobilenet_v3_large = models.mobilenet_v3_large()
    mobilenet_v3_small = models.mobilenet_v3_small()
62
    resnext50_32x4d = models.resnext50_32x4d()
63
    wide_resnet50_2 = models.wide_resnet50_2()
64
    mnasnet = models.mnasnet1_0()
65
66
67
68
69
70
71
72
    efficientnet_b0 = models.efficientnet_b0()
    efficientnet_b1 = models.efficientnet_b1()
    efficientnet_b2 = models.efficientnet_b2()
    efficientnet_b3 = models.efficientnet_b3()
    efficientnet_b4 = models.efficientnet_b4()
    efficientnet_b5 = models.efficientnet_b5()
    efficientnet_b6 = models.efficientnet_b6()
    efficientnet_b7 = models.efficientnet_b7()
73
74
75
76
77
78
79
    regnet_y_400mf = models.regnet_y_400mf()
    regnet_y_800mf = models.regnet_y_800mf()
    regnet_y_1_6gf = models.regnet_y_1_6gf()
    regnet_y_3_2gf = models.regnet_y_3_2gf()
    regnet_y_8gf = models.regnet_y_8gf()
    regnet_y_16gf = models.regnet_y_16gf()
    regnet_y_32gf = models.regnet_y_32gf()
80
    regnet_y_128gf = models.regnet_y_128gf()
81
82
83
84
85
86
87
    regnet_x_400mf = models.regnet_x_400mf()
    regnet_x_800mf = models.regnet_x_800mf()
    regnet_x_1_6gf = models.regnet_x_1_6gf()
    regnet_x_3_2gf = models.regnet_x_3_2gf()
    regnet_x_8gf = models.regnet_x_8gf()
    regnet_x_16gf = models.regnet_x_16gf()
    regnet_x_32gf = models.regnet_x_32gf()
88
89
90
91
    vit_b_16 = models.vit_b_16()
    vit_b_32 = models.vit_b_32()
    vit_l_16 = models.vit_l_16()
    vit_l_32 = models.vit_l_32()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
92
93
94
95
96
97
98
99
100
101
102

We provide pre-trained models, using the PyTorch :mod:`torch.utils.model_zoo`.
These can be constructed by passing ``pretrained=True``:

.. code:: python

    import torchvision.models as models
    resnet18 = models.resnet18(pretrained=True)
    alexnet = models.alexnet(pretrained=True)
    squeezenet = models.squeezenet1_0(pretrained=True)
    vgg16 = models.vgg16(pretrained=True)
Ahmed Abdo's avatar
Ahmed Abdo committed
103
    densenet = models.densenet161(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
104
    inception = models.inception_v3(pretrained=True)
105
    googlenet = models.googlenet(pretrained=True)
106
    shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
107
108
    mobilenet_v2 = models.mobilenet_v2(pretrained=True)
    mobilenet_v3_large = models.mobilenet_v3_large(pretrained=True)
109
    mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
110
    resnext50_32x4d = models.resnext50_32x4d(pretrained=True)
111
    wide_resnet50_2 = models.wide_resnet50_2(pretrained=True)
112
    mnasnet = models.mnasnet1_0(pretrained=True)
113
114
115
116
117
118
119
120
    efficientnet_b0 = models.efficientnet_b0(pretrained=True)
    efficientnet_b1 = models.efficientnet_b1(pretrained=True)
    efficientnet_b2 = models.efficientnet_b2(pretrained=True)
    efficientnet_b3 = models.efficientnet_b3(pretrained=True)
    efficientnet_b4 = models.efficientnet_b4(pretrained=True)
    efficientnet_b5 = models.efficientnet_b5(pretrained=True)
    efficientnet_b6 = models.efficientnet_b6(pretrained=True)
    efficientnet_b7 = models.efficientnet_b7(pretrained=True)
121
122
    regnet_y_400mf = models.regnet_y_400mf(pretrained=True)
    regnet_y_800mf = models.regnet_y_800mf(pretrained=True)
123
124
    regnet_y_1_6gf = models.regnet_y_1_6gf(pretrained=True)
    regnet_y_3_2gf = models.regnet_y_3_2gf(pretrained=True)
125
    regnet_y_8gf = models.regnet_y_8gf(pretrained=True)
126
127
    regnet_y_16gf = models.regnet_y_16gf(pretrained=True)
    regnet_y_32gf = models.regnet_y_32gf(pretrained=True)
128
129
    regnet_x_400mf = models.regnet_x_400mf(pretrained=True)
    regnet_x_800mf = models.regnet_x_800mf(pretrained=True)
130
131
    regnet_x_1_6gf = models.regnet_x_1_6gf(pretrained=True)
    regnet_x_3_2gf = models.regnet_x_3_2gf(pretrained=True)
132
    regnet_x_8gf = models.regnet_x_8gf(pretrained=True)
133
134
    regnet_x_16gf = models.regnet_x_16gf(pretrainedTrue)
    regnet_x_32gf = models.regnet_x_32gf(pretrained=True)
135
136
137
138
    vit_b_16 = models.vit_b_16(pretrained=True)
    vit_b_32 = models.vit_b_32(pretrained=True)
    vit_l_16 = models.vit_l_16(pretrained=True)
    vit_l_32 = models.vit_l_32(pretrained=True)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
139

140
Instancing a pre-trained model will download its weights to a cache directory.
141
142
This directory can be set using the `TORCH_HOME` environment variable. See
:func:`torch.hub.load_state_dict_from_url` for details.
143

144
145
146
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
147
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.
148

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
149
150
151
152
153
154
155
156
157
158
159
160
161
All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB images of shape (3 x H x W),
where H and W are expected to be at least 224.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
You can use the following transform to normalize::

    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

An example of such normalization can be found in the imagenet example
`here <https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101>`_

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
The process for obtaining the values of `mean` and `std` is roughly equivalent
to::

    import torch
    from torchvision import datasets, transforms as T

    transform = T.Compose([T.Resize(256), T.CenterCrop(224), T.ToTensor()])
    dataset = datasets.ImageNet(".", split="train", transform=transform)

    means = []
    stds = []
    for img in subset(dataset):
        means.append(torch.mean(img))
        stds.append(torch.std(img))

    mean = torch.mean(torch.tensor(means))
    std = torch.mean(torch.tensor(stds))

180
Unfortunately, the concrete `subset` that was used is lost. For more
181
182
183
information see `this discussion <https://github.com/pytorch/vision/issues/1439>`_
or `these experiments <https://github.com/pytorch/vision/pull/1965>`_.

184
185
186
187
The sizes of the EfficientNet models depend on the variant. For the exact input sizes
`check here <https://github.com/pytorch/vision/blob/d2bfd639e46e1c5dc3c177f889dc7750c8d137c7/references/classification/train.py#L92-L93>`_

ImageNet 1-crop error rates
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
188
189

================================  =============   =============
190
Model                             Acc@1           Acc@5
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
191
================================  =============   =============
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
AlexNet                           56.522          79.066
VGG-11                            69.020          88.628
VGG-13                            69.928          89.246
VGG-16                            71.592          90.382
VGG-19                            72.376          90.876
VGG-11 with batch normalization   70.370          89.810
VGG-13 with batch normalization   71.586          90.374
VGG-16 with batch normalization   73.360          91.516
VGG-19 with batch normalization   74.218          91.842
ResNet-18                         69.758          89.078
ResNet-34                         73.314          91.420
ResNet-50                         76.130          92.862
ResNet-101                        77.374          93.546
ResNet-152                        78.312          94.046
SqueezeNet 1.0                    58.092          80.420
SqueezeNet 1.1                    58.178          80.624
Densenet-121                      74.434          91.972
Densenet-169                      75.600          92.806
Densenet-201                      76.896          93.370
Densenet-161                      77.138          93.560
Inception v3                      77.294          93.450
GoogleNet                         69.778          89.530
ShuffleNet V2 x1.0                69.362          88.316
ShuffleNet V2 x0.5                60.552          81.746
MobileNet V2                      71.878          90.286
MobileNet V3 Large                74.042          91.340
218
MobileNet V3 Small                67.668          87.402
219
220
221
222
223
224
ResNeXt-50-32x4d                  77.618          93.698
ResNeXt-101-32x8d                 79.312          94.526
Wide ResNet-50-2                  78.468          94.086
Wide ResNet-101-2                 78.848          94.284
MNASNet 1.0                       73.456          91.510
MNASNet 0.5                       67.734          87.490
225
226
227
228
229
230
231
232
EfficientNet-B0                   77.692          93.532
EfficientNet-B1                   78.642          94.186
EfficientNet-B2                   80.608          95.310
EfficientNet-B3                   82.008          96.054
EfficientNet-B4                   83.384          96.594
EfficientNet-B5                   83.444          96.628
EfficientNet-B6                   84.008          96.916
EfficientNet-B7                   84.122          96.908
233
234
235
236
237
238
239
240
regnet_x_400mf                    72.834          90.950
regnet_x_800mf                    75.212          92.348
regnet_x_1_6gf                    77.040          93.440
regnet_x_3_2gf                    78.364          93.992
regnet_x_8gf                      79.344          94.686 
regnet_x_16gf                     80.058          94.944
regnet_x_32gf                     80.622          95.248
regnet_y_400mf                    74.046          91.716
241
regnet_y_800mf                    76.420          93.136
242
243
244
245
246
regnet_y_1_6gf                    77.950          93.966
regnet_y_3_2gf                    78.948          94.576
regnet_y_8gf                      80.032          95.048
regnet_y_16gf                     80.424          95.240
regnet_y_32gf                     80.878          95.340
247
248
249
250
vit_b_16                          81.072          95.318
vit_b_32                          75.912          92.466
vit_l_16                          79.662          94.638
vit_l_32                          76.972          93.070
251
convnext_tiny (prototype)         82.520          96.146
252
253
254
convnext_small (prototype)        83.616          96.650
convnext_base (prototype)         84.062          96.870
convnext_large (prototype)        84.414          96.976
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
255
256
257
258
259
260
261
262
263
================================  =============   =============


.. _AlexNet: https://arxiv.org/abs/1404.5997
.. _VGG: https://arxiv.org/abs/1409.1556
.. _ResNet: https://arxiv.org/abs/1512.03385
.. _SqueezeNet: https://arxiv.org/abs/1602.07360
.. _DenseNet: https://arxiv.org/abs/1608.06993
.. _Inception: https://arxiv.org/abs/1512.00567
264
.. _GoogLeNet: https://arxiv.org/abs/1409.4842
Bar's avatar
Bar committed
265
.. _ShuffleNet: https://arxiv.org/abs/1807.11164
266
267
.. _MobileNetV2: https://arxiv.org/abs/1801.04381
.. _MobileNetV3: https://arxiv.org/abs/1905.02244
268
.. _ResNeXt: https://arxiv.org/abs/1611.05431
269
.. _MNASNet: https://arxiv.org/abs/1807.11626
270
.. _EfficientNet: https://arxiv.org/abs/1905.11946
271
.. _RegNet: https://arxiv.org/abs/2003.13678
272
.. _VisionTransformer: https://arxiv.org/abs/2010.11929
273
.. _ConvNeXt: https://arxiv.org/abs/2201.03545
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
274
275
276

.. currentmodule:: torchvision.models

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
277
278
279
Alexnet
-------

280
281
282
283
284
.. autosummary::
    :toctree: generated/
    :template: function.rst

    alexnet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
285
286
287
288

VGG
---

289
290
291
292
293
294
295
296
297
298
299
300
.. autosummary::
    :toctree: generated/
    :template: function.rst

    vgg11
    vgg11_bn
    vgg13
    vgg13_bn
    vgg16
    vgg16_bn
    vgg19
    vgg19_bn
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
301
302
303
304
305


ResNet
------

306
307
308
309
310
311
312
313
314
.. autosummary::
    :toctree: generated/
    :template: function.rst

    resnet18
    resnet34
    resnet50
    resnet101
    resnet152
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
315
316
317
318

SqueezeNet
----------

319
320
321
322
323
324
.. autosummary::
    :toctree: generated/
    :template: function.rst

    squeezenet1_0
    squeezenet1_1
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
325

Sangwhan Moon's avatar
Sangwhan Moon committed
326
DenseNet
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
327
328
---------

329
330
331
332
333
334
335
336
.. autosummary::
    :toctree: generated/
    :template: function.rst

    densenet121
    densenet169
    densenet161
    densenet201
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
337
338
339
340

Inception v3
------------

341
342
343
344
345
.. autosummary::
    :toctree: generated/
    :template: function.rst

    inception_v3
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
346

347
348
349
GoogLeNet
------------

350
351
352
353
354
.. autosummary::
    :toctree: generated/
    :template: function.rst

    googlenet
355

Bar's avatar
Bar committed
356
357
358
ShuffleNet v2
-------------

359
360
361
362
363
364
365
366
.. autosummary::
    :toctree: generated/
    :template: function.rst

    shufflenet_v2_x0_5
    shufflenet_v2_x1_0
    shufflenet_v2_x1_5
    shufflenet_v2_x2_0
Bar's avatar
Bar committed
367

368
369
370
MobileNet v2
-------------

371
372
373
374
375
.. autosummary::
    :toctree: generated/
    :template: function.rst

    mobilenet_v2
376

377
378
379
MobileNet v3
-------------

380
381
382
383
384
385
.. autosummary::
    :toctree: generated/
    :template: function.rst

    mobilenet_v3_large
    mobilenet_v3_small
386

387
ResNext
388
-------
389

390
391
392
393
394
395
.. autosummary::
    :toctree: generated/
    :template: function.rst

    resnext50_32x4d
    resnext101_32x8d
396

397
398
399
Wide ResNet
-----------

400
401
402
403
404
405
.. autosummary::
    :toctree: generated/
    :template: function.rst

    wide_resnet50_2
    wide_resnet101_2
406

407
408
409
MNASNet
--------

410
411
412
413
414
415
416
417
.. autosummary::
    :toctree: generated/
    :template: function.rst

    mnasnet0_5
    mnasnet0_75
    mnasnet1_0
    mnasnet1_3
418

419
420
421
EfficientNet
------------

422
423
424
425
426
427
428
429
430
431
432
433
.. autosummary::
    :toctree: generated/
    :template: function.rst

    efficientnet_b0
    efficientnet_b1
    efficientnet_b2
    efficientnet_b3
    efficientnet_b4
    efficientnet_b5
    efficientnet_b6
    efficientnet_b7
434

435
436
437
RegNet
------------

438
439
440
441
442
443
444
445
446
447
448
.. autosummary::
    :toctree: generated/
    :template: function.rst

    regnet_y_400mf
    regnet_y_800mf
    regnet_y_1_6gf
    regnet_y_3_2gf
    regnet_y_8gf
    regnet_y_16gf
    regnet_y_32gf
449
    regnet_y_128gf
450
451
452
453
454
455
456
    regnet_x_400mf
    regnet_x_800mf
    regnet_x_1_6gf
    regnet_x_3_2gf
    regnet_x_8gf
    regnet_x_16gf
    regnet_x_32gf
457

458
459
460
461
462
463
464
465
466
467
468
469
VisionTransformer
-----------------

.. autosummary::
    :toctree: generated/
    :template: function.rst

    vit_b_16
    vit_b_32
    vit_l_16
    vit_l_32

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
Quantized Models
----------------

The following architectures provide support for INT8 quantized models. You can get
a model with random weights by calling its constructor:

.. code:: python

    import torchvision.models as models
    googlenet = models.quantization.googlenet()
    inception_v3 = models.quantization.inception_v3()
    mobilenet_v2 = models.quantization.mobilenet_v2()
    mobilenet_v3_large = models.quantization.mobilenet_v3_large()
    resnet18 = models.quantization.resnet18()
    resnet50 = models.quantization.resnet50()
    resnext101_32x8d = models.quantization.resnext101_32x8d()
    shufflenet_v2_x0_5 = models.quantization.shufflenet_v2_x0_5()
    shufflenet_v2_x1_0 = models.quantization.shufflenet_v2_x1_0()
    shufflenet_v2_x1_5 = models.quantization.shufflenet_v2_x1_5()
    shufflenet_v2_x2_0 = models.quantization.shufflenet_v2_x2_0()

Obtaining a pre-trained quantized model can be done with a few lines of code:

.. code:: python

    import torchvision.models as models
    model = models.quantization.mobilenet_v2(pretrained=True, quantize=True)
    model.eval()
    # run the model with quantized inputs and weights
    out = model(torch.rand(1, 3, 224, 224))

We provide pre-trained quantized weights for the following models:

================================  =============  =============
Model                             Acc@1          Acc@5
================================  =============  =============
MobileNet V2                      71.658         90.150
MobileNet V3 Large                73.004         90.858
508
509
ShuffleNet V2 x1.0                68.360         87.582
ShuffleNet V2 x0.5                57.972         79.780
510
511
512
513
514
515
516
ResNet 18                         69.494         88.882
ResNet 50                         75.920         92.814
ResNext 101 32x8d                 78.986         94.480
Inception V3                      77.176         93.354
GoogleNet                         69.826         89.404
================================  =============  =============

517
518
519
520

Semantic Segmentation
=====================

521
522
523
The models subpackage contains definitions for the following model
architectures for semantic segmentation:

524
- `FCN ResNet50, ResNet101 <https://arxiv.org/abs/1411.4038>`_
525
526
- `DeepLabV3 ResNet50, ResNet101, MobileNetV3-Large <https://arxiv.org/abs/1706.05587>`_
- `LR-ASPP MobileNetV3-Large <https://arxiv.org/abs/1905.02244>`_
527

528
529
530
531
532
As with image classification models, all pre-trained models expect input images normalized in the same way.
The images have to be loaded in to a range of ``[0, 1]`` and then normalized using
``mean = [0.485, 0.456, 0.406]`` and ``std = [0.229, 0.224, 0.225]``.
They have been trained on images resized such that their minimum size is 520.

533
534
For details on how to plot the masks of such models, you may refer to :ref:`semantic_seg_output`.

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
The pre-trained models have been trained on a subset of COCO train2017, on the 20 categories that are
present in the Pascal VOC dataset. You can see more information on how the subset has been selected in
``references/segmentation/coco_utils.py``. The classes that the pre-trained model outputs are the following,
in order:

  .. code-block:: python

      ['__background__', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
       'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike',
       'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']

The accuracies of the pre-trained models evaluated on COCO val2017 are as follows

================================  =============  ====================
Network                           mean IoU       global pixelwise acc
================================  =============  ====================
551
FCN ResNet50                      60.5           91.4
552
FCN ResNet101                     63.7           91.9
553
DeepLabV3 ResNet50                66.4           92.4
554
DeepLabV3 ResNet101               67.4           92.4
555
556
DeepLabV3 MobileNetV3-Large       60.3           91.2
LR-ASPP MobileNetV3-Large         57.9           91.2
557
558
559
560
561
562
================================  =============  ====================


Fully Convolutional Networks
----------------------------

563
564
565
566
567
568
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.segmentation.fcn_resnet50
    torchvision.models.segmentation.fcn_resnet101
569
570
571
572
573


DeepLabV3
---------

574
575
576
577
578
579
580
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.segmentation.deeplabv3_resnet50
    torchvision.models.segmentation.deeplabv3_resnet101
    torchvision.models.segmentation.deeplabv3_mobilenet_v3_large
581
582
583
584
585


LR-ASPP
-------

586
587
588
589
590
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.segmentation.lraspp_mobilenet_v3_large
591

592
.. _object_det_inst_seg_pers_keypoint_det:
593
594
595
596

Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

597
598
599
The models subpackage contains definitions for the following model
architectures for detection:

600
- `Faster R-CNN <https://arxiv.org/abs/1506.01497>`_
Hu Ye's avatar
Hu Ye committed
601
- `FCOS <https://arxiv.org/abs/1904.01355>`_
602
603
604
- `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_
- `RetinaNet <https://arxiv.org/abs/1708.02002>`_
- `SSD <https://arxiv.org/abs/1512.02325>`_
605
- `SSDlite <https://arxiv.org/abs/1801.04381>`_
606

607
608
609
610
611
The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
in torchvision.

The models expect a list of ``Tensor[C, H, W]``, in the range ``0-1``.
612
The models internally resize the images but the behaviour varies depending
613
614
on the model. Check the constructor of the models for more information. The
output format of such models is illustrated in :ref:`instance_seg_output`.
615
616
617
618
619
620
621
622
623


For object detection and instance segmentation, the pre-trained
models return the predictions of the following classes:

  .. code-block:: python

      COCO_INSTANCE_CATEGORY_NAMES = [
          '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
624
625
          'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', 'stop sign',
          'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
626
          'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella', 'N/A', 'N/A',
627
628
629
630
631
632
633
634
          'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball',
          'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket',
          'bottle', 'N/A', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
          'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
          'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table',
          'N/A', 'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
          'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book',
          'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'
635
636
637
638
639
640
      ]


Here are the summary of the accuracies for the models trained on
the instances set of COCO train2017 and evaluated on COCO val2017.

641
642
643
644
645
646
======================================  =======  ========  ===========
Network                                 box AP   mask AP   keypoint AP
======================================  =======  ========  ===========
Faster R-CNN ResNet-50 FPN              37.0     -         -
Faster R-CNN MobileNetV3-Large FPN      32.8     -         -
Faster R-CNN MobileNetV3-Large 320 FPN  22.8     -         -
Hu Ye's avatar
Hu Ye committed
647
FCOS ResNet-50 FPN                      39.2     -         -
648
RetinaNet ResNet-50 FPN                 36.4     -         -
649
650
SSD300 VGG16                            25.1     -         -
SSDlite320 MobileNetV3-Large            21.3     -         -
651
652
Mask R-CNN ResNet-50 FPN                37.9     34.6      -
======================================  =======  ========  ===========
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687

For person keypoint detection, the accuracies for the pre-trained
models are as follows

================================  =======  ========  ===========
Network                           box AP   mask AP   keypoint AP
================================  =======  ========  ===========
Keypoint R-CNN ResNet-50 FPN      54.6     -         65.0
================================  =======  ========  ===========

For person keypoint detection, the pre-trained model return the
keypoints in the following order:

  .. code-block:: python

    COCO_PERSON_KEYPOINT_NAMES = [
        'nose',
        'left_eye',
        'right_eye',
        'left_ear',
        'right_ear',
        'left_shoulder',
        'right_shoulder',
        'left_elbow',
        'right_elbow',
        'left_wrist',
        'right_wrist',
        'left_hip',
        'right_hip',
        'left_knee',
        'right_knee',
        'left_ankle',
        'right_ankle'
    ]

688
689
690
691
692
693
Runtime characteristics
-----------------------

The implementations of the models for object detection, instance segmentation
and keypoint detection are efficient.

694
695
696
In the following table, we use 8 GPUs to report the results. During training,
we use a batch size of 2 per GPU for all models except SSD which uses 4
and SSDlite which uses 24. During testing a batch size  of 1 is used.
697
698
699
700
701

For test time, we report the time for the model evaluation and postprocessing
(including mask pasting in image), but not the time for computing the
precision-recall.

702
703
704
705
706
707
======================================  ===================  ==================  ===========
Network                                 train time (s / it)  test time (s / it)  memory (GB)
======================================  ===================  ==================  ===========
Faster R-CNN ResNet-50 FPN              0.2288               0.0590              5.2
Faster R-CNN MobileNetV3-Large FPN      0.1020               0.0415              1.0
Faster R-CNN MobileNetV3-Large 320 FPN  0.0978               0.0376              0.6
Hu Ye's avatar
Hu Ye committed
708
FCOS ResNet-50 FPN                      0.1450               0.0539              3.3
709
RetinaNet ResNet-50 FPN                 0.2514               0.0939              4.1
710
711
SSD300 VGG16                            0.2093               0.0744              1.5
SSDlite320 MobileNetV3-Large            0.1773               0.0906              1.5
712
713
714
Mask R-CNN ResNet-50 FPN                0.2728               0.0903              5.4
Keypoint R-CNN ResNet-50 FPN            0.3789               0.1242              6.8
======================================  ===================  ==================  ===========
715
716
717
718
719


Faster R-CNN
------------

720
721
722
723
724
725
726
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.fasterrcnn_resnet50_fpn
    torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn
    torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn
727

Hu Ye's avatar
Hu Ye committed
728
729
730
731
732
733
734
735
736
FCOS
----

.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.fcos_resnet50_fpn

737

738
RetinaNet
739
---------
740

741
742
743
744
745
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.retinanet_resnet50_fpn
746
747


748
SSD
749
---
750

751
752
753
754
755
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.ssd300_vgg16
756
757


758
SSDlite
759
-------
760

761
762
763
764
765
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.ssdlite320_mobilenet_v3_large
766
767


768
769
770
Mask R-CNN
----------

771
772
773
774
775
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.maskrcnn_resnet50_fpn
776
777
778
779
780


Keypoint R-CNN
--------------

781
782
783
784
785
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.detection.keypointrcnn_resnet50_fpn
786

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

Video classification
====================

We provide models for action recognition pre-trained on Kinetics-400.
They have all been trained with the scripts provided in ``references/video_classification``.

All pre-trained models expect input images normalized in the same way,
i.e. mini-batches of 3-channel RGB videos of shape (3 x T x H x W),
where H and W are expected to be 112, and T is a number of video frames in a clip.
The images have to be loaded in to a range of [0, 1] and then normalized
using ``mean = [0.43216, 0.394666, 0.37645]`` and ``std = [0.22803, 0.22145, 0.216989]``.


.. note::
  The normalization parameters are different from the image classification ones, and correspond
  to the mean and std from Kinetics-400.

.. note::
  For now, normalization code can be found in ``references/video_classification/transforms.py``,
  see the ``Normalize`` function there. Note that it differs from standard normalization for
  images because it assumes the video is 4d.

Kinetics 1-crop accuracies for clip length 16 (16x112x112)

================================  =============   =============
Network                           Clip acc@1      Clip acc@5
================================  =============   =============
ResNet 3D 18                      52.75           75.45
ResNet MC 18                      53.90           76.29
ResNet (2+1)D                     57.50           78.81
================================  =============   =============


ResNet 3D
----------

824
825
826
827
828
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.video.r3d_18
829
830
831
832

ResNet Mixed Convolution
------------------------

833
834
835
836
837
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.video.mc3_18
838
839
840
841

ResNet (2+1)D
-------------

842
843
844
845
846
.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.video.r2plus1d_18
847
848
849
850
851
852
853
854
855
856
857
858
859

Optical flow
============

Raft
----

.. autosummary::
    :toctree: generated/
    :template: function.rst

    torchvision.models.optical_flow.raft_large
    torchvision.models.optical_flow.raft_small