test_transforms_tensor.py 33.1 KB
Newer Older
1
import os
2
import sys
3
4

import numpy as np
5
import pytest
6
import torch
7
import torchvision.transforms._pil_constants as _pil_constants
Nicolas Hug's avatar
Nicolas Hug committed
8
from common_utils import (
9
10
    _assert_approx_equal_tensor_to_pil,
    _assert_equal_tensor_to_pil,
Nicolas Hug's avatar
Nicolas Hug committed
11
12
    _create_data,
    _create_data_batch,
13
    assert_equal,
14
15
16
17
    cpu_and_gpu,
    float_dtypes,
    get_tmp_dir,
    int_dtypes,
Nicolas Hug's avatar
Nicolas Hug committed
18
)
19
from torchvision import transforms as T
20
from torchvision.transforms import functional as F, InterpolationMode
21
from torchvision.transforms.autoaugment import _apply_op
22

23
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
24
25


26
27
28
29
30
31
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
32

33

34
35
36
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
37

38
39
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
40
        torch.manual_seed(12)
41
42
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
43

44
45
46
    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)
47
48


49
def _test_functional_op(f, device, channels=3, fn_kwargs=None, test_exact_match=True, **match_kwargs):
50
    fn_kwargs = fn_kwargs or {}
51

52
    tensor, pil_img = _create_data(height=10, width=10, channels=channels, device=device)
53
54
55
56
57
58
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
vfdev's avatar
vfdev committed
59
60


vfdev's avatar
vfdev committed
61
def _test_class_op(transform_cls, device, channels=3, meth_kwargs=None, test_exact_match=True, **match_kwargs):
62
    meth_kwargs = meth_kwargs or {}
63

64
    # test for class interface
vfdev's avatar
vfdev committed
65
    f = transform_cls(**meth_kwargs)
66
    scripted_fn = torch.jit.script(f)
67

68
    tensor, pil_img = _create_data(26, 34, channels, device=device)
69
70
71
72
73
74
75
76
77
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
78

79
80
81
82
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

83
    batch_tensors = _create_data_batch(height=23, width=34, channels=channels, num_samples=4, device=device)
84
85
86
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
vfdev's avatar
vfdev committed
87
        scripted_fn.save(os.path.join(tmp_dir, f"t_{transform_cls.__name__}.pt"))
88

89

90
91
92
def _test_op(func, method, device, channels=3, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, channels, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, channels, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
93
94


95
96
97
98
99
100
101
def _test_fn_save_load(fn, tmpdir):
    scripted_fn = torch.jit.script(fn)
    p = os.path.join(tmpdir, f"t_op_list_{fn.__name__ if hasattr(fn, '__name__') else fn.__class__.__name__}.pt")
    scripted_fn.save(p)
    _ = torch.jit.load(p)


102
@pytest.mark.parametrize("device", cpu_and_gpu())
103
@pytest.mark.parametrize(
104
105
    "func,method,fn_kwargs,match_kwargs",
    [
106
107
108
109
110
111
        (F.hflip, T.RandomHorizontalFlip, None, {}),
        (F.vflip, T.RandomVerticalFlip, None, {}),
        (F.invert, T.RandomInvert, None, {}),
        (F.posterize, T.RandomPosterize, {"bits": 4}, {}),
        (F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}),
        (F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}),
112
113
114
115
116
117
118
119
        (
            F.autocontrast,
            T.RandomAutocontrast,
            None,
            {"test_exact_match": False, "agg_method": "max", "tol": (1 + 1e-5), "allowed_percentage_diff": 0.05},
        ),
        (F.equalize, T.RandomEqualize, None, {}),
    ],
120
)
121
@pytest.mark.parametrize("channels", [1, 3])
122
123
def test_random(func, method, device, channels, fn_kwargs, match_kwargs):
    _test_op(func, method, device, channels, fn_kwargs, fn_kwargs, **match_kwargs)
124

125

126
@pytest.mark.parametrize("seed", range(10))
127
128
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
129
class TestColorJitter:
130
131
132
133
    @pytest.fixture(autouse=True)
    def set_random_seed(self, seed):
        torch.random.manual_seed(seed)

134
    @pytest.mark.parametrize("brightness", [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
135
    def test_color_jitter_brightness(self, brightness, device, channels):
136
137
138
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
139
140
141
142
143
144
145
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
146
147
        )

148
    @pytest.mark.parametrize("contrast", [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
149
    def test_color_jitter_contrast(self, contrast, device, channels):
150
151
152
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
153
154
155
156
157
158
159
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
160
161
        )

162
    @pytest.mark.parametrize("saturation", [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
163
    def test_color_jitter_saturation(self, saturation, device, channels):
164
165
166
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
167
168
169
170
171
172
173
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
174
175
        )

176
    @pytest.mark.parametrize("hue", [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
177
    def test_color_jitter_hue(self, hue, device, channels):
178
179
        meth_kwargs = {"hue": hue}
        _test_class_op(
180
181
182
183
184
185
186
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=16.1,
            agg_method="max",
            channels=channels,
187
188
        )

189
    def test_color_jitter_all(self, device, channels):
190
191
192
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        _test_class_op(
193
194
195
196
197
198
199
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=12.1,
            agg_method="max",
            channels=channels,
200
201
202
        )


203
204
205
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("m", ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize("mul", [1, -1])
206
207
208
209
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
210
    _test_functional_op(F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}, device=device)
211
    # Test functional.pad and transforms.Pad with padding as [int, ]
212
    fn_kwargs = meth_kwargs = {
213
        "padding": [mul * 2],
214
215
216
217
        "fill": fill,
        "padding_mode": m,
    }
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
218
219
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
220
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
221
222
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
223
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
224
225


226
@pytest.mark.parametrize("device", cpu_and_gpu())
227
228
229
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
230
231
232
233
234
235
    meth_kwargs = {
        "size": (4, 5),
        "padding": (4, 4),
        "pad_if_needed": True,
    }
    _test_op(F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


254
255
256
257
258
259
260
261
262
263
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "padding_config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
    ],
)
264
265
266
267
@pytest.mark.parametrize("pad_if_needed", [True, False])
@pytest.mark.parametrize("padding", [[5], [5, 4], [1, 2, 3, 4]])
@pytest.mark.parametrize("size", [5, [5], [6, 6]])
def test_random_crop(size, padding, pad_if_needed, padding_config, device):
268
269
    config = dict(padding_config)
    config["size"] = size
270
271
    config["padding"] = padding
    config["pad_if_needed"] = pad_if_needed
272
    _test_class_op(T.RandomCrop, device, meth_kwargs=config)
273
274


275
276
277
278
279
def test_random_crop_save_load(tmpdir):
    fn = T.RandomCrop(32, [4], pad_if_needed=True)
    _test_fn_save_load(fn, tmpdir)


280
@pytest.mark.parametrize("device", cpu_and_gpu())
281
def test_center_crop(device, tmpdir):
282
    fn_kwargs = {"output_size": (4, 5)}
283
    meth_kwargs = {"size": (4, 5)}
284
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
285
    fn_kwargs = {"output_size": (5,)}
286
    meth_kwargs = {"size": (5,)}
287
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
288
289
290
291
292
293
294
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
295
    f = T.CenterCrop(size=[5])
296
297
298
299
300
301
302
303
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

304
305
306
307

def test_center_crop_save_load(tmpdir):
    fn = T.CenterCrop(size=[5])
    _test_fn_save_load(fn, tmpdir)
308
309


310
311
312
313
314
315
316
317
318
319
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fn, method, out_length",
    [
        # test_five_crop
        (F.five_crop, T.FiveCrop, 5),
        # test_ten_crop
        (F.ten_crop, T.TenCrop, 10),
    ],
)
320
@pytest.mark.parametrize("size", [(5,), [5], (4, 5), [4, 5]])
321
def test_x_crop(fn, method, out_length, size, device):
322
    meth_kwargs = fn_kwargs = {"size": size}
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    scripted_fn = torch.jit.script(fn)

    tensor, pil_img = _create_data(height=20, width=20, device=device)
    transformed_t_list = fn(tensor, **fn_kwargs)
    transformed_p_list = fn(pil_img, **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_p_list)
    assert len(transformed_t_list) == out_length
    for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)

    transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_t_list_script)
    assert len(transformed_t_list_script) == out_length
    for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
        assert_equal(transformed_tensor, transformed_tensor_script)

    # test for class interface
    fn = method(**meth_kwargs)
    scripted_fn = torch.jit.script(fn)
    output = scripted_fn(tensor)
    assert len(output) == len(transformed_t_list_script)

    # test on batch of tensors
    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    torch.manual_seed(12)
    transformed_batch_list = fn(batch_tensors)

    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        torch.manual_seed(12)
        transformed_img_list = fn(img_tensor)
        for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
            assert_equal(transformed_img, transformed_batch[i, ...])


358
@pytest.mark.parametrize("method", ["FiveCrop", "TenCrop"])
359
360
361
def test_x_crop_save_load(method, tmpdir):
    fn = getattr(T, method)(size=[5])
    _test_fn_save_load(fn, tmpdir)
362
363
364


class TestResize:
365
    @pytest.mark.parametrize("size", [32, 34, 35, 36, 38])
366
367
368
369
370
371
372
373
374
375
376
    def test_resize_int(self, size):
        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=size)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        assert isinstance(y, torch.Tensor)
        assert y.shape[1] == size
        assert y.shape[2] == int(size * 46 / 32)

377
378
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", [None, torch.float32, torch.float64])
379
    @pytest.mark.parametrize("size", [[32], [32, 32], (32, 32), [34, 35]])
380
381
    @pytest.mark.parametrize("max_size", [None, 35, 1000])
    @pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST])
382
383
384
385
386
387
388
389
    def test_resize_scripted(self, dt, size, max_size, interpolation, device):
        tensor, _ = _create_data(height=34, width=36, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

        if dt is not None:
            # This is a trivial cast to float of uint8 data to test all cases
            tensor = tensor.to(dt)
        if max_size is not None and len(size) != 1:
390
            pytest.skip("Size should be an int or a sequence of length 1 if max_size is specified")
391
392
393
394
395
396

        transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

397
398
399
    def test_resize_save_load(self, tmpdir):
        fn = T.Resize(size=[32])
        _test_fn_save_load(fn, tmpdir)
400

401
402
403
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
    @pytest.mark.parametrize("ratio", [(0.75, 1.333), [0.75, 1.333]])
404
    @pytest.mark.parametrize("size", [(32,), [44], [32], [32, 32], (32, 32), [44, 55]])
405
    @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
406
407
408
409
410
411
    @pytest.mark.parametrize("antialias", [None, True, False])
    def test_resized_crop(self, scale, ratio, size, interpolation, antialias, device):

        if antialias and interpolation == NEAREST:
            pytest.skip("Can not resize if interpolation mode is NEAREST and antialias=True")

412
413
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
414
415
416
        transform = T.RandomResizedCrop(
            size=size, scale=scale, ratio=ratio, interpolation=interpolation, antialias=antialias
        )
417
418
419
420
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

421
422
423
    def test_resized_crop_save_load(self, tmpdir):
        fn = T.RandomResizedCrop(size=[32])
        _test_fn_save_load(fn, tmpdir)
424
425


426
427
428
429
430
431
432
433
434
435
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


436
437
438
def test_random_affine_save_load(tmpdir):
    fn = T.RandomAffine(degrees=45.0)
    _test_fn_save_load(fn, tmpdir)
439
440


441
442
443
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("shear", [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
444
445
446
447
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)


448
449
450
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
451
452
453
454
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)


455
456
457
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("translate", [(0.1, 0.2), [0.2, 0.1]])
458
459
460
461
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)


462
463
464
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
465
466
467
468
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)


469
470
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
471
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
472
473
474
475
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)


476
477
478
479
480
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("center", [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
481
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
482
483
484
485
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

486
    transform = T.RandomRotation(degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill)
487
488
489
490
491
492
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


493
494
495
def test_random_rotate_save_load(tmpdir):
    fn = T.RandomRotation(degrees=45.0)
    _test_fn_save_load(fn, tmpdir)
496
497


498
499
500
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("distortion_scale", np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
501
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
502
503
504
505
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

506
    transform = T.RandomPerspective(distortion_scale=distortion_scale, interpolation=interpolation, fill=fill)
507
508
509
510
511
512
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


513
514
515
def test_random_perspective_save_load(tmpdir):
    fn = T.RandomPerspective()
    _test_fn_save_load(fn, tmpdir)
516
517


518
519
520
521
522
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "Klass, meth_kwargs",
    [(T.Grayscale, {"num_output_channels": 1}), (T.Grayscale, {"num_output_channels": 3}), (T.RandomGrayscale, {})],
)
523
524
def test_to_grayscale(device, Klass, meth_kwargs):
    tol = 1.0 + 1e-10
525
    _test_class_op(Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, tol=tol, agg_method="max")
526
527


528
529
530
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("in_dtype", int_dtypes() + float_dtypes())
@pytest.mark.parametrize("out_dtype", int_dtypes() + float_dtypes())
531
532
533
534
535
536
537
538
539
540
def test_convert_image_dtype(device, in_dtype, out_dtype):
    tensor, _ = _create_data(26, 34, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    in_tensor = tensor.to(in_dtype)
    in_batch_tensors = batch_tensors.to(in_dtype)

    fn = T.ConvertImageDtype(dtype=out_dtype)
    scripted_fn = torch.jit.script(fn)

541
542
543
    if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or (
        in_dtype == torch.float64 and out_dtype == torch.int64
    ):
544
545
546
547
548
549
550
551
552
553
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
        return

    _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)


554
def test_convert_image_dtype_save_load(tmpdir):
555
    fn = T.ConvertImageDtype(dtype=torch.uint8)
556
    _test_fn_save_load(fn, tmpdir)
557
558


559
560
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("policy", [policy for policy in T.AutoAugmentPolicy])
561
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
562
563
564
565
566
567
568
569
570
571
572
def test_autoaugment(device, policy, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.AutoAugment(policy=policy, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


573
574
575
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
576
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
577
578
579
580
581
582
583
584
585
586
587
def test_randaugment(device, num_ops, magnitude, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


588
@pytest.mark.parametrize("device", cpu_and_gpu())
589
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
590
591
592
593
594
595
596
597
598
599
600
def test_trivialaugmentwide(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.TrivialAugmentWide(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


601
@pytest.mark.parametrize("device", cpu_and_gpu())
602
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
def test_augmix(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    class DeterministicAugMix(T.AugMix):
        def _sample_dirichlet(self, params: torch.Tensor) -> torch.Tensor:
            # patch the method to ensure that the order of rand calls doesn't affect the outcome
            return params.softmax(dim=-1)

    transform = DeterministicAugMix(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize("augmentation", [T.AutoAugment, T.RandAugment, T.TrivialAugmentWide, T.AugMix])
620
621
622
def test_autoaugment_save_load(augmentation, tmpdir):
    fn = augmentation()
    _test_fn_save_load(fn, tmpdir)
623
624


625
626
627
628
629
630
631
632
633
634
635
636
637
@pytest.mark.parametrize("interpolation", [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR])
@pytest.mark.parametrize("mode", ["X", "Y"])
def test_autoaugment__op_apply_shear(interpolation, mode):
    # We check that torchvision's implementation of shear is equivalent
    # to official CIFAR10 autoaugment implementation:
    # https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L290
    image_size = 32

    def shear(pil_img, level, mode, resample):
        if mode == "X":
            matrix = (1, level, 0, 0, 1, 0)
        elif mode == "Y":
            matrix = (1, 0, 0, level, 1, 0)
638
        return pil_img.transform((image_size, image_size), _pil_constants.AFFINE, matrix, resample=resample)
639
640
641
642

    t_img, pil_img = _create_data(image_size, image_size)

    resample_pil = {
643
644
        F.InterpolationMode.NEAREST: _pil_constants.NEAREST,
        F.InterpolationMode.BILINEAR: _pil_constants.BILINEAR,
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
    }[interpolation]

    level = 0.3
    expected_out = shear(pil_img, level, mode=mode, resample=resample_pil)

    # Check pil output vs expected pil
    out = _apply_op(pil_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    assert out == expected_out

    if interpolation == F.InterpolationMode.BILINEAR:
        # We skip bilinear mode for tensors as
        # affine transformation results are not exactly the same
        # between tensors and pil images
        # MAE as around 1.40
        # Max Abs error can be 163 or 170
        return

    # Check tensor output vs expected pil
    out = _apply_op(t_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    _assert_approx_equal_tensor_to_pil(out, expected_out)


667
@pytest.mark.parametrize("device", cpu_and_gpu())
668
@pytest.mark.parametrize(
669
670
    "config",
    [{"value": 0.2}, {"value": "random"}, {"value": (0.2, 0.2, 0.2)}, {"value": "random", "ratio": (0.1, 0.2)}],
671
672
673
674
675
676
677
678
679
680
681
)
def test_random_erasing(device, config):
    tensor, _ = _create_data(24, 32, channels=3, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    fn = T.RandomErasing(**config)
    scripted_fn = torch.jit.script(fn)
    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)


682
def test_random_erasing_save_load(tmpdir):
683
    fn = T.RandomErasing(value=0.2)
684
    _test_fn_save_load(fn, tmpdir)
685
686
687
688
689
690
691
692
693
694


def test_random_erasing_with_invalid_data():
    img = torch.rand(3, 60, 60)
    # Test Set 0: invalid value
    random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
    with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"):
        random_erasing(img)


695
@pytest.mark.parametrize("device", cpu_and_gpu())
696
def test_normalize(device, tmpdir):
697
698
699
700
701
702
703
704
705
706
707
708
709
710
    fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    tensor, _ = _create_data(26, 34, device=device)

    with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
        fn(tensor)

    batch_tensors = torch.rand(4, 3, 44, 56, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
    # test for class interface
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

711
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
712
713


714
@pytest.mark.parametrize("device", cpu_and_gpu())
715
def test_linear_transformation(device, tmpdir):
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
    c, h, w = 3, 24, 32

    tensor, _ = _create_data(h, w, channels=c, device=device)

    matrix = torch.rand(c * h * w, c * h * w, device=device)
    mean_vector = torch.rand(c * h * w, device=device)

    fn = T.LinearTransformation(matrix, mean_vector)
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)

    batch_tensors = torch.rand(4, c, h, w, device=device)
    # We skip some tests from _test_transform_vs_scripted_on_batch as
    # results for scripted and non-scripted transformations are not exactly the same
    torch.manual_seed(12)
    transformed_batch = fn(batch_tensors)
    torch.manual_seed(12)
    s_transformed_batch = scripted_fn(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch)

737
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
738
739


740
@pytest.mark.parametrize("device", cpu_and_gpu())
741
742
743
def test_compose(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
744
745
746
747
748
749
    transforms = T.Compose(
        [
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ]
    )
750
751
752
753
754
755
756
    s_transforms = torch.nn.Sequential(*transforms.transforms)

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
757
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
758

759
760
761
762
763
    t = T.Compose(
        [
            lambda x: x,
        ]
    )
764
    with pytest.raises(RuntimeError, match="cannot call a value of type 'Tensor'"):
765
766
767
        torch.jit.script(t)


768
@pytest.mark.parametrize("device", cpu_and_gpu())
769
770
771
772
def test_random_apply(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
    transforms = T.RandomApply(
        [
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ],
        p=0.4,
    )
    s_transforms = T.RandomApply(
        torch.nn.ModuleList(
            [
                T.RandomHorizontalFlip(),
                T.ColorJitter(),
            ]
        ),
        p=0.4,
    )
789
790
791
792
793
794

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
795
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
796
797
798
799

    if device == "cpu":
        # Can't check this twice, otherwise
        # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
800
801
802
803
804
805
        transforms = T.RandomApply(
            [
                T.ColorJitter(),
            ],
            p=0.3,
        )
806
807
808
809
        with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
            torch.jit.script(transforms)


810
811
812
813
814
815
816
817
818
819
820
821
822
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "meth_kwargs",
    [
        {"kernel_size": 3, "sigma": 0.75},
        {"kernel_size": 23, "sigma": [0.1, 2.0]},
        {"kernel_size": 23, "sigma": (0.1, 2.0)},
        {"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
        {"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
        {"kernel_size": [23], "sigma": 0.75},
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
823
def test_gaussian_blur(device, channels, meth_kwargs):
824
825
826
827
828
829
830
831
832
833
834
    if all(
        [
            device == "cuda",
            channels == 1,
            meth_kwargs["kernel_size"] in [23, [23]],
            torch.version.cuda == "11.3",
            sys.platform in ("win32", "cygwin"),
        ]
    ):
        pytest.skip("Fails on Windows, see https://github.com/pytorch/vision/issues/5464")

835
    tol = 1.0 + 1e-10
836
    torch.manual_seed(12)
837
    _test_class_op(
838
839
840
841
842
843
844
        T.GaussianBlur,
        meth_kwargs=meth_kwargs,
        channels=channels,
        test_exact_match=False,
        device=device,
        agg_method="max",
        tol=tol,
845
    )