test_transforms.py 83.2 KB
Newer Older
1
import math
2
import os
3
4
5
6
import random

import numpy as np
import pytest
7
8
import torch
import torchvision.transforms as transforms
9
import torchvision.transforms.functional as F
10
import torchvision.transforms.functional_tensor as F_t
11
from PIL import Image
12
13
from torch._utils_internal import get_file_path_2

14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

19
20
21
22
23
try:
    from scipy import stats
except ImportError:
    stats = None

24
from common_utils import cycle_over, int_dtypes, float_dtypes, assert_equal
25
26


27
GRACE_HOPPER = get_file_path_2(
28
29
    os.path.dirname(os.path.abspath(__file__)), "assets", "encode_jpeg", "grace_hopper_517x606.jpg"
)
30
31


32
def _get_grayscale_test_image(img, fill=None):
33
34
    img = img.convert("L")
    fill = (fill[0],) if isinstance(fill, tuple) else fill
35
36
37
    return img, fill


38
class TestConvertImageDtype:
39
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(float_dtypes()))
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    def test_float_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert abs(actual_max - desired_max) < 1e-7

56
57
    @pytest.mark.parametrize("input_dtype", float_dtypes())
    @pytest.mark.parametrize("output_dtype", int_dtypes())
58
59
60
61
62
63
    def test_float_to_int(self, input_dtype, output_dtype):
        input_image = torch.tensor((0.0, 1.0), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        if (input_dtype == torch.float32 and output_dtype in (torch.int32, torch.int64)) or (
64
            input_dtype == torch.float64 and output_dtype == torch.int64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        ):
            with pytest.raises(RuntimeError):
                transform(input_image)
        else:
            output_image = transform(input_image)
            output_image_script = transform_script(input_image, output_dtype)

            torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

            actual_min, actual_max = output_image.tolist()
            desired_min, desired_max = 0, torch.iinfo(output_dtype).max

            assert actual_min == desired_min
            assert actual_max == desired_max

80
81
    @pytest.mark.parametrize("input_dtype", int_dtypes())
    @pytest.mark.parametrize("output_dtype", float_dtypes())
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    def test_int_to_float(self, input_dtype, output_dtype):
        input_image = torch.tensor((0, torch.iinfo(input_dtype).max), dtype=input_dtype)
        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(output_image_script, output_image, rtol=0.0, atol=1e-6)

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0.0, 1.0

        assert abs(actual_min - desired_min) < 1e-7
        assert actual_min >= desired_min
        assert abs(actual_max - desired_max) < 1e-7
        assert actual_max <= desired_max

100
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    def test_dtype_int_to_int(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)
        output_max = torch.iinfo(output_dtype).max

        transform = transforms.ConvertImageDtype(output_dtype)
        transform_script = torch.jit.script(F.convert_image_dtype)

        output_image = transform(input_image)
        output_image_script = transform_script(input_image, output_dtype)

        torch.testing.assert_close(
            output_image_script,
            output_image,
            rtol=0.0,
            atol=1e-6,
            msg="{} vs {}".format(output_image_script, output_image),
        )

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, output_max

        # see https://github.com/pytorch/vision/pull/2078#issuecomment-641036236 for details
        if input_max >= output_max:
            error_term = 0
        else:
            error_term = 1 - (torch.iinfo(output_dtype).max + 1) // (torch.iinfo(input_dtype).max + 1)

        assert actual_min == desired_min
        assert actual_max == (desired_max + error_term)

132
    @pytest.mark.parametrize("input_dtype, output_dtype", cycle_over(int_dtypes()))
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    def test_int_to_int_consistency(self, input_dtype, output_dtype):
        input_max = torch.iinfo(input_dtype).max
        input_image = torch.tensor((0, input_max), dtype=input_dtype)

        output_max = torch.iinfo(output_dtype).max
        if output_max <= input_max:
            return

        transform = transforms.ConvertImageDtype(output_dtype)
        inverse_transfrom = transforms.ConvertImageDtype(input_dtype)
        output_image = inverse_transfrom(transform(input_image))

        actual_min, actual_max = output_image.tolist()
        desired_min, desired_max = 0, input_max

        assert actual_min == desired_min
        assert actual_max == desired_max
150

151

152
153
154
155
156
@pytest.mark.skipif(accimage is None, reason="accimage not available")
class TestAccImage:
    def test_accimage_to_tensor(self):
        trans = transforms.ToTensor()

157
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
158
159
160
161
162
163
164
        output = trans(accimage.Image(GRACE_HOPPER))

        torch.testing.assert_close(output, expected_output)

    def test_accimage_pil_to_tensor(self):
        trans = transforms.PILToTensor()

165
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
166
167
168
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
169
        torch.testing.assert_close(output, expected_output)
170
171

    def test_accimage_resize(self):
172
173
174
175
176
177
        trans = transforms.Compose(
            [
                transforms.Resize(256, interpolation=Image.LINEAR),
                transforms.ToTensor(),
            ]
        )
178
179
180
181

        # Checking if Compose, Resize and ToTensor can be printed as string
        trans.__repr__()

182
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
183
184
185
186
187
188
189
190
191
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        assert np.abs((expected_output - output).mean()) < 1e-3
        assert (expected_output - output).var() < 1e-5
        # note the high absolute tolerance
        torch.testing.assert_close(output.numpy(), expected_output.numpy(), rtol=1e-5, atol=5e-2)

    def test_accimage_crop(self):
192
193
194
195
196
197
        trans = transforms.Compose(
            [
                transforms.CenterCrop(256),
                transforms.ToTensor(),
            ]
        )
198
199
200
201

        # Checking if Compose, CenterCrop and ToTensor can be printed as string
        trans.__repr__()

202
        expected_output = trans(Image.open(GRACE_HOPPER).convert("RGB"))
203
204
205
206
207
208
        output = trans(accimage.Image(GRACE_HOPPER))

        assert expected_output.size() == output.size()
        torch.testing.assert_close(output, expected_output)


209
class TestToTensor:
210
    @pytest.mark.parametrize("channels", [1, 3, 4])
211
212
213
    def test_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.ToTensor()
214
        np_rng = np.random.RandomState(0)
215

216
217
218
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255).float().div_(255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
219
        torch.testing.assert_close(output, input_data)
220

221
        ndarray = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
222
223
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1)) / 255.0
224
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
225

226
        ndarray = np_rng.rand(height, width, channels).astype(np.float32)
227
228
        output = trans(ndarray)
        expected_output = ndarray.transpose((2, 0, 1))
229
        torch.testing.assert_close(output.numpy(), expected_output, check_dtype=False)
230
231
232

        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
233
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
234
        output = trans(img)
235
        torch.testing.assert_close(input_data, output, check_dtype=False)
236
237
238
239

    def test_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.ToTensor()
240
        np_rng = np.random.RandomState(0)
241

242
        with pytest.raises(TypeError):
243
            trans(np_rng.rand(1, height, width).tolist())
244

245
        with pytest.raises(ValueError):
246
            trans(np_rng.rand(height))
247

248
        with pytest.raises(ValueError):
249
            trans(np_rng.rand(1, 1, height, width))
250

251
    @pytest.mark.parametrize("dtype", [torch.float16, torch.float, torch.double])
252
    def test_to_tensor_with_other_default_dtypes(self, dtype):
253
        np_rng = np.random.RandomState(0)
254
        current_def_dtype = torch.get_default_dtype()
255

256
        t = transforms.ToTensor()
257
        np_arr = np_rng.randint(0, 255, (32, 32, 3), dtype=np.uint8)
258
        img = Image.fromarray(np_arr)
259

260
261
262
        torch.set_default_dtype(dtype)
        res = t(img)
        assert res.dtype == dtype, f"{res.dtype} vs {dtype}"
263

264
        torch.set_default_dtype(current_def_dtype)
265

266
    @pytest.mark.parametrize("channels", [1, 3, 4])
267
268
269
    def test_pil_to_tensor(self, channels):
        height, width = 4, 4
        trans = transforms.PILToTensor()
270
        np_rng = np.random.RandomState(0)
271

272
273
274
        input_data = torch.ByteTensor(channels, height, width).random_(0, 255)
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
275
        torch.testing.assert_close(input_data, output)
276

277
        input_data = np_rng.randint(low=0, high=255, size=(height, width, channels)).astype(np.uint8)
278
279
280
281
282
        img = transforms.ToPILImage()(input_data)
        output = trans(img)
        expected_output = input_data.transpose((2, 0, 1))
        torch.testing.assert_close(output.numpy(), expected_output)

283
        input_data = torch.as_tensor(np_rng.rand(channels, height, width).astype(np.float32))
284
285
286
        img = transforms.ToPILImage()(input_data)  # CHW -> HWC and (* 255).byte()
        output = trans(img)  # HWC -> CHW
        expected_output = (input_data * 255).byte()
287
        torch.testing.assert_close(output, expected_output)
288

289
290
        # separate test for mode '1' PIL images
        input_data = torch.ByteTensor(1, height, width).bernoulli_()
291
        img = transforms.ToPILImage()(input_data.mul(255)).convert("1")
292
        output = trans(img).view(torch.uint8).bool().to(torch.uint8)
293
        torch.testing.assert_close(input_data, output)
294

295
296
297
    def test_pil_to_tensor_errors(self):
        height, width = 4, 4
        trans = transforms.PILToTensor()
298
        np_rng = np.random.RandomState(0)
299

300
        with pytest.raises(TypeError):
301
            trans(np_rng.rand(1, height, width).tolist())
302

303
        with pytest.raises(TypeError):
304
            trans(np_rng.rand(1, height, width))
305
306


307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
def test_randomresized_params():
    height = random.randint(24, 32) * 2
    width = random.randint(24, 32) * 2
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    size = 100
    epsilon = 0.05
    min_scale = 0.25
    for _ in range(10):
        scale_min = max(round(random.random(), 2), min_scale)
        scale_range = (scale_min, scale_min + round(random.random(), 2))
        aspect_min = max(round(random.random(), 2), epsilon)
        aspect_ratio_range = (aspect_min, aspect_min + round(random.random(), 2))
        randresizecrop = transforms.RandomResizedCrop(size, scale_range, aspect_ratio_range)
        i, j, h, w = randresizecrop.get_params(img, scale_range, aspect_ratio_range)
        aspect_ratio_obtained = w / h
324
325
326
327
        assert (
            min(aspect_ratio_range) - epsilon <= aspect_ratio_obtained
            and aspect_ratio_obtained <= max(aspect_ratio_range) + epsilon
        ) or aspect_ratio_obtained == 1.0
328
329
330
331
332
333
        assert isinstance(i, int)
        assert isinstance(j, int)
        assert isinstance(h, int)
        assert isinstance(w, int)


334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # single integer
        22,
        27,
        28,
        36,
        # single integer in tuple/list
        [
            22,
        ],
        (27,),
    ],
)
@pytest.mark.parametrize("max_size", (None, 37, 1000))
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
def test_resize(height, width, osize, max_size):
    img = Image.new("RGB", size=(width, height), color=127)

    t = transforms.Resize(osize, max_size=max_size)
    result = t(img)

    msg = "{}, {} - {} - {}".format(height, width, osize, max_size)
    osize = osize[0] if isinstance(osize, (list, tuple)) else osize
    # If size is an int, smaller edge of the image will be matched to this number.
    # i.e, if height > width, then image will be rescaled to (size * height / width, size).
    if height < width:
        exp_w, exp_h = (int(osize * width / height), osize)  # (w, h)
        if max_size is not None and max_size < exp_w:
            exp_w, exp_h = max_size, int(max_size * exp_h / exp_w)
        assert result.size == (exp_w, exp_h), msg
    elif width < height:
        exp_w, exp_h = (osize, int(osize * height / width))  # (w, h)
        if max_size is not None and max_size < exp_h:
            exp_w, exp_h = int(max_size * exp_w / exp_h), max_size
        assert result.size == (exp_w, exp_h), msg
    else:
        exp_w, exp_h = (osize, osize)  # (w, h)
        if max_size is not None and max_size < osize:
            exp_w, exp_h = max_size, max_size
        assert result.size == (exp_w, exp_h), msg


392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
@pytest.mark.parametrize(
    "height, width",
    [
        # height, width
        # square image
        (28, 28),
        (27, 27),
        # rectangular image: h < w
        (28, 34),
        (29, 35),
        # rectangular image: h > w
        (34, 28),
        (35, 29),
    ],
)
@pytest.mark.parametrize(
    "osize",
    [
        # two integers sequence output
        [22, 22],
        [22, 28],
        [22, 36],
        [27, 22],
        [36, 22],
        [28, 28],
        [28, 37],
        [37, 27],
        [37, 37],
    ],
)
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
def test_resize_sequence_output(height, width, osize):
    img = Image.new("RGB", size=(width, height), color=127)
    oheight, owidth = osize

    t = transforms.Resize(osize)
    result = t(img)

    assert (owidth, oheight) == result.size


def test_resize_antialias_error():
    osize = [37, 37]
    img = Image.new("RGB", size=(35, 29), color=127)

    with pytest.warns(UserWarning, match=r"Anti-alias option is always applied for PIL Image input"):
        t = transforms.Resize(osize, antialias=False)
        t(img)


441
442
443
444
445
446
447
class TestPad:
    def test_pad(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = torch.ones(3, height, width)
        padding = random.randint(1, 20)
        fill = random.randint(1, 50)
448
449
450
451
452
453
454
        result = transforms.Compose(
            [
                transforms.ToPILImage(),
                transforms.Pad(padding, fill=fill),
                transforms.ToTensor(),
            ]
        )(img)
455
456
457
458
459
460
461
462
        assert result.size(1) == height + 2 * padding
        assert result.size(2) == width + 2 * padding
        # check that all elements in the padded region correspond
        # to the pad value
        fill_v = fill / 255
        eps = 1e-5
        h_padded = result[:, :padding, :]
        w_padded = result[:, :, :padding]
463
464
465
        torch.testing.assert_close(h_padded, torch.full_like(h_padded, fill_value=fill_v), rtol=0.0, atol=eps)
        torch.testing.assert_close(w_padded, torch.full_like(w_padded, fill_value=fill_v), rtol=0.0, atol=eps)
        pytest.raises(ValueError, transforms.Pad(padding, fill=(1, 2)), transforms.ToPILImage()(img))
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

    def test_pad_with_tuple_of_pad_values(self):
        height = random.randint(10, 32) * 2
        width = random.randint(10, 32) * 2
        img = transforms.ToPILImage()(torch.ones(3, height, width))

        padding = tuple([random.randint(1, 20) for _ in range(2)])
        output = transforms.Pad(padding)(img)
        assert output.size == (width + padding[0] * 2, height + padding[1] * 2)

        padding = tuple([random.randint(1, 20) for _ in range(4)])
        output = transforms.Pad(padding)(img)
        assert output.size[0] == width + padding[0] + padding[2]
        assert output.size[1] == height + padding[1] + padding[3]

        # Checking if Padding can be printed as string
        transforms.Pad(padding).__repr__()

    def test_pad_with_non_constant_padding_modes(self):
        """Unit tests for edge, reflect, symmetric padding"""
        img = torch.zeros(3, 27, 27).byte()
        img[:, :, 0] = 1  # Constant value added to leftmost edge
        img = transforms.ToPILImage()(img)
        img = F.pad(img, 1, (200, 200, 200))

        # pad 3 to all sidess
492
        edge_padded_img = F.pad(img, 3, padding_mode="edge")
493
494
495
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # edge_pad, edge_pad, edge_pad, constant_pad, constant value added to leftmost edge, 0
        edge_middle_slice = np.asarray(edge_padded_img).transpose(2, 0, 1)[0][17][:6]
496
        assert_equal(edge_middle_slice, np.asarray([200, 200, 200, 200, 1, 0], dtype=np.uint8))
497
498
499
        assert transforms.ToTensor()(edge_padded_img).size() == (3, 35, 35)

        # Pad 3 to left/right, 2 to top/bottom
500
        reflect_padded_img = F.pad(img, (3, 2), padding_mode="reflect")
501
502
503
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # reflect_pad, reflect_pad, reflect_pad, constant_pad, constant value added to leftmost edge, 0
        reflect_middle_slice = np.asarray(reflect_padded_img).transpose(2, 0, 1)[0][17][:6]
504
        assert_equal(reflect_middle_slice, np.asarray([0, 0, 1, 200, 1, 0], dtype=np.uint8))
505
506
507
        assert transforms.ToTensor()(reflect_padded_img).size() == (3, 33, 35)

        # Pad 3 to left, 2 to top, 2 to right, 1 to bottom
508
        symmetric_padded_img = F.pad(img, (3, 2, 2, 1), padding_mode="symmetric")
509
510
511
        # First 6 elements of leftmost edge in the middle of the image, values are in order:
        # sym_pad, sym_pad, sym_pad, constant_pad, constant value added to leftmost edge, 0
        symmetric_middle_slice = np.asarray(symmetric_padded_img).transpose(2, 0, 1)[0][17][:6]
512
        assert_equal(symmetric_middle_slice, np.asarray([0, 1, 200, 200, 1, 0], dtype=np.uint8))
513
514
515
516
517
        assert transforms.ToTensor()(symmetric_padded_img).size() == (3, 32, 34)

        # Check negative padding explicitly for symmetric case, since it is not
        # implemented for tensor case to compare to
        # Crop 1 to left, pad 2 to top, pad 3 to right, crop 3 to bottom
518
        symmetric_padded_img_neg = F.pad(img, (-1, 2, 3, -3), padding_mode="symmetric")
519
520
        symmetric_neg_middle_left = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][:3]
        symmetric_neg_middle_right = np.asarray(symmetric_padded_img_neg).transpose(2, 0, 1)[0][17][-4:]
521
522
        assert_equal(symmetric_neg_middle_left, np.asarray([1, 0, 0], dtype=np.uint8))
        assert_equal(symmetric_neg_middle_right, np.asarray([200, 200, 0, 0], dtype=np.uint8))
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
        assert transforms.ToTensor()(symmetric_padded_img_neg).size() == (3, 28, 31)

    def test_pad_raises_with_invalid_pad_sequence_len(self):
        with pytest.raises(ValueError):
            transforms.Pad(())

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3))

        with pytest.raises(ValueError):
            transforms.Pad((1, 2, 3, 4, 5))

    def test_pad_with_mode_F_images(self):
        pad = 2
        transform = transforms.Pad(pad)

        img = Image.new("F", (10, 10))
        padded_img = transform(img)
541
        assert_equal(padded_img.size, [edge_size + 2 * pad for edge_size in img.size])
542
543


544
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
545
546
547
548
549
550
551
552
553
554
555
556
@pytest.mark.parametrize(
    "fn, trans, config",
    [
        (F.invert, transforms.RandomInvert, {}),
        (F.posterize, transforms.RandomPosterize, {"bits": 4}),
        (F.solarize, transforms.RandomSolarize, {"threshold": 192}),
        (F.adjust_sharpness, transforms.RandomAdjustSharpness, {"sharpness_factor": 2.0}),
        (F.autocontrast, transforms.RandomAutocontrast, {}),
        (F.equalize, transforms.RandomEqualize, {}),
    ],
)
@pytest.mark.parametrize("p", (0.5, 0.7))
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
def test_randomness(fn, trans, config, p):
    random_state = random.getstate()
    random.seed(42)
    img = transforms.ToPILImage()(torch.rand(3, 16, 18))

    inv_img = fn(img, **config)

    num_samples = 250
    counts = 0
    for _ in range(num_samples):
        tranformation = trans(p=p, **config)
        tranformation.__repr__()
        out = tranformation(img)
        if out == inv_img:
            counts += 1

    p_value = stats.binom_test(counts, num_samples, p=p)
    random.setstate(random_state)
    assert p_value > 0.0001


578
579
580
581
class TestToPil:
    def _get_1_channel_tensor_various_types():
        img_data_float = torch.Tensor(1, 4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
582
        yield img_data_float, expected_output, "L"
583

584
585
        img_data_byte = torch.ByteTensor(1, 4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
586
        yield img_data_byte, expected_output, "L"
587

588
589
        img_data_short = torch.ShortTensor(1, 4, 4).random_()
        expected_output = img_data_short.numpy()
590
        yield img_data_short, expected_output, "I;16"
591

592
593
        img_data_int = torch.IntTensor(1, 4, 4).random_()
        expected_output = img_data_int.numpy()
594
        yield img_data_int, expected_output, "I"
595

596
597
598
    def _get_2d_tensor_various_types():
        img_data_float = torch.Tensor(4, 4).uniform_()
        expected_output = img_data_float.mul(255).int().float().div(255).numpy()
599
        yield img_data_float, expected_output, "L"
600

601
602
        img_data_byte = torch.ByteTensor(4, 4).random_(0, 255)
        expected_output = img_data_byte.float().div(255.0).numpy()
603
        yield img_data_byte, expected_output, "L"
604

605
606
        img_data_short = torch.ShortTensor(4, 4).random_()
        expected_output = img_data_short.numpy()
607
        yield img_data_short, expected_output, "I;16"
608

609
610
        img_data_int = torch.IntTensor(4, 4).random_()
        expected_output = img_data_int.numpy()
611
        yield img_data_int, expected_output, "I"
612

613
614
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_1_channel_tensor_various_types())
615
616
617
    def test_1_channel_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()
618

619
        img = transform(img_data)
620
        assert img.mode == expected_mode
621
        torch.testing.assert_close(expected_output, to_tensor(img).numpy())
622

623
624
625
    def test_1_channel_float_tensor_to_pil_image(self):
        img_data = torch.Tensor(1, 4, 4).uniform_()
        # 'F' mode for torch.FloatTensor
626
627
        img_F_mode = transforms.ToPILImage(mode="F")(img_data)
        assert img_F_mode.mode == "F"
628
        torch.testing.assert_close(
629
            np.array(Image.fromarray(img_data.squeeze(0).numpy(), mode="F")), np.array(img_F_mode)
630
        )
631

632
633
634
635
636
637
638
639
640
641
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4, 1).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4, 1).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4, 1).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4, 1).random_().numpy(), "I"),
        ],
    )
642
643
644
    def test_1_channel_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
645
        assert img.mode == expected_mode
646
647
648
        # note: we explicitly convert img's dtype because pytorch doesn't support uint16
        # and otherwise assert_close wouldn't be able to construct a tensor from the uint16 array
        torch.testing.assert_close(img_data[:, :, 0], np.asarray(img).astype(img_data.dtype))
649

650
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
651
652
    def test_2_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
653

654
655
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
656
            assert img.mode == "LA"  # default should assume LA
657
658
659
660
661
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(2):
662
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
663
664
665
666
667
668
669

    def test_2_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 2).random_(0, 255).numpy()
        transforms.ToPILImage().__repr__()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
670
            transforms.ToPILImage(mode="RGBA")(img_data)
671
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
672
            transforms.ToPILImage(mode="P")(img_data)
673
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
674
            transforms.ToPILImage(mode="RGB")(img_data)
675

676
    @pytest.mark.parametrize("expected_mode", [None, "LA"])
677
678
679
680
681
    def test_2_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(2, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
682
            assert img.mode == "LA"  # default should assume LA
683
684
685
686
687
688
689
690
691
692
693
694
695
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(2):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_2_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(2, 4, 4).uniform_()

        # should raise if we try a mode for 4 or 1 or 3 channel images
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
696
            transforms.ToPILImage(mode="RGBA")(img_data)
697
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
698
            transforms.ToPILImage(mode="P")(img_data)
699
        with pytest.raises(ValueError, match=r"Only modes \['LA'\] are supported for 2D inputs"):
700
            transforms.ToPILImage(mode="RGB")(img_data)
701

702
703
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize("img_data, expected_output, expected_mode", _get_2d_tensor_various_types())
704
705
706
707
708
    def test_2d_tensor_to_pil_image(self, with_mode, img_data, expected_output, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        to_tensor = transforms.ToTensor()

        img = transform(img_data)
709
        assert img.mode == expected_mode
710
711
        torch.testing.assert_close(expected_output, to_tensor(img).numpy()[0])

712
713
714
715
716
717
718
719
720
721
    @pytest.mark.parametrize("with_mode", [False, True])
    @pytest.mark.parametrize(
        "img_data, expected_mode",
        [
            (torch.Tensor(4, 4).uniform_().numpy(), "F"),
            (torch.ByteTensor(4, 4).random_(0, 255).numpy(), "L"),
            (torch.ShortTensor(4, 4).random_().numpy(), "I;16"),
            (torch.IntTensor(4, 4).random_().numpy(), "I"),
        ],
    )
722
723
724
    def test_2d_ndarray_to_pil_image(self, with_mode, img_data, expected_mode):
        transform = transforms.ToPILImage(mode=expected_mode) if with_mode else transforms.ToPILImage()
        img = transform(img_data)
725
        assert img.mode == expected_mode
726
        np.testing.assert_allclose(img_data, img)
727

728
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
729
730
731
    def test_3_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)
732

733
734
        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
735
            assert img.mode == "RGB"  # default should assume RGB
736
737
738
739
740
741
742
743
744
745
746
747
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_3_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(3, 4, 4).uniform_()
        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
748
            transforms.ToPILImage(mode="RGBA")(img_data)
749
        with pytest.raises(ValueError, match=error_message_3d):
750
            transforms.ToPILImage(mode="P")(img_data)
751
        with pytest.raises(ValueError, match=error_message_3d):
752
            transforms.ToPILImage(mode="LA")(img_data)
753

754
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
755
756
            transforms.ToPILImage()(torch.Tensor(1, 3, 4, 4).uniform_())

757
    @pytest.mark.parametrize("expected_mode", [None, "RGB", "HSV", "YCbCr"])
758
759
760
761
762
    def test_3_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
763
            assert img.mode == "RGB"  # default should assume RGB
764
765
766
767
768
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(3):
769
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
770
771
772
773
774
775
776
777
778
779

    def test_3_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 3).random_(0, 255).numpy()

        # Checking if ToPILImage can be printed as string
        transforms.ToPILImage().__repr__()

        error_message_3d = r"Only modes \['RGB', 'YCbCr', 'HSV'\] are supported for 3D inputs"
        # should raise if we try a mode for 4 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_3d):
780
            transforms.ToPILImage(mode="RGBA")(img_data)
781
        with pytest.raises(ValueError, match=error_message_3d):
782
            transforms.ToPILImage(mode="P")(img_data)
783
        with pytest.raises(ValueError, match=error_message_3d):
784
            transforms.ToPILImage(mode="LA")(img_data)
785

786
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
787
788
789
790
791
792
    def test_4_channel_tensor_to_pil_image(self, expected_mode):
        img_data = torch.Tensor(4, 4, 4).uniform_()
        expected_output = img_data.mul(255).int().float().div(255)

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
793
            assert img.mode == "RGBA"  # default should assume RGBA
794
795
796
797
798
799
800
801
802
803
804
805
806
807
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode

        split = img.split()
        for i in range(4):
            torch.testing.assert_close(expected_output[i].numpy(), F.to_tensor(split[i]).squeeze(0).numpy())

    def test_4_channel_tensor_to_pil_image_error(self):
        img_data = torch.Tensor(4, 4, 4).uniform_()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
808
            transforms.ToPILImage(mode="RGB")(img_data)
809
        with pytest.raises(ValueError, match=error_message_4d):
810
            transforms.ToPILImage(mode="P")(img_data)
811
        with pytest.raises(ValueError, match=error_message_4d):
812
            transforms.ToPILImage(mode="LA")(img_data)
813

814
    @pytest.mark.parametrize("expected_mode", [None, "RGBA", "CMYK", "RGBX"])
815
816
817
818
819
    def test_4_channel_ndarray_to_pil_image(self, expected_mode):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        if expected_mode is None:
            img = transforms.ToPILImage()(img_data)
820
            assert img.mode == "RGBA"  # default should assume RGBA
821
822
823
824
825
        else:
            img = transforms.ToPILImage(mode=expected_mode)(img_data)
            assert img.mode == expected_mode
        split = img.split()
        for i in range(4):
826
            torch.testing.assert_close(img_data[:, :, i], np.asarray(split[i]))
827
828
829
830
831
832
833

    def test_4_channel_ndarray_to_pil_image_error(self):
        img_data = torch.ByteTensor(4, 4, 4).random_(0, 255).numpy()

        error_message_4d = r"Only modes \['RGBA', 'CMYK', 'RGBX'\] are supported for 4D inputs"
        # should raise if we try a mode for 3 or 1 or 2 channel images
        with pytest.raises(ValueError, match=error_message_4d):
834
            transforms.ToPILImage(mode="RGB")(img_data)
835
        with pytest.raises(ValueError, match=error_message_4d):
836
            transforms.ToPILImage(mode="P")(img_data)
837
        with pytest.raises(ValueError, match=error_message_4d):
838
            transforms.ToPILImage(mode="LA")(img_data)
839
840
841

    def test_ndarray_bad_types_to_pil_image(self):
        trans = transforms.ToPILImage()
842
        reg_msg = r"Input type \w+ is not supported"
843
844
845
846
847
848
849
850
851
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.int64))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint16))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.uint32))
        with pytest.raises(TypeError, match=reg_msg):
            trans(np.ones([4, 4, 1], np.float64))

852
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
853
            transforms.ToPILImage()(np.ones([1, 4, 4, 3]))
854
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
855
856
857
            transforms.ToPILImage()(np.ones([4, 4, 6]))

    def test_tensor_bad_types_to_pil_image(self):
858
        with pytest.raises(ValueError, match=r"pic should be 2/3 dimensional. Got \d+ dimensions."):
859
            transforms.ToPILImage()(torch.ones(1, 3, 4, 4))
860
        with pytest.raises(ValueError, match=r"pic should not have > 4 channels. Got \d+ channels."):
861
            transforms.ToPILImage()(torch.ones(6, 4, 4))
862
863


864
865
866
867
def test_adjust_brightness():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
868
    x_pil = Image.fromarray(x_np, mode="RGB")
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893

    # test 0
    y_pil = F.adjust_brightness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_brightness(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 2, 6, 27, 67, 113, 18, 4, 117, 45, 127, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_brightness(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 10, 26, 108, 255, 255, 74, 16, 255, 180, 255, 2]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_contrast():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
894
    x_pil = Image.fromarray(x_np, mode="RGB")
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915

    # test 0
    y_pil = F.adjust_contrast(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_contrast(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [43, 45, 49, 70, 110, 156, 61, 47, 160, 88, 170, 43]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_contrast(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 22, 184, 255, 0, 0, 255, 94, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


916
@pytest.mark.skipif(Image.__version__ >= "7", reason="Temporarily disabled")
917
918
919
920
def test_adjust_saturation():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
921
    x_pil = Image.fromarray(x_np, mode="RGB")
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946

    # test 0
    y_pil = F.adjust_saturation(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_saturation(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [2, 4, 8, 87, 128, 173, 39, 25, 138, 133, 215, 88]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_saturation(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 6, 22, 0, 149, 255, 32, 0, 255, 4, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_hue():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
947
    x_pil = Image.fromarray(x_np, mode="RGB")
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

    with pytest.raises(ValueError):
        F.adjust_hue(x_pil, -0.7)
        F.adjust_hue(x_pil, 1)

    # test 0: almost same as x_data but not exact.
    # probably because hsv <-> rgb floating point ops
    y_pil = F.adjust_hue(x_pil, 0)
    y_np = np.array(y_pil)
    y_ans = [0, 5, 13, 54, 139, 226, 35, 8, 234, 91, 255, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 1
    y_pil = F.adjust_hue(x_pil, 0.25)
    y_np = np.array(y_pil)
    y_ans = [13, 0, 12, 224, 54, 226, 234, 8, 99, 1, 222, 255]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_hue(x_pil, -0.25)
    y_np = np.array(y_pil)
    y_ans = [0, 13, 2, 54, 226, 58, 8, 234, 152, 255, 43, 1]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjust_sharpness():
    x_shape = [4, 4, 3]
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
    x_data = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        65,
        108,
        101,
        120,
        97,
        110,
        100,
        101,
        114,
        32,
        86,
        114,
        121,
        110,
        105,
        111,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1028
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1029
    x_pil = Image.fromarray(x_np, mode="RGB")
1030
1031
1032
1033
1034
1035
1036
1037
1038

    # test 0
    y_pil = F.adjust_sharpness(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_sharpness(x_pil, 0.5)
    y_np = np.array(y_pil)
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        30,
        30,
        74,
        103,
        96,
        114,
        97,
        110,
        100,
        101,
        114,
        32,
        81,
        103,
        108,
        102,
        101,
        107,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1089
1090
1091
1092
1093
1094
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil)
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    y_ans = [
        75,
        121,
        114,
        105,
        97,
        107,
        105,
        32,
        66,
        111,
        117,
        114,
        99,
        104,
        97,
        0,
        0,
        46,
        118,
        111,
        132,
        97,
        110,
        100,
        101,
        114,
        32,
        95,
        135,
        146,
        126,
        112,
        119,
        116,
        105,
        115,
        0,
        0,
        73,
        32,
        108,
        111,
        118,
        101,
        32,
        121,
        111,
        117,
    ]
1145
1146
1147
1148
1149
1150
1151
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 3
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1152
    x_pil = Image.fromarray(x_np, mode="RGB")
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
    x_th = torch.tensor(x_np.transpose(2, 0, 1))
    y_pil = F.adjust_sharpness(x_pil, 2)
    y_np = np.array(y_pil).transpose(2, 0, 1)
    y_th = F.adjust_sharpness(x_th, 2)
    torch.testing.assert_close(y_np, y_th.numpy())


def test_adjust_gamma():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1164
    x_pil = Image.fromarray(x_np, mode="RGB")
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189

    # test 0
    y_pil = F.adjust_gamma(x_pil, 1)
    y_np = np.array(y_pil)
    torch.testing.assert_close(y_np, x_np)

    # test 1
    y_pil = F.adjust_gamma(x_pil, 0.5)
    y_np = np.array(y_pil)
    y_ans = [0, 35, 57, 117, 186, 241, 97, 45, 245, 152, 255, 16]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)

    # test 2
    y_pil = F.adjust_gamma(x_pil, 2)
    y_np = np.array(y_pil)
    y_ans = [0, 0, 0, 11, 71, 201, 5, 0, 215, 31, 255, 0]
    y_ans = np.array(y_ans, dtype=np.uint8).reshape(x_shape)
    torch.testing.assert_close(y_np, y_ans)


def test_adjusts_L_mode():
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1190
    x_rgb = Image.fromarray(x_np, mode="RGB")
1191

1192
1193
1194
1195
1196
1197
1198
    x_l = x_rgb.convert("L")
    assert F.adjust_brightness(x_l, 2).mode == "L"
    assert F.adjust_saturation(x_l, 2).mode == "L"
    assert F.adjust_contrast(x_l, 2).mode == "L"
    assert F.adjust_hue(x_l, 0.4).mode == "L"
    assert F.adjust_sharpness(x_l, 2).mode == "L"
    assert F.adjust_gamma(x_l, 0.5).mode == "L"
1199
1200


1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
def test_rotate():
    x = np.zeros((100, 100, 3), dtype=np.uint8)
    x[40, 40] = [255, 255, 255]

    with pytest.raises(TypeError, match=r"img should be PIL Image"):
        F.rotate(x, 10)

    img = F.to_pil_image(x)

    result = F.rotate(img, 45)
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [49, 50])
    assert all(x in c for x in [36])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, expand=True)
    assert result.size == (142, 142)
    r, c, ch = np.where(result)
    assert all(x in r for x in [70, 71])
    assert all(x in c for x in [57])
    assert all(x in ch for x in [0, 1, 2])

    result = F.rotate(img, 45, center=(40, 40))
    assert result.size == (100, 100)
    r, c, ch = np.where(result)
    assert all(x in r for x in [40])
    assert all(x in c for x in [40])
    assert all(x in ch for x in [0, 1, 2])

    result_a = F.rotate(img, 90)
    result_b = F.rotate(img, -270)

    assert_equal(np.array(result_a), np.array(result_b))


1237
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
def test_rotate_fill(mode):
    img = F.to_pil_image(np.ones((100, 100, 3), dtype=np.uint8) * 255, "RGB")

    num_bands = len(mode)
    wrong_num_bands = num_bands + 1
    fill = 127

    img_conv = img.convert(mode)
    img_rot = F.rotate(img_conv, 45.0, fill=fill)
    pixel = img_rot.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    with pytest.raises(ValueError):
        F.rotate(img_conv, 45.0, fill=tuple([fill] * wrong_num_bands))


def test_gaussian_blur_asserts():
    np_img = np.ones((100, 100, 3), dtype=np.uint8) * 255
    img = F.to_pil_image(np_img, "RGB")

    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3])
    with pytest.raises(ValueError, match=r"If kernel_size is a sequence its length should be 2"):
        F.gaussian_blur(img, [3, 3, 3])
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur([3, 3, 3])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [4, 4])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([4, 4])

    with pytest.raises(ValueError, match=r"kernel_size should have odd and positive integers"):
        F.gaussian_blur(img, [-3, -3])
    with pytest.raises(ValueError, match=r"Kernel size value should be an odd and positive number"):
        transforms.GaussianBlur([-3, -3])

    with pytest.raises(ValueError, match=r"If sigma is a sequence, its length should be 2"):
        F.gaussian_blur(img, 3, [1, 1, 1])
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, [1, 1, 1])

    with pytest.raises(ValueError, match=r"sigma should have positive values"):
        F.gaussian_blur(img, 3, -1.0)
    with pytest.raises(ValueError, match=r"If sigma is a single number, it must be positive"):
        transforms.GaussianBlur(3, -1.0)

    with pytest.raises(TypeError, match=r"kernel_size should be int or a sequence of integers"):
        F.gaussian_blur(img, "kernel_size_string")
    with pytest.raises(ValueError, match=r"Kernel size should be a tuple/list of two integers"):
        transforms.GaussianBlur("kernel_size_string")

    with pytest.raises(TypeError, match=r"sigma should be either float or sequence of floats"):
        F.gaussian_blur(img, 3, "sigma_string")
    with pytest.raises(ValueError, match=r"sigma should be a single number or a list/tuple with length 2"):
        transforms.GaussianBlur(3, "sigma_string")


def test_lambda():
    trans = transforms.Lambda(lambda x: x.add(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, torch.add(x, 10))

    trans = transforms.Lambda(lambda x: x.add_(10))
    x = torch.randn(10)
    y = trans(x)
    assert_equal(y, x)

    # Checking if Lambda can be printed as string
    trans.__repr__()


1314
1315
1316
1317
1318
1319
def test_to_grayscale():
    """Unit tests for grayscale transform"""

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1320
1321
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1322
1323
1324
1325
1326
1327
1328
    gray_np = np.array(x_pil_2)

    # Test Set: Grayscale an image with desired number of output channels
    # Case 1: RGB -> 1 channel grayscale
    trans1 = transforms.Grayscale(num_output_channels=1)
    gray_pil_1 = trans1(x_pil)
    gray_np_1 = np.array(gray_pil_1)
1329
1330
    assert gray_pil_1.mode == "L", "mode should be L"
    assert gray_np_1.shape == tuple(x_shape[0:2]), "should be 1 channel"
1331
1332
1333
1334
1335
1336
    assert_equal(gray_np, gray_np_1)

    # Case 2: RGB -> 3 channel grayscale
    trans2 = transforms.Grayscale(num_output_channels=3)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1337
1338
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1339
1340
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
1341
    assert_equal(gray_np, gray_np_2[:, :, 0])
1342
1343
1344
1345
1346

    # Case 3: 1 channel grayscale -> 1 channel grayscale
    trans3 = transforms.Grayscale(num_output_channels=1)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1347
1348
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1349
1350
1351
1352
1353
1354
    assert_equal(gray_np, gray_np_3)

    # Case 4: 1 channel grayscale -> 3 channel grayscale
    trans4 = transforms.Grayscale(num_output_channels=3)
    gray_pil_4 = trans4(x_pil_2)
    gray_np_4 = np.array(gray_pil_4)
1355
1356
    assert gray_pil_4.mode == "RGB", "mode should be RGB"
    assert gray_np_4.shape == tuple(x_shape), "should be 3 channel"
1357
1358
    assert_equal(gray_np_4[:, :, 0], gray_np_4[:, :, 1])
    assert_equal(gray_np_4[:, :, 1], gray_np_4[:, :, 2])
1359
    assert_equal(gray_np, gray_np_4[:, :, 0])
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369

    # Checking if Grayscale can be printed as string
    trans4.__repr__()


@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
def test_random_grayscale():
    """Unit tests for random grayscale transform"""

    # Test Set 1: RGB -> 3 channel grayscale
1370
    np_rng = np.random.RandomState(0)
1371
1372
1373
    random_state = random.getstate()
    random.seed(42)
    x_shape = [2, 2, 3]
1374
    x_np = np_rng.randint(0, 256, x_shape, np.uint8)
1375
1376
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1377
1378
1379
1380
1381
1382
1383
    gray_np = np.array(x_pil_2)

    num_samples = 250
    num_gray = 0
    for _ in range(num_samples):
        gray_pil_2 = transforms.RandomGrayscale(p=0.5)(x_pil)
        gray_np_2 = np.array(gray_pil_2)
1384
1385
1386
1387
1388
        if (
            np.array_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
            and np.array_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
            and np.array_equal(gray_np, gray_np_2[:, :, 0])
        ):
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
            num_gray = num_gray + 1

    p_value = stats.binom_test(num_gray, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Test Set 2: grayscale -> 1 channel grayscale
    random_state = random.getstate()
    random.seed(42)
    x_shape = [2, 2, 3]
1399
    x_np = np_rng.randint(0, 256, x_shape, np.uint8)
1400
1401
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
    gray_np = np.array(x_pil_2)

    num_samples = 250
    num_gray = 0
    for _ in range(num_samples):
        gray_pil_3 = transforms.RandomGrayscale(p=0.5)(x_pil_2)
        gray_np_3 = np.array(gray_pil_3)
        if np.array_equal(gray_np, gray_np_3):
            num_gray = num_gray + 1

    p_value = stats.binom_test(num_gray, num_samples, p=1.0)  # Note: grayscale is always unchanged
    random.setstate(random_state)
    assert p_value > 0.0001

    # Test set 3: Explicit tests
    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1420
1421
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1422
1423
1424
1425
1426
1427
    gray_np = np.array(x_pil_2)

    # Case 3a: RGB -> 3 channel grayscale (grayscaled)
    trans2 = transforms.RandomGrayscale(p=1.0)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1428
1429
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1430
1431
    assert_equal(gray_np_2[:, :, 0], gray_np_2[:, :, 1])
    assert_equal(gray_np_2[:, :, 1], gray_np_2[:, :, 2])
1432
    assert_equal(gray_np, gray_np_2[:, :, 0])
1433
1434
1435
1436
1437

    # Case 3b: RGB -> 3 channel grayscale (unchanged)
    trans2 = transforms.RandomGrayscale(p=0.0)
    gray_pil_2 = trans2(x_pil)
    gray_np_2 = np.array(gray_pil_2)
1438
1439
    assert gray_pil_2.mode == "RGB", "mode should be RGB"
    assert gray_np_2.shape == tuple(x_shape), "should be 3 channel"
1440
1441
1442
1443
1444
1445
    assert_equal(x_np, gray_np_2)

    # Case 3c: 1 channel grayscale -> 1 channel grayscale (grayscaled)
    trans3 = transforms.RandomGrayscale(p=1.0)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1446
1447
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1448
1449
1450
1451
1452
1453
    assert_equal(gray_np, gray_np_3)

    # Case 3d: 1 channel grayscale -> 1 channel grayscale (unchanged)
    trans3 = transforms.RandomGrayscale(p=0.0)
    gray_pil_3 = trans3(x_pil_2)
    gray_np_3 = np.array(gray_pil_3)
1454
1455
    assert gray_pil_3.mode == "L", "mode should be L"
    assert gray_np_3.shape == tuple(x_shape[0:2]), "should be 1 channel"
1456
1457
1458
1459
1460
1461
    assert_equal(gray_np, gray_np_3)

    # Checking if RandomGrayscale can be printed as string
    trans3.__repr__()


1462
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1463
1464
1465
1466
1467
1468
1469
1470
def test_random_apply():
    random_state = random.getstate()
    random.seed(42)
    random_apply_transform = transforms.RandomApply(
        [
            transforms.RandomRotation((-45, 45)),
            transforms.RandomHorizontalFlip(),
            transforms.RandomVerticalFlip(),
1471
1472
        ],
        p=0.75,
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
    )
    img = transforms.ToPILImage()(torch.rand(3, 10, 10))
    num_samples = 250
    num_applies = 0
    for _ in range(num_samples):
        out = random_apply_transform(img)
        if out != img:
            num_applies += 1

    p_value = stats.binom_test(num_applies, num_samples, p=0.75)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomApply can be printed as string
    random_apply_transform.__repr__()


1490
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1491
1492
1493
1494
def test_random_choice():
    random_state = random.getstate()
    random.seed(42)
    random_choice_transform = transforms.RandomChoice(
1495
        [transforms.Resize(15), transforms.Resize(20), transforms.CenterCrop(10)], [1 / 3, 1 / 3, 1 / 3]
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
    )
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_resize_15 = 0
    num_resize_20 = 0
    num_crop_10 = 0
    for _ in range(num_samples):
        out = random_choice_transform(img)
        if out.size == (15, 15):
            num_resize_15 += 1
        elif out.size == (20, 20):
            num_resize_20 += 1
        elif out.size == (10, 10):
            num_crop_10 += 1

    p_value = stats.binom_test(num_resize_15, num_samples, p=0.33333)
    assert p_value > 0.0001
    p_value = stats.binom_test(num_resize_20, num_samples, p=0.33333)
    assert p_value > 0.0001
    p_value = stats.binom_test(num_crop_10, num_samples, p=0.33333)
    assert p_value > 0.0001

    random.setstate(random_state)
    # Checking if RandomChoice can be printed as string
    random_choice_transform.__repr__()


1523
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
1524
1525
1526
def test_random_order():
    random_state = random.getstate()
    random.seed(42)
1527
    random_order_transform = transforms.RandomOrder([transforms.Resize(20), transforms.CenterCrop(10)])
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
    img = transforms.ToPILImage()(torch.rand(3, 25, 25))
    num_samples = 250
    num_normal_order = 0
    resize_crop_out = transforms.CenterCrop(10)(transforms.Resize(20)(img))
    for _ in range(num_samples):
        out = random_order_transform(img)
        if out == resize_crop_out:
            num_normal_order += 1

    p_value = stats.binom_test(num_normal_order, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomOrder can be printed as string
    random_order_transform.__repr__()


1545
1546
1547
1548
1549
1550
1551
1552
def test_linear_transformation():
    num_samples = 1000
    x = torch.randn(num_samples, 3, 10, 10)
    flat_x = x.view(x.size(0), x.size(1) * x.size(2) * x.size(3))
    # compute principal components
    sigma = torch.mm(flat_x.t(), flat_x) / flat_x.size(0)
    u, s, _ = np.linalg.svd(sigma.numpy())
    zca_epsilon = 1e-10  # avoid division by 0
1553
    d = torch.Tensor(np.diag(1.0 / np.sqrt(s + zca_epsilon)))
1554
1555
    u = torch.Tensor(u)
    principal_components = torch.mm(torch.mm(u, d), u.t())
1556
    mean_vector = torch.sum(flat_x, dim=0) / flat_x.size(0)
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
    # initialize whitening matrix
    whitening = transforms.LinearTransformation(principal_components, mean_vector)
    # estimate covariance and mean using weak law of large number
    num_features = flat_x.size(1)
    cov = 0.0
    mean = 0.0
    for i in x:
        xwhite = whitening(i)
        xwhite = xwhite.view(1, -1).numpy()
        cov += np.dot(xwhite, xwhite.T) / num_features
        mean += np.sum(xwhite) / num_features
    # if rtol for std = 1e-3 then rtol for cov = 2e-3 as std**2 = cov
1569
1570
1571
1572
1573
1574
    torch.testing.assert_close(
        cov / num_samples, np.identity(1), rtol=2e-3, atol=1e-8, check_dtype=False, msg="cov not close to 1"
    )
    torch.testing.assert_close(
        mean / num_samples, 0, rtol=1e-3, atol=1e-8, check_dtype=False, msg="mean not close to 0"
    )
1575
1576
1577
1578
1579

    # Checking if LinearTransformation can be printed as string
    whitening.__repr__()


1580
@pytest.mark.parametrize("dtype", int_dtypes())
1581
1582
1583
1584
1585
1586
1587
1588
1589
def test_max_value(dtype):

    assert F_t._max_value(dtype) == torch.iinfo(dtype).max
    # remove float testing as it can lead to errors such as
    # runtime error: 5.7896e+76 is outside the range of representable values of type 'float'
    # for dtype in float_dtypes():
    # self.assertGreater(F_t._max_value(dtype), torch.finfo(dtype).max)


1590
1591
@pytest.mark.parametrize("should_vflip", [True, False])
@pytest.mark.parametrize("single_dim", [True, False])
1592
1593
1594
1595
1596
1597
1598
1599
1600
def test_ten_crop(should_vflip, single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
1601
        transform = transforms.TenCrop(crop_h, vertical_flip=should_vflip)
1602
1603
        five_crop = transforms.FiveCrop(crop_h)
    else:
1604
        transform = transforms.TenCrop((crop_h, crop_w), vertical_flip=should_vflip)
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
        five_crop = transforms.FiveCrop((crop_h, crop_w))

    img = to_pil_image(torch.FloatTensor(3, h, w).uniform_())
    results = transform(img)
    expected_output = five_crop(img)

    # Checking if FiveCrop and TenCrop can be printed as string
    transform.__repr__()
    five_crop.__repr__()

    if should_vflip:
        vflipped_img = img.transpose(Image.FLIP_TOP_BOTTOM)
        expected_output += five_crop(vflipped_img)
    else:
        hflipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
        expected_output += five_crop(hflipped_img)

    assert len(results) == 10
    assert results == expected_output


1626
@pytest.mark.parametrize("single_dim", [True, False])
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
def test_five_crop(single_dim):
    to_pil_image = transforms.ToPILImage()
    h = random.randint(5, 25)
    w = random.randint(5, 25)
    crop_h = random.randint(1, h)
    crop_w = random.randint(1, w)
    if single_dim:
        crop_h = min(crop_h, crop_w)
        crop_w = crop_h
        transform = transforms.FiveCrop(crop_h)
    else:
        transform = transforms.FiveCrop((crop_h, crop_w))

    img = torch.FloatTensor(3, h, w).uniform_()

    results = transform(to_pil_image(img))

    assert len(results) == 5
    for crop in results:
        assert crop.size == (crop_w, crop_h)

    to_pil_image = transforms.ToPILImage()
    tl = to_pil_image(img[:, 0:crop_h, 0:crop_w])
1650
1651
1652
    tr = to_pil_image(img[:, 0:crop_h, w - crop_w :])
    bl = to_pil_image(img[:, h - crop_h :, 0:crop_w])
    br = to_pil_image(img[:, h - crop_h :, w - crop_w :])
1653
1654
1655
1656
1657
    center = transforms.CenterCrop((crop_h, crop_w))(to_pil_image(img))
    expected_output = (tl, tr, bl, br, center)
    assert results == expected_output


1658
1659
1660
@pytest.mark.parametrize("policy", transforms.AutoAugmentPolicy)
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1661
def test_autoaugment(policy, fill, grayscale):
1662
1663
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1664
1665
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1666
1667
1668
1669
1670
1671
    transform = transforms.AutoAugment(policy=policy, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1672
1673
1674
1675
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("grayscale", [True, False])
1676
def test_randaugment(num_ops, magnitude, fill, grayscale):
1677
1678
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1679
1680
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1681
1682
1683
1684
1685
1686
    transform = transforms.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1687
1688
1689
@pytest.mark.parametrize("fill", [None, 85, (128, 128, 128)])
@pytest.mark.parametrize("num_magnitude_bins", [10, 13, 30])
@pytest.mark.parametrize("grayscale", [True, False])
1690
def test_trivialaugmentwide(fill, num_magnitude_bins, grayscale):
1691
1692
    random.seed(42)
    img = Image.open(GRACE_HOPPER)
1693
1694
    if grayscale:
        img, fill = _get_grayscale_test_image(img, fill)
1695
1696
1697
1698
1699
1700
    transform = transforms.TrivialAugmentWide(fill=fill, num_magnitude_bins=num_magnitude_bins)
    for _ in range(100):
        img = transform(img)
    transform.__repr__()


1701
1702
1703
1704
1705
1706
def test_random_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2
    img = torch.ones(3, height, width)
1707
1708
1709
1710
1711
1712
1713
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1714
1715
1716
1717
    assert result.size(1) == oheight
    assert result.size(2) == owidth

    padding = random.randint(1, 20)
1718
1719
1720
1721
1722
1723
1724
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((oheight, owidth), padding=padding),
            transforms.ToTensor(),
        ]
    )(img)
1725
1726
1727
    assert result.size(1) == oheight
    assert result.size(2) == owidth

1728
1729
1730
    result = transforms.Compose(
        [transforms.ToPILImage(), transforms.RandomCrop((height, width)), transforms.ToTensor()]
    )(img)
1731
1732
1733
1734
    assert result.size(1) == height
    assert result.size(2) == width
    torch.testing.assert_close(result, img)

1735
1736
1737
1738
1739
1740
1741
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.RandomCrop((height + 1, width + 1), pad_if_needed=True),
            transforms.ToTensor(),
        ]
    )(img)
1742
1743
1744
1745
1746
1747
1748
1749
1750
    assert result.size(1) == height + 1
    assert result.size(2) == width + 1

    t = transforms.RandomCrop(48)
    img = torch.ones(3, 32, 32)
    with pytest.raises(ValueError, match=r"Required crop size .+ is larger then input image size .+"):
        t(img)


1751
1752
1753
1754
1755
1756
1757
1758
1759
def test_center_crop():
    height = random.randint(10, 32) * 2
    width = random.randint(10, 32) * 2
    oheight = random.randint(5, (height - 2) / 2) * 2
    owidth = random.randint(5, (width - 2) / 2) * 2

    img = torch.ones(3, height, width)
    oh1 = (height - oheight) // 2
    ow1 = (width - owidth) // 2
1760
    imgnarrow = img[:, oh1 : oh1 + oheight, ow1 : ow1 + owidth]
1761
    imgnarrow.fill_(0)
1762
1763
1764
1765
1766
1767
1768
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1769
1770
1771
    assert result.sum() == 0
    oheight += 1
    owidth += 1
1772
1773
1774
1775
1776
1777
1778
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1779
1780
1781
1782
    sum1 = result.sum()
    assert sum1 > 1
    oheight += 1
    owidth += 1
1783
1784
1785
1786
1787
1788
1789
    result = transforms.Compose(
        [
            transforms.ToPILImage(),
            transforms.CenterCrop((oheight, owidth)),
            transforms.ToTensor(),
        ]
    )(img)
1790
1791
1792
1793
1794
    sum2 = result.sum()
    assert sum2 > 0
    assert sum2 > sum1


1795
1796
1797
1798
@pytest.mark.parametrize("odd_image_size", (True, False))
@pytest.mark.parametrize("delta", (1, 3, 5))
@pytest.mark.parametrize("delta_width", (-2, -1, 0, 1, 2))
@pytest.mark.parametrize("delta_height", (-2, -1, 0, 1, 2))
1799
def test_center_crop_2(odd_image_size, delta, delta_width, delta_height):
1800
    """Tests when center crop size is larger than image size, along any dimension"""
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

    # Since height is independent of width, we can ignore images with odd height and even width and vice-versa.
    input_image_size = (random.randint(10, 32) * 2, random.randint(10, 32) * 2)
    if odd_image_size:
        input_image_size = (input_image_size[0] + 1, input_image_size[1] + 1)

    delta_height *= delta
    delta_width *= delta

    img = torch.ones(3, *input_image_size)
    crop_size = (input_image_size[0] + delta_height, input_image_size[1] + delta_width)

    # Test both transforms, one with PIL input and one with tensor
1814
1815
    output_pil = transforms.Compose(
        [transforms.ToPILImage(), transforms.CenterCrop(crop_size), transforms.ToTensor()],
1816
1817
1818
1819
1820
1821
1822
1823
    )(img)
    assert output_pil.size()[1:3] == crop_size

    output_tensor = transforms.CenterCrop(crop_size)(img)
    assert output_tensor.size()[1:3] == crop_size

    # Ensure output for PIL and Tensor are equal
    assert_equal(
1824
1825
1826
        output_tensor,
        output_pil,
        msg="image_size: {} crop_size: {}".format(input_image_size, crop_size),
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
    )

    # Check if content in center of both image and cropped output is same.
    center_size = (min(crop_size[0], input_image_size[0]), min(crop_size[1], input_image_size[1]))
    crop_center_tl, input_center_tl = [0, 0], [0, 0]
    for index in range(2):
        if crop_size[index] > input_image_size[index]:
            crop_center_tl[index] = (crop_size[index] - input_image_size[index]) // 2
        else:
            input_center_tl[index] = (input_image_size[index] - crop_size[index]) // 2

    output_center = output_pil[
        :,
1840
1841
        crop_center_tl[0] : crop_center_tl[0] + center_size[0],
        crop_center_tl[1] : crop_center_tl[1] + center_size[1],
1842
1843
1844
1845
    ]

    img_center = img[
        :,
1846
1847
        input_center_tl[0] : input_center_tl[0] + center_size[0],
        input_center_tl[1] : input_center_tl[1] + center_size[1],
1848
1849
    ]

1850
    assert_equal(output_center, img_center)
1851
1852
1853
1854
1855
1856
1857
1858


def test_color_jitter():
    color_jitter = transforms.ColorJitter(2, 2, 2, 0.1)

    x_shape = [2, 2, 3]
    x_data = [0, 5, 13, 54, 135, 226, 37, 8, 234, 90, 255, 1]
    x_np = np.array(x_data, dtype=np.uint8).reshape(x_shape)
1859
1860
    x_pil = Image.fromarray(x_np, mode="RGB")
    x_pil_2 = x_pil.convert("L")
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872

    for _ in range(10):
        y_pil = color_jitter(x_pil)
        assert y_pil.mode == x_pil.mode

        y_pil_2 = color_jitter(x_pil_2)
        assert y_pil_2.mode == x_pil_2.mode

    # Checking if ColorJitter can be printed as string
    color_jitter.__repr__()


1873
1874
1875
1876
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
def test_random_erasing():
    img = torch.ones(3, 128, 128)

1877
1878
1879
1880
1881
1882
1883
1884
1885
    t = transforms.RandomErasing(scale=(0.1, 0.1), ratio=(1 / 3, 3.0))
    y, x, h, w, v = t.get_params(
        img,
        t.scale,
        t.ratio,
        [
            t.value,
        ],
    )
1886
1887
1888
    aspect_ratio = h / w
    # Add some tolerance due to the rounding and int conversion used in the transform
    tol = 0.05
1889
    assert 1 / 3 - tol <= aspect_ratio <= 3 + tol
1890
1891
1892
1893
1894

    aspect_ratios = []
    random.seed(42)
    trial = 1000
    for _ in range(trial):
1895
1896
1897
1898
1899
1900
1901
1902
        y, x, h, w, v = t.get_params(
            img,
            t.scale,
            t.ratio,
            [
                t.value,
            ],
        )
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
        aspect_ratios.append(h / w)

    count_bigger_then_ones = len([1 for aspect_ratio in aspect_ratios if aspect_ratio > 1])
    p_value = stats.binom_test(count_bigger_then_ones, trial, p=0.5)
    assert p_value > 0.0001

    # Checking if RandomErasing can be printed as string
    t.__repr__()


def test_random_rotation():

    with pytest.raises(ValueError):
        transforms.RandomRotation(-0.7)

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7])

    with pytest.raises(ValueError):
        transforms.RandomRotation([-0.7, 0, 0.7])

    t = transforms.RandomRotation(0, fill=None)
    assert t.fill == 0

    t = transforms.RandomRotation(10)
    angle = t.get_params(t.degrees)
1929
    assert angle > -10 and angle < 10
1930
1931
1932

    t = transforms.RandomRotation((-10, 10))
    angle = t.get_params(t.degrees)
1933
    assert -10 < angle < 10
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968

    # Checking if RandomRotation can be printed as string
    t.__repr__()

    # assert deprecation warning and non-BC
    with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
        t = transforms.RandomRotation((-10, 10), resample=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.RandomRotation((-10, 10), interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


def test_random_rotation_error():
    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomRotation(0, fill={})


def test_randomperspective():
    for _ in range(10):
        height = random.randint(24, 32) * 2
        width = random.randint(24, 32) * 2
        img = torch.ones(3, height, width)
        to_pil_image = transforms.ToPILImage()
        img = to_pil_image(img)
        perp = transforms.RandomPerspective()
        startpoints, endpoints = perp.get_params(width, height, 0.5)
        tr_img = F.perspective(img, startpoints, endpoints)
        tr_img2 = F.to_tensor(F.perspective(tr_img, endpoints, startpoints))
        tr_img = F.to_tensor(tr_img)
        assert img.size[0] == width
        assert img.size[1] == height
1969
1970
1971
        assert torch.nn.functional.mse_loss(tr_img, F.to_tensor(img)) + 0.3 > torch.nn.functional.mse_loss(
            tr_img2, F.to_tensor(img)
        )
1972
1973


1974
@pytest.mark.parametrize("mode", ["L", "RGB", "F"])
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
def test_randomperspective_fill(mode):

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomPerspective(fill={})

    t = transforms.RandomPerspective(fill=None)
    assert t.fill == 0

    height = 100
    width = 100
    img = torch.ones(3, height, width)
    to_pil_image = transforms.ToPILImage()
    img = to_pil_image(img)
    fill = 127
    num_bands = len(mode)

    img_conv = img.convert(mode)
    perspective = transforms.RandomPerspective(p=1, fill=fill)
    tr_img = perspective(img_conv)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    startpoints, endpoints = transforms.RandomPerspective.get_params(width, height, 0.5)
    tr_img = F.perspective(img_conv, startpoints, endpoints, fill=fill)
    pixel = tr_img.getpixel((0, 0))

    if not isinstance(pixel, tuple):
        pixel = (pixel,)
    assert pixel == tuple([fill] * num_bands)

    wrong_num_bands = num_bands + 1
    with pytest.raises(ValueError):
        F.perspective(img_conv, startpoints, endpoints, fill=tuple([fill] * wrong_num_bands))


2014
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
def test_random_vertical_flip():
    random_state = random.getstate()
    random.seed(42)
    img = transforms.ToPILImage()(torch.rand(3, 10, 10))
    vimg = img.transpose(Image.FLIP_TOP_BOTTOM)

    num_samples = 250
    num_vertical = 0
    for _ in range(num_samples):
        out = transforms.RandomVerticalFlip()(img)
        if out == vimg:
            num_vertical += 1

    p_value = stats.binom_test(num_vertical, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    num_samples = 250
    num_vertical = 0
    for _ in range(num_samples):
        out = transforms.RandomVerticalFlip(p=0.7)(img)
        if out == vimg:
            num_vertical += 1

    p_value = stats.binom_test(num_vertical, num_samples, p=0.7)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomVerticalFlip can be printed as string
    transforms.RandomVerticalFlip().__repr__()


2047
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
def test_random_horizontal_flip():
    random_state = random.getstate()
    random.seed(42)
    img = transforms.ToPILImage()(torch.rand(3, 10, 10))
    himg = img.transpose(Image.FLIP_LEFT_RIGHT)

    num_samples = 250
    num_horizontal = 0
    for _ in range(num_samples):
        out = transforms.RandomHorizontalFlip()(img)
        if out == himg:
            num_horizontal += 1

    p_value = stats.binom_test(num_horizontal, num_samples, p=0.5)
    random.setstate(random_state)
    assert p_value > 0.0001

    num_samples = 250
    num_horizontal = 0
    for _ in range(num_samples):
        out = transforms.RandomHorizontalFlip(p=0.7)(img)
        if out == himg:
            num_horizontal += 1

    p_value = stats.binom_test(num_horizontal, num_samples, p=0.7)
    random.setstate(random_state)
    assert p_value > 0.0001

    # Checking if RandomHorizontalFlip can be printed as string
    transforms.RandomHorizontalFlip().__repr__()


2080
@pytest.mark.skipif(stats is None, reason="scipy.stats not available")
2081
2082
def test_normalize():
    def samples_from_standard_normal(tensor):
2083
        p_value = stats.kstest(list(tensor.view(-1)), "norm", args=(0, 1)).pvalue
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
        return p_value > 0.0001

    random_state = random.getstate()
    random.seed(42)
    for channels in [1, 3]:
        img = torch.rand(channels, 10, 10)
        mean = [img[c].mean() for c in range(channels)]
        std = [img[c].std() for c in range(channels)]
        normalized = transforms.Normalize(mean, std)(img)
        assert samples_from_standard_normal(normalized)
    random.setstate(random_state)

    # Checking if Normalize can be printed as string
    transforms.Normalize(mean, std).__repr__()

    # Checking the optional in-place behaviour
    tensor = torch.rand((1, 16, 16))
    tensor_inplace = transforms.Normalize((0.5,), (0.5,), inplace=True)(tensor)
    assert_equal(tensor, tensor_inplace)


2105
2106
@pytest.mark.parametrize("dtype1", [torch.float32, torch.float64])
@pytest.mark.parametrize("dtype2", [torch.int64, torch.float32, torch.float64])
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
def test_normalize_different_dtype(dtype1, dtype2):
    img = torch.rand(3, 10, 10, dtype=dtype1)
    mean = torch.tensor([1, 2, 3], dtype=dtype2)
    std = torch.tensor([1, 2, 1], dtype=dtype2)
    # checks that it doesn't crash
    transforms.functional.normalize(img, mean, std)


def test_normalize_3d_tensor():
    torch.manual_seed(28)
    n_channels = 3
    img_size = 10
    mean = torch.rand(n_channels)
    std = torch.rand(n_channels)
    img = torch.rand(n_channels, img_size, img_size)
    target = F.normalize(img, mean, std)

    mean_unsqueezed = mean.view(-1, 1, 1)
    std_unsqueezed = std.view(-1, 1, 1)
    result1 = F.normalize(img, mean_unsqueezed, std_unsqueezed)
2127
2128
2129
    result2 = F.normalize(
        img, mean_unsqueezed.repeat(1, img_size, img_size), std_unsqueezed.repeat(1, img_size, img_size)
    )
2130
2131
2132
2133
    torch.testing.assert_close(target, result1)
    torch.testing.assert_close(target, result2)


2134
class TestAffine:
2135
    @pytest.fixture(scope="class")
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
    def input_img(self):
        input_img = np.zeros((40, 40, 3), dtype=np.uint8)
        for pt in [(16, 16), (20, 16), (20, 20)]:
            for i in range(-5, 5):
                for j in range(-5, 5):
                    input_img[pt[0] + i, pt[1] + j, :] = [255, 155, 55]
        return input_img

    def test_affine_translate_seq(self, input_img):
        with pytest.raises(TypeError, match=r"Argument translate should be a sequence"):
            F.affine(input_img, 10, translate=0, scale=1, shear=1)

2148
    @pytest.fixture(scope="class")
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
    def pil_image(self, input_img):
        return F.to_pil_image(input_img)

    def _to_3x3_inv(self, inv_result_matrix):
        result_matrix = np.zeros((3, 3))
        result_matrix[:2, :] = np.array(inv_result_matrix).reshape((2, 3))
        result_matrix[2, 2] = 1
        return np.linalg.inv(result_matrix)

    def _test_transformation(self, angle, translate, scale, shear, pil_image, input_img):

        a_rad = math.radians(angle)
        s_rad = [math.radians(sh_) for sh_ in shear]
        cnt = [20, 20]
        cx, cy = cnt
        tx, ty = translate
        sx, sy = s_rad
        rot = a_rad

        # 1) Check transformation matrix:
2169
2170
        C = np.array([[1, 0, cx], [0, 1, cy], [0, 0, 1]])
        T = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]])
2171
2172
2173
        Cinv = np.linalg.inv(C)

        RS = np.array(
2174
2175
2176
2177
2178
2179
            [
                [scale * math.cos(rot), -scale * math.sin(rot), 0],
                [scale * math.sin(rot), scale * math.cos(rot), 0],
                [0, 0, 1],
            ]
        )
2180

2181
        SHx = np.array([[1, -math.tan(sx), 0], [0, 1, 0], [0, 0, 1]])
2182

2183
        SHy = np.array([[1, 0, 0], [-math.tan(sy), 1, 0], [0, 0, 1]])
2184
2185
2186
2187
2188

        RSS = np.matmul(RS, np.matmul(SHy, SHx))

        true_matrix = np.matmul(T, np.matmul(C, np.matmul(RSS, Cinv)))

2189
2190
2191
        result_matrix = self._to_3x3_inv(
            F._get_inverse_affine_matrix(center=cnt, angle=angle, translate=translate, scale=scale, shear=shear)
        )
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
        assert np.sum(np.abs(true_matrix - result_matrix)) < 1e-10
        # 2) Perform inverse mapping:
        true_result = np.zeros((40, 40, 3), dtype=np.uint8)
        inv_true_matrix = np.linalg.inv(true_matrix)
        for y in range(true_result.shape[0]):
            for x in range(true_result.shape[1]):
                # Same as for PIL:
                # https://github.com/python-pillow/Pillow/blob/71f8ec6a0cfc1008076a023c0756542539d057ab/
                # src/libImaging/Geometry.c#L1060
                input_pt = np.array([x + 0.5, y + 0.5, 1.0])
                res = np.floor(np.dot(inv_true_matrix, input_pt)).astype(np.int)
                _x, _y = res[:2]
                if 0 <= _x < input_img.shape[1] and 0 <= _y < input_img.shape[0]:
                    true_result[y, x, :] = input_img[_y, _x, :]

        result = F.affine(pil_image, angle=angle, translate=translate, scale=scale, shear=shear)
        assert result.size == pil_image.size
        # Compute number of different pixels:
        np_result = np.array(result)
        n_diff_pixels = np.sum(np_result != true_result) / 3
        # Accept 3 wrong pixels
2213
2214
2215
        error_msg = "angle={}, translate={}, scale={}, shear={}\n".format(
            angle, translate, scale, shear
        ) + "n diff pixels={}\n".format(n_diff_pixels)
2216
2217
2218
2219
2220
        assert n_diff_pixels < 3, error_msg

    def test_transformation_discrete(self, pil_image, input_img):
        # Test rotation
        angle = 45
2221
2222
2223
        self._test_transformation(
            angle=angle, translate=(0, 0), scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2224
2225
2226

        # Test translation
        translate = [10, 15]
2227
2228
2229
        self._test_transformation(
            angle=0.0, translate=translate, scale=1.0, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2230
2231
2232

        # Test scale
        scale = 1.2
2233
2234
2235
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=scale, shear=(0.0, 0.0), pil_image=pil_image, input_img=input_img
        )
2236
2237
2238

        # Test shear
        shear = [45.0, 25.0]
2239
2240
2241
        self._test_transformation(
            angle=0.0, translate=(0.0, 0.0), scale=1.0, shear=shear, pil_image=pil_image, input_img=input_img
        )
2242
2243
2244
2245
2246
2247

    @pytest.mark.parametrize("angle", range(-90, 90, 36))
    @pytest.mark.parametrize("translate", range(-10, 10, 5))
    @pytest.mark.parametrize("scale", [0.77, 1.0, 1.27])
    @pytest.mark.parametrize("shear", range(-15, 15, 5))
    def test_transformation_range(self, angle, translate, scale, shear, pil_image, input_img):
2248
2249
2250
2251
2252
2253
2254
2255
        self._test_transformation(
            angle=angle,
            translate=(translate, translate),
            scale=scale,
            shear=(shear, shear),
            pil_image=pil_image,
            input_img=input_img,
        )
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302


def test_random_affine():

    with pytest.raises(ValueError):
        transforms.RandomAffine(-0.7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-0.7, 0, 0.7])
    with pytest.raises(TypeError):
        transforms.RandomAffine([-90, 90], translate=2.0)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[-1.0, 0.0, 1.0])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[-1.0, 1.0])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, -0.5])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 3.0, -0.5])

    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=-7)
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10])
    with pytest.raises(ValueError):
        transforms.RandomAffine([-90, 90], translate=[0.2, 0.2], scale=[0.5, 0.5], shear=[-10, 0, 10, 0, 10])

    # assert fill being either a Sequence or a Number
    with pytest.raises(TypeError):
        transforms.RandomAffine(0, fill={})

    t = transforms.RandomAffine(0, fill=None)
    assert t.fill == 0

    x = np.zeros((100, 100, 3), dtype=np.uint8)
    img = F.to_pil_image(x)

    t = transforms.RandomAffine(10, translate=[0.5, 0.3], scale=[0.7, 1.3], shear=[-10, 10, 20, 40])
    for _ in range(100):
2303
        angle, translations, scale, shear = t.get_params(t.degrees, t.translate, t.scale, t.shear, img_size=img.size)
2304
        assert -10 < angle < 10
2305
2306
2307
2308
2309
2310
        assert -img.size[0] * 0.5 <= translations[0] <= img.size[0] * 0.5, "{} vs {}".format(
            translations[0], img.size[0] * 0.5
        )
        assert -img.size[1] * 0.5 <= translations[1] <= img.size[1] * 0.5, "{} vs {}".format(
            translations[1], img.size[1] * 0.5
        )
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
        assert 0.7 < scale < 1.3
        assert -10 < shear[0] < 10
        assert -20 < shear[1] < 40

    # Checking if RandomAffine can be printed as string
    t.__repr__()

    t = transforms.RandomAffine(10, interpolation=transforms.InterpolationMode.BILINEAR)
    assert "bilinear" in t.__repr__()

    # assert deprecation warning and non-BC
    with pytest.warns(UserWarning, match=r"Argument resample is deprecated and will be removed"):
        t = transforms.RandomAffine(10, resample=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR

    with pytest.warns(UserWarning, match=r"Argument fillcolor is deprecated and will be removed"):
        t = transforms.RandomAffine(10, fillcolor=10)
        assert t.fill == 10

    # assert changed type warning
    with pytest.warns(UserWarning, match=r"Argument interpolation should be of type InterpolationMode"):
        t = transforms.RandomAffine(10, interpolation=2)
        assert t.interpolation == transforms.InterpolationMode.BILINEAR


2336
if __name__ == "__main__":
2337
    pytest.main([__file__])