test_transforms_tensor.py 33.2 KB
Newer Older
1
import os
2
import sys
3
4

import numpy as np
5
import pytest
6
import torch
7
import torchvision.transforms._pil_constants as _pil_constants
Nicolas Hug's avatar
Nicolas Hug committed
8
9
10
11
12
13
14
15
from common_utils import (
    get_tmp_dir,
    int_dtypes,
    float_dtypes,
    _create_data,
    _create_data_batch,
    _assert_equal_tensor_to_pil,
    _assert_approx_equal_tensor_to_pil,
16
    cpu_and_gpu,
17
    assert_equal,
Nicolas Hug's avatar
Nicolas Hug committed
18
)
19
20
21
from torchvision import transforms as T
from torchvision.transforms import InterpolationMode
from torchvision.transforms import functional as F
22
from torchvision.transforms.autoaugment import _apply_op
23

24
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
25
26


27
28
29
30
31
32
def _test_transform_vs_scripted(transform, s_transform, tensor, msg=None):
    torch.manual_seed(12)
    out1 = transform(tensor)
    torch.manual_seed(12)
    out2 = s_transform(tensor)
    assert_equal(out1, out2, msg=msg)
33

34

35
36
37
def _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors, msg=None):
    torch.manual_seed(12)
    transformed_batch = transform(batch_tensors)
38

39
40
    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
41
        torch.manual_seed(12)
42
43
        transformed_img = transform(img_tensor)
        assert_equal(transformed_img, transformed_batch[i, ...], msg=msg)
44

45
46
47
    torch.manual_seed(12)
    s_transformed_batch = s_transform(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch, msg=msg)
48
49


50
def _test_functional_op(f, device, channels=3, fn_kwargs=None, test_exact_match=True, **match_kwargs):
51
    fn_kwargs = fn_kwargs or {}
52

53
    tensor, pil_img = _create_data(height=10, width=10, channels=channels, device=device)
54
55
56
57
58
59
    transformed_tensor = f(tensor, **fn_kwargs)
    transformed_pil_img = f(pil_img, **fn_kwargs)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
vfdev's avatar
vfdev committed
60
61


vfdev's avatar
vfdev committed
62
def _test_class_op(transform_cls, device, channels=3, meth_kwargs=None, test_exact_match=True, **match_kwargs):
63
    meth_kwargs = meth_kwargs or {}
64

65
    # test for class interface
vfdev's avatar
vfdev committed
66
    f = transform_cls(**meth_kwargs)
67
    scripted_fn = torch.jit.script(f)
68

69
    tensor, pil_img = _create_data(26, 34, channels, device=device)
70
71
72
73
74
75
76
77
78
    # set seed to reproduce the same transformation for tensor and PIL image
    torch.manual_seed(12)
    transformed_tensor = f(tensor)
    torch.manual_seed(12)
    transformed_pil_img = f(pil_img)
    if test_exact_match:
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img, **match_kwargs)
    else:
        _assert_approx_equal_tensor_to_pil(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
79

80
81
82
83
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
    assert_equal(transformed_tensor, transformed_tensor_script)

84
    batch_tensors = _create_data_batch(height=23, width=34, channels=channels, num_samples=4, device=device)
85
86
87
    _test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

    with get_tmp_dir() as tmp_dir:
vfdev's avatar
vfdev committed
88
        scripted_fn.save(os.path.join(tmp_dir, f"t_{transform_cls.__name__}.pt"))
89

90

91
92
93
def _test_op(func, method, device, channels=3, fn_kwargs=None, meth_kwargs=None, test_exact_match=True, **match_kwargs):
    _test_functional_op(func, device, channels, fn_kwargs, test_exact_match=test_exact_match, **match_kwargs)
    _test_class_op(method, device, channels, meth_kwargs, test_exact_match=test_exact_match, **match_kwargs)
94
95


96
97
98
99
100
101
102
def _test_fn_save_load(fn, tmpdir):
    scripted_fn = torch.jit.script(fn)
    p = os.path.join(tmpdir, f"t_op_list_{fn.__name__ if hasattr(fn, '__name__') else fn.__class__.__name__}.pt")
    scripted_fn.save(p)
    _ = torch.jit.load(p)


103
@pytest.mark.parametrize("device", cpu_and_gpu())
104
@pytest.mark.parametrize(
105
106
    "func,method,fn_kwargs,match_kwargs",
    [
107
108
109
110
111
112
        (F.hflip, T.RandomHorizontalFlip, None, {}),
        (F.vflip, T.RandomVerticalFlip, None, {}),
        (F.invert, T.RandomInvert, None, {}),
        (F.posterize, T.RandomPosterize, {"bits": 4}, {}),
        (F.solarize, T.RandomSolarize, {"threshold": 192.0}, {}),
        (F.adjust_sharpness, T.RandomAdjustSharpness, {"sharpness_factor": 2.0}, {}),
113
114
115
116
117
118
119
120
        (
            F.autocontrast,
            T.RandomAutocontrast,
            None,
            {"test_exact_match": False, "agg_method": "max", "tol": (1 + 1e-5), "allowed_percentage_diff": 0.05},
        ),
        (F.equalize, T.RandomEqualize, None, {}),
    ],
121
)
122
@pytest.mark.parametrize("channels", [1, 3])
123
124
def test_random(func, method, device, channels, fn_kwargs, match_kwargs):
    _test_op(func, method, device, channels, fn_kwargs, fn_kwargs, **match_kwargs)
125

126

127
@pytest.mark.parametrize("seed", range(10))
128
129
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("channels", [1, 3])
130
class TestColorJitter:
131
132
133
134
    @pytest.fixture(autouse=True)
    def set_random_seed(self, seed):
        torch.random.manual_seed(seed)

135
    @pytest.mark.parametrize("brightness", [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]])
136
    def test_color_jitter_brightness(self, brightness, device, channels):
137
138
139
        tol = 1.0 + 1e-10
        meth_kwargs = {"brightness": brightness}
        _test_class_op(
140
141
142
143
144
145
146
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
147
148
        )

149
    @pytest.mark.parametrize("contrast", [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]])
150
    def test_color_jitter_contrast(self, contrast, device, channels):
151
152
153
        tol = 1.0 + 1e-10
        meth_kwargs = {"contrast": contrast}
        _test_class_op(
154
155
156
157
158
159
160
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
161
162
        )

163
    @pytest.mark.parametrize("saturation", [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]])
164
    def test_color_jitter_saturation(self, saturation, device, channels):
165
166
167
        tol = 1.0 + 1e-10
        meth_kwargs = {"saturation": saturation}
        _test_class_op(
168
169
170
171
172
173
174
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=tol,
            agg_method="max",
            channels=channels,
175
176
        )

177
    @pytest.mark.parametrize("hue", [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]])
178
    def test_color_jitter_hue(self, hue, device, channels):
179
180
        meth_kwargs = {"hue": hue}
        _test_class_op(
181
182
183
184
185
186
187
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=16.1,
            agg_method="max",
            channels=channels,
188
189
        )

190
    def test_color_jitter_all(self, device, channels):
191
192
193
        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        _test_class_op(
194
195
196
197
198
199
200
            T.ColorJitter,
            meth_kwargs=meth_kwargs,
            test_exact_match=False,
            device=device,
            tol=12.1,
            agg_method="max",
            channels=channels,
201
202
203
        )


204
205
206
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("m", ["constant", "edge", "reflect", "symmetric"])
@pytest.mark.parametrize("mul", [1, -1])
207
208
209
210
def test_pad(m, mul, device):
    fill = 127 if m == "constant" else 0

    # Test functional.pad (PIL and Tensor) with padding as single int
211
    _test_functional_op(F.pad, fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}, device=device)
212
    # Test functional.pad and transforms.Pad with padding as [int, ]
213
    fn_kwargs = meth_kwargs = {
214
        "padding": [mul * 2],
215
216
217
218
        "fill": fill,
        "padding_mode": m,
    }
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
219
220
    # Test functional.pad and transforms.Pad with padding as list
    fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
221
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
222
223
    # Test functional.pad and transforms.Pad with padding as tuple
    fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
224
    _test_op(F.pad, T.Pad, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
225
226


227
@pytest.mark.parametrize("device", cpu_and_gpu())
228
229
230
def test_crop(device):
    fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
    # Test transforms.RandomCrop with size and padding as tuple
231
232
233
234
235
236
    meth_kwargs = {
        "size": (4, 5),
        "padding": (4, 4),
        "pad_if_needed": True,
    }
    _test_op(F.crop, T.RandomCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

    # Test transforms.functional.crop including outside the image area
    fn_kwargs = {"top": -2, "left": 3, "height": 4, "width": 5}  # top
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 1, "left": -3, "height": 4, "width": 5}  # left
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 7, "left": 3, "height": 4, "width": 5}  # bottom
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": 3, "left": 8, "height": 4, "width": 5}  # right
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)

    fn_kwargs = {"top": -3, "left": -3, "height": 15, "width": 15}  # all
    _test_functional_op(F.crop, fn_kwargs=fn_kwargs, device=device)


255
256
257
258
259
260
261
262
263
264
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "padding_config",
    [
        {"padding_mode": "constant", "fill": 0},
        {"padding_mode": "constant", "fill": 10},
        {"padding_mode": "edge"},
        {"padding_mode": "reflect"},
    ],
)
265
266
267
268
@pytest.mark.parametrize("pad_if_needed", [True, False])
@pytest.mark.parametrize("padding", [[5], [5, 4], [1, 2, 3, 4]])
@pytest.mark.parametrize("size", [5, [5], [6, 6]])
def test_random_crop(size, padding, pad_if_needed, padding_config, device):
269
270
    config = dict(padding_config)
    config["size"] = size
271
272
    config["padding"] = padding
    config["pad_if_needed"] = pad_if_needed
273
    _test_class_op(T.RandomCrop, device, meth_kwargs=config)
274
275


276
277
278
279
280
def test_random_crop_save_load(tmpdir):
    fn = T.RandomCrop(32, [4], pad_if_needed=True)
    _test_fn_save_load(fn, tmpdir)


281
@pytest.mark.parametrize("device", cpu_and_gpu())
282
def test_center_crop(device, tmpdir):
283
    fn_kwargs = {"output_size": (4, 5)}
284
    meth_kwargs = {"size": (4, 5)}
285
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
286
    fn_kwargs = {"output_size": (5,)}
287
    meth_kwargs = {"size": (5,)}
288
    _test_op(F.center_crop, T.CenterCrop, device=device, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs)
289
290
291
292
293
294
295
    tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=device)
    # Test torchscript of transforms.CenterCrop with size as int
    f = T.CenterCrop(size=5)
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as [int, ]
296
    f = T.CenterCrop(size=[5])
297
298
299
300
301
302
303
304
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

    # Test torchscript of transforms.CenterCrop with size as tuple
    f = T.CenterCrop(size=(6, 6))
    scripted_fn = torch.jit.script(f)
    scripted_fn(tensor)

305
306
307
308

def test_center_crop_save_load(tmpdir):
    fn = T.CenterCrop(size=[5])
    _test_fn_save_load(fn, tmpdir)
309
310


311
312
313
314
315
316
317
318
319
320
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "fn, method, out_length",
    [
        # test_five_crop
        (F.five_crop, T.FiveCrop, 5),
        # test_ten_crop
        (F.ten_crop, T.TenCrop, 10),
    ],
)
321
@pytest.mark.parametrize("size", [(5,), [5], (4, 5), [4, 5]])
322
def test_x_crop(fn, method, out_length, size, device):
323
    meth_kwargs = fn_kwargs = {"size": size}
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
    scripted_fn = torch.jit.script(fn)

    tensor, pil_img = _create_data(height=20, width=20, device=device)
    transformed_t_list = fn(tensor, **fn_kwargs)
    transformed_p_list = fn(pil_img, **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_p_list)
    assert len(transformed_t_list) == out_length
    for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
        _assert_equal_tensor_to_pil(transformed_tensor, transformed_pil_img)

    transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
    assert len(transformed_t_list) == len(transformed_t_list_script)
    assert len(transformed_t_list_script) == out_length
    for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
        assert_equal(transformed_tensor, transformed_tensor_script)

    # test for class interface
    fn = method(**meth_kwargs)
    scripted_fn = torch.jit.script(fn)
    output = scripted_fn(tensor)
    assert len(output) == len(transformed_t_list_script)

    # test on batch of tensors
    batch_tensors = _create_data_batch(height=23, width=34, channels=3, num_samples=4, device=device)
    torch.manual_seed(12)
    transformed_batch_list = fn(batch_tensors)

    for i in range(len(batch_tensors)):
        img_tensor = batch_tensors[i, ...]
        torch.manual_seed(12)
        transformed_img_list = fn(img_tensor)
        for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
            assert_equal(transformed_img, transformed_batch[i, ...])


359
@pytest.mark.parametrize("method", ["FiveCrop", "TenCrop"])
360
361
362
def test_x_crop_save_load(method, tmpdir):
    fn = getattr(T, method)(size=[5])
    _test_fn_save_load(fn, tmpdir)
363
364
365


class TestResize:
366
    @pytest.mark.parametrize("size", [32, 34, 35, 36, 38])
367
368
369
370
371
372
373
374
375
376
377
    def test_resize_int(self, size):
        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=size)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        assert isinstance(y, torch.Tensor)
        assert y.shape[1] == size
        assert y.shape[2] == int(size * 46 / 32)

378
379
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dt", [None, torch.float32, torch.float64])
380
    @pytest.mark.parametrize("size", [[32], [32, 32], (32, 32), [34, 35]])
381
382
    @pytest.mark.parametrize("max_size", [None, 35, 1000])
    @pytest.mark.parametrize("interpolation", [BILINEAR, BICUBIC, NEAREST])
383
384
385
386
387
388
389
390
    def test_resize_scripted(self, dt, size, max_size, interpolation, device):
        tensor, _ = _create_data(height=34, width=36, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

        if dt is not None:
            # This is a trivial cast to float of uint8 data to test all cases
            tensor = tensor.to(dt)
        if max_size is not None and len(size) != 1:
391
            pytest.skip("Size should be an int or a sequence of length 1 if max_size is specified")
392
393
394
395
396
397

        transform = T.Resize(size=size, interpolation=interpolation, max_size=max_size)
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

398
399
400
    def test_resize_save_load(self, tmpdir):
        fn = T.Resize(size=[32])
        _test_fn_save_load(fn, tmpdir)
401

402
403
404
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
    @pytest.mark.parametrize("ratio", [(0.75, 1.333), [0.75, 1.333]])
405
    @pytest.mark.parametrize("size", [(32,), [44], [32], [32, 32], (32, 32), [44, 55]])
406
    @pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR, BICUBIC])
407
408
409
410
411
412
    @pytest.mark.parametrize("antialias", [None, True, False])
    def test_resized_crop(self, scale, ratio, size, interpolation, antialias, device):

        if antialias and interpolation == NEAREST:
            pytest.skip("Can not resize if interpolation mode is NEAREST and antialias=True")

413
414
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
415
416
417
        transform = T.RandomResizedCrop(
            size=size, scale=scale, ratio=ratio, interpolation=interpolation, antialias=antialias
        )
418
419
420
421
        s_transform = torch.jit.script(transform)
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

422
423
424
    def test_resized_crop_save_load(self, tmpdir):
        fn = T.RandomResizedCrop(size=[32])
        _test_fn_save_load(fn, tmpdir)
425
426


427
428
429
430
431
432
433
434
435
436
def _test_random_affine_helper(device, **kwargs):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)
    transform = T.RandomAffine(**kwargs)
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


437
438
439
def test_random_affine_save_load(tmpdir):
    fn = T.RandomAffine(degrees=45.0)
    _test_fn_save_load(fn, tmpdir)
440
441


442
443
444
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("shear", [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]])
445
446
447
448
def test_random_affine_shear(device, interpolation, shear):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, shear=shear)


449
450
451
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("scale", [(0.7, 1.2), [0.7, 1.2]])
452
453
454
455
def test_random_affine_scale(device, interpolation, scale):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, scale=scale)


456
457
458
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("translate", [(0.1, 0.2), [0.2, 0.1]])
459
460
461
462
def test_random_affine_translate(device, interpolation, translate):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, translate=translate)


463
464
465
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
466
467
468
469
def test_random_affine_degrees(device, interpolation, degrees):
    _test_random_affine_helper(device, degrees=degrees, interpolation=interpolation)


470
471
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
472
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
473
474
475
476
def test_random_affine_fill(device, interpolation, fill):
    _test_random_affine_helper(device, degrees=0.0, interpolation=interpolation, fill=fill)


477
478
479
480
481
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("center", [(0, 0), [10, 10], None, (56, 44)])
@pytest.mark.parametrize("expand", [True, False])
@pytest.mark.parametrize("degrees", [45, 35.0, (-45, 45), [-90.0, 90.0]])
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
482
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
483
484
485
486
def test_random_rotate(device, center, expand, degrees, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

487
    transform = T.RandomRotation(degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill)
488
489
490
491
492
493
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


494
495
496
def test_random_rotate_save_load(tmpdir):
    fn = T.RandomRotation(degrees=45.0)
    _test_fn_save_load(fn, tmpdir)
497
498


499
500
501
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("distortion_scale", np.linspace(0.1, 1.0, num=20))
@pytest.mark.parametrize("interpolation", [NEAREST, BILINEAR])
502
@pytest.mark.parametrize("fill", [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
503
504
505
506
def test_random_perspective(device, distortion_scale, interpolation, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

507
    transform = T.RandomPerspective(distortion_scale=distortion_scale, interpolation=interpolation, fill=fill)
508
509
510
511
512
513
    s_transform = torch.jit.script(transform)

    _test_transform_vs_scripted(transform, s_transform, tensor)
    _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


514
515
516
def test_random_perspective_save_load(tmpdir):
    fn = T.RandomPerspective()
    _test_fn_save_load(fn, tmpdir)
517
518


519
520
521
522
523
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "Klass, meth_kwargs",
    [(T.Grayscale, {"num_output_channels": 1}), (T.Grayscale, {"num_output_channels": 3}), (T.RandomGrayscale, {})],
)
524
525
def test_to_grayscale(device, Klass, meth_kwargs):
    tol = 1.0 + 1e-10
526
    _test_class_op(Klass, meth_kwargs=meth_kwargs, test_exact_match=False, device=device, tol=tol, agg_method="max")
527
528


529
530
531
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("in_dtype", int_dtypes() + float_dtypes())
@pytest.mark.parametrize("out_dtype", int_dtypes() + float_dtypes())
532
533
534
535
536
537
538
539
540
541
def test_convert_image_dtype(device, in_dtype, out_dtype):
    tensor, _ = _create_data(26, 34, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    in_tensor = tensor.to(in_dtype)
    in_batch_tensors = batch_tensors.to(in_dtype)

    fn = T.ConvertImageDtype(dtype=out_dtype)
    scripted_fn = torch.jit.script(fn)

542
543
544
    if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or (
        in_dtype == torch.float64 and out_dtype == torch.int64
    ):
545
546
547
548
549
550
551
552
553
554
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
        with pytest.raises(RuntimeError, match=r"cannot be performed safely"):
            _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
        return

    _test_transform_vs_scripted(fn, scripted_fn, in_tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)


555
def test_convert_image_dtype_save_load(tmpdir):
556
    fn = T.ConvertImageDtype(dtype=torch.uint8)
557
    _test_fn_save_load(fn, tmpdir)
558
559


560
561
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("policy", [policy for policy in T.AutoAugmentPolicy])
562
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
563
564
565
566
567
568
569
570
571
572
573
def test_autoaugment(device, policy, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.AutoAugment(policy=policy, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


574
575
576
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize("num_ops", [1, 2, 3])
@pytest.mark.parametrize("magnitude", [7, 9, 11])
577
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
578
579
580
581
582
583
584
585
586
587
588
def test_randaugment(device, num_ops, magnitude, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.RandAugment(num_ops=num_ops, magnitude=magnitude, fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


589
@pytest.mark.parametrize("device", cpu_and_gpu())
590
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
591
592
593
594
595
596
597
598
599
600
601
def test_trivialaugmentwide(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    transform = T.TrivialAugmentWide(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


602
@pytest.mark.parametrize("device", cpu_and_gpu())
603
@pytest.mark.parametrize("fill", [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1], 1])
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
def test_augmix(device, fill):
    tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=device)
    batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=device)

    class DeterministicAugMix(T.AugMix):
        def _sample_dirichlet(self, params: torch.Tensor) -> torch.Tensor:
            # patch the method to ensure that the order of rand calls doesn't affect the outcome
            return params.softmax(dim=-1)

    transform = DeterministicAugMix(fill=fill)
    s_transform = torch.jit.script(transform)
    for _ in range(25):
        _test_transform_vs_scripted(transform, s_transform, tensor)
        _test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)


@pytest.mark.parametrize("augmentation", [T.AutoAugment, T.RandAugment, T.TrivialAugmentWide, T.AugMix])
621
622
623
def test_autoaugment_save_load(augmentation, tmpdir):
    fn = augmentation()
    _test_fn_save_load(fn, tmpdir)
624
625


626
627
628
629
630
631
632
633
634
635
636
637
638
@pytest.mark.parametrize("interpolation", [F.InterpolationMode.NEAREST, F.InterpolationMode.BILINEAR])
@pytest.mark.parametrize("mode", ["X", "Y"])
def test_autoaugment__op_apply_shear(interpolation, mode):
    # We check that torchvision's implementation of shear is equivalent
    # to official CIFAR10 autoaugment implementation:
    # https://github.com/tensorflow/models/blob/885fda091c46c59d6c7bb5c7e760935eacc229da/research/autoaugment/augmentation_transforms.py#L273-L290
    image_size = 32

    def shear(pil_img, level, mode, resample):
        if mode == "X":
            matrix = (1, level, 0, 0, 1, 0)
        elif mode == "Y":
            matrix = (1, 0, 0, level, 1, 0)
639
        return pil_img.transform((image_size, image_size), _pil_constants.AFFINE, matrix, resample=resample)
640
641
642
643

    t_img, pil_img = _create_data(image_size, image_size)

    resample_pil = {
644
645
        F.InterpolationMode.NEAREST: _pil_constants.NEAREST,
        F.InterpolationMode.BILINEAR: _pil_constants.BILINEAR,
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
    }[interpolation]

    level = 0.3
    expected_out = shear(pil_img, level, mode=mode, resample=resample_pil)

    # Check pil output vs expected pil
    out = _apply_op(pil_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    assert out == expected_out

    if interpolation == F.InterpolationMode.BILINEAR:
        # We skip bilinear mode for tensors as
        # affine transformation results are not exactly the same
        # between tensors and pil images
        # MAE as around 1.40
        # Max Abs error can be 163 or 170
        return

    # Check tensor output vs expected pil
    out = _apply_op(t_img, op_name=f"Shear{mode}", magnitude=level, interpolation=interpolation, fill=0)
    _assert_approx_equal_tensor_to_pil(out, expected_out)


668
@pytest.mark.parametrize("device", cpu_and_gpu())
669
@pytest.mark.parametrize(
670
671
    "config",
    [{"value": 0.2}, {"value": "random"}, {"value": (0.2, 0.2, 0.2)}, {"value": "random", "ratio": (0.1, 0.2)}],
672
673
674
675
676
677
678
679
680
681
682
)
def test_random_erasing(device, config):
    tensor, _ = _create_data(24, 32, channels=3, device=device)
    batch_tensors = torch.rand(4, 3, 44, 56, device=device)

    fn = T.RandomErasing(**config)
    scripted_fn = torch.jit.script(fn)
    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)


683
def test_random_erasing_save_load(tmpdir):
684
    fn = T.RandomErasing(value=0.2)
685
    _test_fn_save_load(fn, tmpdir)
686
687
688
689
690
691
692
693
694
695


def test_random_erasing_with_invalid_data():
    img = torch.rand(3, 60, 60)
    # Test Set 0: invalid value
    random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
    with pytest.raises(ValueError, match="If value is a sequence, it should have either a single value or 3"):
        random_erasing(img)


696
@pytest.mark.parametrize("device", cpu_and_gpu())
697
def test_normalize(device, tmpdir):
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    tensor, _ = _create_data(26, 34, device=device)

    with pytest.raises(TypeError, match="Input tensor should be a float tensor"):
        fn(tensor)

    batch_tensors = torch.rand(4, 3, 44, 56, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
    # test for class interface
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)
    _test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

712
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
713
714


715
@pytest.mark.parametrize("device", cpu_and_gpu())
716
def test_linear_transformation(device, tmpdir):
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    c, h, w = 3, 24, 32

    tensor, _ = _create_data(h, w, channels=c, device=device)

    matrix = torch.rand(c * h * w, c * h * w, device=device)
    mean_vector = torch.rand(c * h * w, device=device)

    fn = T.LinearTransformation(matrix, mean_vector)
    scripted_fn = torch.jit.script(fn)

    _test_transform_vs_scripted(fn, scripted_fn, tensor)

    batch_tensors = torch.rand(4, c, h, w, device=device)
    # We skip some tests from _test_transform_vs_scripted_on_batch as
    # results for scripted and non-scripted transformations are not exactly the same
    torch.manual_seed(12)
    transformed_batch = fn(batch_tensors)
    torch.manual_seed(12)
    s_transformed_batch = scripted_fn(batch_tensors)
    assert_equal(transformed_batch, s_transformed_batch)

738
    scripted_fn.save(os.path.join(tmpdir, "t_norm.pt"))
739
740


741
@pytest.mark.parametrize("device", cpu_and_gpu())
742
743
744
def test_compose(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0
745
746
747
748
749
750
    transforms = T.Compose(
        [
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ]
    )
751
752
753
754
755
756
757
    s_transforms = torch.nn.Sequential(*transforms.transforms)

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
758
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
759

760
761
762
763
764
    t = T.Compose(
        [
            lambda x: x,
        ]
    )
765
    with pytest.raises(RuntimeError, match="cannot call a value of type 'Tensor'"):
766
767
768
        torch.jit.script(t)


769
@pytest.mark.parametrize("device", cpu_and_gpu())
770
771
772
773
def test_random_apply(device):
    tensor, _ = _create_data(26, 34, device=device)
    tensor = tensor.to(dtype=torch.float32) / 255.0

774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    transforms = T.RandomApply(
        [
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ],
        p=0.4,
    )
    s_transforms = T.RandomApply(
        torch.nn.ModuleList(
            [
                T.RandomHorizontalFlip(),
                T.ColorJitter(),
            ]
        ),
        p=0.4,
    )
790
791
792
793
794
795

    scripted_fn = torch.jit.script(s_transforms)
    torch.manual_seed(12)
    transformed_tensor = transforms(tensor)
    torch.manual_seed(12)
    transformed_tensor_script = scripted_fn(tensor)
796
    assert_equal(transformed_tensor, transformed_tensor_script, msg=f"{transforms}")
797
798
799
800

    if device == "cpu":
        # Can't check this twice, otherwise
        # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
801
802
803
804
805
806
        transforms = T.RandomApply(
            [
                T.ColorJitter(),
            ],
            p=0.3,
        )
807
808
809
810
        with pytest.raises(RuntimeError, match="Module 'RandomApply' has no attribute 'transforms'"):
            torch.jit.script(transforms)


811
812
813
814
815
816
817
818
819
820
821
822
823
@pytest.mark.parametrize("device", cpu_and_gpu())
@pytest.mark.parametrize(
    "meth_kwargs",
    [
        {"kernel_size": 3, "sigma": 0.75},
        {"kernel_size": 23, "sigma": [0.1, 2.0]},
        {"kernel_size": 23, "sigma": (0.1, 2.0)},
        {"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
        {"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
        {"kernel_size": [23], "sigma": 0.75},
    ],
)
@pytest.mark.parametrize("channels", [1, 3])
824
def test_gaussian_blur(device, channels, meth_kwargs):
825
826
827
828
829
830
831
832
833
834
835
    if all(
        [
            device == "cuda",
            channels == 1,
            meth_kwargs["kernel_size"] in [23, [23]],
            torch.version.cuda == "11.3",
            sys.platform in ("win32", "cygwin"),
        ]
    ):
        pytest.skip("Fails on Windows, see https://github.com/pytorch/vision/issues/5464")

836
    tol = 1.0 + 1e-10
837
    torch.manual_seed(12)
838
    _test_class_op(
839
840
841
842
843
844
845
        T.GaussianBlur,
        meth_kwargs=meth_kwargs,
        channels=channels,
        test_exact_match=False,
        device=device,
        agg_method="max",
        tol=tol,
846
    )