resnet.py 27.1 KB
Newer Older
1
from functools import partial
2
3
from typing import Type, Any, Callable, Union, List, Optional

4
import torch
5
import torch.nn as nn
6
7
from torch import Tensor

8
from ..transforms._presets import ImageClassification
9
from ..utils import _log_api_usage_once
10
11
12
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param
13
14


15
16
__all__ = [
    "ResNet",
17
18
19
20
21
22
23
24
25
    "ResNet18_Weights",
    "ResNet34_Weights",
    "ResNet50_Weights",
    "ResNet101_Weights",
    "ResNet152_Weights",
    "ResNeXt50_32X4D_Weights",
    "ResNeXt101_32X8D_Weights",
    "Wide_ResNet50_2_Weights",
    "Wide_ResNet101_2_Weights",
26
27
28
29
30
31
32
33
34
35
    "resnet18",
    "resnet34",
    "resnet50",
    "resnet101",
    "resnet152",
    "resnext50_32x4d",
    "resnext101_32x8d",
    "wide_resnet50_2",
    "wide_resnet101_2",
]
36
37


38
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
39
    """3x3 convolution with padding"""
40
41
42
43
44
45
46
47
48
49
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )
50
51


52
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
53
54
55
56
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
57
class BasicBlock(nn.Module):
58
59
60
61
62
63
64
65
66
67
68
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
69
        norm_layer: Optional[Callable[..., nn.Module]] = None,
70
    ) -> None:
71
        super().__init__()
72
73
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
74
        if groups != 1 or base_width != 64:
75
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
76
77
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
78
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
79
        self.conv1 = conv3x3(inplanes, planes, stride)
80
        self.bn1 = norm_layer(planes)
81
82
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
83
        self.bn2 = norm_layer(planes)
84
85
86
        self.downsample = downsample
        self.stride = stride

87
    def forward(self, x: Tensor) -> Tensor:
88
        identity = x
89
90
91
92
93
94
95
96
97

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
98
            identity = self.downsample(x)
99

100
        out += identity
101
102
103
104
105
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
106
class Bottleneck(nn.Module):
107
108
109
110
111
112
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

113
114
115
116
117
118
119
120
121
122
123
    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
124
        norm_layer: Optional[Callable[..., nn.Module]] = None,
125
    ) -> None:
126
        super().__init__()
127
128
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
129
        width = int(planes * (base_width / 64.0)) * groups
130
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
131
132
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
133
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
134
135
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
136
        self.bn3 = norm_layer(planes * self.expansion)
137
138
139
140
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

141
    def forward(self, x: Tensor) -> Tensor:
142
        identity = x
143
144
145
146
147
148
149
150
151
152
153
154
155

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
156
            identity = self.downsample(x)
157

158
        out += identity
159
160
161
162
163
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
164
class ResNet(nn.Module):
165
166
167
168
169
170
171
172
173
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
174
        norm_layer: Optional[Callable[..., nn.Module]] = None,
175
    ) -> None:
176
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
177
        _log_api_usage_once(self)
178
179
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
180
        self._norm_layer = norm_layer
181
182

        self.inplanes = 64
183
184
185
186
187
188
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
189
190
            raise ValueError(
                "replace_stride_with_dilation should be None "
191
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
192
            )
193
194
        self.groups = groups
        self.base_width = width_per_group
195
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
196
        self.bn1 = norm_layer(self.inplanes)
197
198
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
199
        self.layer1 = self._make_layer(block, 64, layers[0])
200
201
202
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
203
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
204
        self.fc = nn.Linear(512 * block.expansion, num_classes)
205
206
207

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
208
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
209
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
210
211
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
212

213
214
215
216
217
218
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
219
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
220
                elif isinstance(m, BasicBlock):
221
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]
222

223
224
225
226
227
228
229
230
    def _make_layer(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
231
        norm_layer = self._norm_layer
232
        downsample = None
233
234
235
236
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
237
238
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
239
                conv1x1(self.inplanes, planes * block.expansion, stride),
240
                norm_layer(planes * block.expansion),
241
242
243
            )

        layers = []
244
245
246
247
248
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
249
        self.inplanes = planes * block.expansion
250
        for _ in range(1, blocks):
251
252
253
254
255
256
257
258
259
260
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )
261
262
263

        return nn.Sequential(*layers)

264
    def _forward_impl(self, x: Tensor) -> Tensor:
265
        # See note [TorchScript super()]
266
267
268
269
270
271
272
273
274
275
276
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
277
        x = torch.flatten(x, 1)
278
279
280
281
        x = self.fc(x)

        return x

282
    def forward(self, x: Tensor) -> Tensor:
283
        return self._forward_impl(x)
284

285

286
287
288
def _resnet(
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
289
    weights: Optional[WeightsEnum],
290
    progress: bool,
291
    **kwargs: Any,
292
) -> ResNet:
293
294
295
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

296
    model = ResNet(block, layers, **kwargs)
297
298
299
300

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

301
302
303
    return model


304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
_COMMON_META = {
    "task": "image_classification",
    "size": (224, 224),
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
}


class ResNet18_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "architecture": "ResNet",
            "num_params": 11689512,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "acc@1": 69.758,
            "acc@5": 89.078,
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet34_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet34-b627a593.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "architecture": "ResNet",
            "num_params": 21797672,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "acc@1": 73.314,
            "acc@5": 91.420,
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet50_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "architecture": "ResNet",
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "acc@1": 76.130,
            "acc@5": 92.862,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "architecture": "ResNet",
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
            "acc@1": 80.858,
            "acc@5": 95.434,
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet101_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "architecture": "ResNet",
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "acc@1": 77.374,
            "acc@5": 93.546,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet101-cd907fc2.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "architecture": "ResNet",
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 81.886,
            "acc@5": 95.780,
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet152_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "architecture": "ResNet",
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
            "acc@1": 78.312,
            "acc@5": 94.046,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet152-f82ba261.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "architecture": "ResNet",
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 82.284,
            "acc@5": 96.002,
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt50_32X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "architecture": "ResNeXt",
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
            "acc@1": 77.618,
            "acc@5": 93.698,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "architecture": "ResNeXt",
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 81.198,
            "acc@5": 95.340,
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt101_32X8D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "architecture": "ResNeXt",
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
            "acc@1": 79.312,
            "acc@5": 94.526,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "architecture": "ResNeXt",
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "acc@1": 82.834,
            "acc@5": 96.228,
        },
    )
    DEFAULT = IMAGENET1K_V2


class Wide_ResNet50_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "architecture": "WideResNet",
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
            "acc@1": 78.468,
            "acc@5": 94.086,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "architecture": "WideResNet",
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
            "acc@1": 81.602,
            "acc@5": 95.758,
        },
    )
    DEFAULT = IMAGENET1K_V2


class Wide_ResNet101_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "architecture": "WideResNet",
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
            "acc@1": 78.848,
            "acc@5": 94.284,
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "architecture": "WideResNet",
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
            "acc@1": 82.510,
            "acc@5": 96.020,
        },
    )
    DEFAULT = IMAGENET1K_V2


@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
542
    """ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
543
544

    Args:
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet18_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet18_Weights
        :members:
559
    """
560
561
562
    weights = ResNet18_Weights.verify(weights)

    return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)
563
564


565
566
@handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1))
def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
567
    """ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
568
569

    Args:
570
571
572
573
574
575
576
577
578
579
580
581
582
583
        weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet34_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet34_Weights
        :members:
584
    """
585
    weights = ResNet34_Weights.verify(weights)
586

587
    return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs)
588

589
590
591

@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1))
def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
592
    """ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
593
594

    Args:
595
596
597
598
599
600
601
602
603
604
605
606
607
608
        weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet50_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet50_Weights
        :members:
609
    """
610
611
612
    weights = ResNet50_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
613
614


615
616
@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1))
def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
617
    """ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
618
619

    Args:
620
621
622
623
624
625
626
627
628
629
630
631
632
633
        weights (:class:`~torchvision.models.ResNet101_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet101_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet101_Weights
        :members:
634
    """
635
    weights = ResNet101_Weights.verify(weights)
636

637
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
638

639
640
641

@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1))
def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
642
    """ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
643
644

    Args:
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        weights (:class:`~torchvision.models.ResNet152_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet152_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet152_Weights
        :members:
659
    """
660
661
662
    weights = ResNet152_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs)
663
664


665
666
667
668
@handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1))
def resnext50_32x4d(
    *, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
669
    r"""ResNeXt-50 32x4d model from
670
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
671
672

    Args:
673
        weights (ResNeXt50_32X4D_Weights, optional): The pretrained weights for the model
674
675
        progress (bool): If True, displays a progress bar of the download to stderr
    """
676
    weights = ResNeXt50_32X4D_Weights.verify(weights)
677

678
679
680
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
681

682
683
684
685
686

@handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1))
def resnext101_32x8d(
    *, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
687
    r"""ResNeXt-101 32x8d model from
688
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_.
689
690

    Args:
691
        weights (ResNeXt101_32X8D_Weights, optional): The pretrained weights for the model
692
693
        progress (bool): If True, displays a progress bar of the download to stderr
    """
694
    weights = ResNeXt101_32X8D_Weights.verify(weights)
695

696
697
698
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 8)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
699

700
701
702
703
704

@handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1))
def wide_resnet50_2(
    *, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
705
    r"""Wide ResNet-50-2 model from
706
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
707
708
709
710
711
712
713

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
714
        weights (Wide_ResNet50_2_Weights, optional): The pretrained weights for the model
715
716
        progress (bool): If True, displays a progress bar of the download to stderr
    """
717
718
719
720
    weights = Wide_ResNet50_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
721
722


723
724
725
726
@handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1))
def wide_resnet101_2(
    *, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
727
    r"""Wide ResNet-101-2 model from
728
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_.
729
730
731
732
733
734
735

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
736
        weights (Wide_ResNet101_2_Weights, optional): The pretrained weights for the model
737
738
        progress (bool): If True, displays a progress bar of the download to stderr
    """
739
740
741
742
    weights = Wide_ResNet101_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)