test_functional_tensor.py 32.8 KB
Newer Older
1
import unittest
2
import colorsys
3
import math
4

vfdev's avatar
vfdev committed
5
import numpy as np
6
from PIL.Image import NEAREST, BILINEAR, BICUBIC
vfdev's avatar
vfdev committed
7
8
9
10
11

import torch
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
12

13
from common_utils import TransformsTester
14

15

16
class Tester(TransformsTester):
vfdev's avatar
vfdev committed
17

18
19
20
    def setUp(self):
        self.device = "cpu"

21
22
23
24
25
26
27
28
29
30
31
32
    def _test_fn_on_batch(self, batch_tensors, fn, **fn_kwargs):
        transformed_batch = fn(batch_tensors, **fn_kwargs)
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            transformed_img = fn(img_tensor, **fn_kwargs)
            self.assertTrue(transformed_img.equal(transformed_batch[i, ...]))

        scripted_fn = torch.jit.script(fn)
        # scriptable function test
        s_transformed_batch = scripted_fn(batch_tensors, **fn_kwargs)
        self.assertTrue(transformed_batch.allclose(s_transformed_batch))

33
    def test_vflip(self):
34
35
36
37
38
39
40
        script_vflip = torch.jit.script(F.vflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        vflipped_img = F.vflip(img_tensor)
        vflipped_pil_img = F.vflip(pil_img)
        self.compareTensorToPIL(vflipped_img, vflipped_pil_img)

41
42
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
43
44
45
46
        self.assertTrue(vflipped_img.equal(vflipped_img_script))

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.vflip)
47

48
    def test_hflip(self):
49
50
51
52
53
54
55
        script_hflip = torch.jit.script(F.hflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        hflipped_img = F.hflip(img_tensor)
        hflipped_pil_img = F.hflip(pil_img)
        self.compareTensorToPIL(hflipped_img, hflipped_pil_img)

56
57
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
58
59
60
61
        self.assertTrue(hflipped_img.equal(hflipped_img_script))

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.hflip)
62

63
    def test_crop(self):
64
        script_crop = torch.jit.script(F.crop)
65

66
        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

        test_configs = [
            (1, 2, 4, 5),   # crop inside top-left corner
            (2, 12, 3, 4),  # crop inside top-right corner
            (8, 3, 5, 6),   # crop inside bottom-left corner
            (8, 11, 4, 3),  # crop inside bottom-right corner
        ]

        for top, left, height, width in test_configs:
            pil_img_cropped = F.crop(pil_img, top, left, height, width)

            img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)

            img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)
ekka's avatar
ekka committed
83

84
85
86
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)

87
    def test_hsv2rgb(self):
88
        scripted_fn = torch.jit.script(F_t._hsv2rgb)
89
        shape = (3, 100, 150)
90
91
92
93
        for _ in range(10):
            hsv_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            rgb_img = F_t._hsv2rgb(hsv_img)
            ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
94

95
96
97
98
            h, s, v, = hsv_img.unbind(0)
            h = h.flatten().cpu().numpy()
            s = s.flatten().cpu().numpy()
            v = v.flatten().cpu().numpy()
99
100
101
102

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
103
            colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=self.device)
104
105
106
            max_diff = (ft_img - colorsys_img).abs().max()
            self.assertLess(max_diff, 1e-5)

107
108
109
            s_rgb_img = scripted_fn(hsv_img)
            self.assertTrue(rgb_img.allclose(s_rgb_img))

110
111
112
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._hsv2rgb)

113
    def test_rgb2hsv(self):
114
        scripted_fn = torch.jit.script(F_t._rgb2hsv)
115
        shape = (3, 150, 100)
116
117
118
119
        for _ in range(10):
            rgb_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            hsv_img = F_t._rgb2hsv(rgb_img)
            ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
120

121
            r, g, b, = rgb_img.unbind(dim=-3)
122
123
124
            r = r.flatten().cpu().numpy()
            g = g.flatten().cpu().numpy()
            b = b.flatten().cpu().numpy()
125
126
127
128
129

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

130
            colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=self.device)
131

132
133
134
135
136
137
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)
138
139
            self.assertLess(max_diff, 1e-5)

140
141
142
            s_hsv_img = scripted_fn(rgb_img)
            self.assertTrue(hsv_img.allclose(s_hsv_img))

143
144
145
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._rgb2hsv)

146
    def test_rgb_to_grayscale(self):
147
148
        script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

149
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
150
151
152
153
154
155
156
157
158
159

        for num_output_channels in (3, 1):
            gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
            gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

            self.approxEqualTensorToPIL(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

            s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
            self.assertTrue(s_gray_tensor.equal(gray_tensor))

160
161
162
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)

163
    def test_center_crop(self):
164
165
        script_center_crop = torch.jit.script(F.center_crop)

166
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
167
168
169
170
171
172
173
174

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)
175

176
177
178
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])

179
    def test_five_crop(self):
180
181
        script_five_crop = torch.jit.script(F.five_crop)

182
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
183
184
185
186
187
188
189
190
191
192

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
193

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
                self.assertTrue(true_transformed_img.equal(transformed_img))

        # scriptable function test
        s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
            self.assertTrue(transformed_batch.equal(s_transformed_batch))

211
    def test_ten_crop(self):
212
213
        script_ten_crop = torch.jit.script(F.ten_crop)

214
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
215
216
217
218
219
220
221
222
223
224

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
225

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
                self.assertTrue(true_transformed_img.equal(transformed_img))

        # scriptable function test
        s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
            self.assertTrue(transformed_batch.equal(s_transformed_batch))

243
    def test_pad(self):
244
        script_fn = torch.jit.script(F.pad)
245
        tensor, pil_img = self._create_data(7, 8, device=self.device)
246
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
247

248
249
250
251
252
253
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

254
255
256
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
257
258
                batch_tensors = batch_tensors.to(dt)

259
260
261
262
263
264
265
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
266
                    {"padding_mode": "symmetric"},
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

                    self.compareTensorToPIL(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
                    self.assertTrue(pad_tensor.equal(pad_tensor_script), msg="{}, {}".format(pad, kwargs))
285

286
287
                    self._test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **kwargs)

288
    def _test_adjust_fn(self, fn, fn_pil, fn_t, configs, tol=2.0 + 1e-10, agg_method="max"):
vfdev's avatar
vfdev committed
289
290
291
        script_fn = torch.jit.script(fn)
        torch.manual_seed(15)
        tensor, pil_img = self._create_data(26, 34, device=self.device)
292
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
vfdev's avatar
vfdev committed
293
294

        for dt in [None, torch.float32, torch.float64]:
295
296
297

            if dt is not None:
                tensor = F.convert_image_dtype(tensor, dt)
298
                batch_tensors = F.convert_image_dtype(batch_tensors, dt)
299

vfdev's avatar
vfdev committed
300
301
302
303
304
305
306
            for config in configs:
                adjusted_tensor = fn_t(tensor, **config)
                adjusted_pil = fn_pil(pil_img, **config)
                scripted_result = script_fn(tensor, **config)
                msg = "{}, {}".format(dt, config)
                self.assertEqual(adjusted_tensor.dtype, scripted_result.dtype, msg=msg)
                self.assertEqual(adjusted_tensor.size()[1:], adjusted_pil.size[::-1], msg=msg)
307
308

                rbg_tensor = adjusted_tensor
vfdev's avatar
vfdev committed
309

310
311
312
                if adjusted_tensor.dtype != torch.uint8:
                    rbg_tensor = F.convert_image_dtype(adjusted_tensor, torch.uint8)

vfdev's avatar
vfdev committed
313
314
                # Check that max difference does not exceed 2 in [0, 255] range
                # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
315
316
317
318
319
320
                self.approxEqualTensorToPIL(rbg_tensor.float(), adjusted_pil, tol=tol, msg=msg, agg_method=agg_method)

                atol = 1e-6
                if adjusted_tensor.dtype == torch.uint8 and "cuda" in torch.device(self.device).type:
                    atol = 1.0
                self.assertTrue(adjusted_tensor.allclose(scripted_result, atol=atol), msg=msg)
vfdev's avatar
vfdev committed
321

322
323
                self._test_fn_on_batch(batch_tensors, fn, **config)

vfdev's avatar
vfdev committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    def test_adjust_brightness(self):
        self._test_adjust_fn(
            F.adjust_brightness,
            F_pil.adjust_brightness,
            F_t.adjust_brightness,
            [{"brightness_factor": f} for f in [0.1, 0.5, 1.0, 1.34, 2.5]]
        )

    def test_adjust_contrast(self):
        self._test_adjust_fn(
            F.adjust_contrast,
            F_pil.adjust_contrast,
            F_t.adjust_contrast,
            [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]]
        )

    def test_adjust_saturation(self):
        self._test_adjust_fn(
            F.adjust_saturation,
            F_pil.adjust_saturation,
            F_t.adjust_saturation,
            [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]]
        )
347

348
349
350
351
352
353
354
355
356
357
    def test_adjust_hue(self):
        self._test_adjust_fn(
            F.adjust_hue,
            F_pil.adjust_hue,
            F_t.adjust_hue,
            [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]],
            tol=0.1,
            agg_method="mean"
        )

vfdev's avatar
vfdev committed
358
359
360
361
362
363
364
    def test_adjust_gamma(self):
        self._test_adjust_fn(
            F.adjust_gamma,
            F_pil.adjust_gamma,
            F_t.adjust_gamma,
            [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])]
        )
365

366
    def test_resize(self):
vfdev's avatar
vfdev committed
367
        script_fn = torch.jit.script(F_t.resize)
368
        tensor, pil_img = self._create_data(26, 36, device=self.device)
369
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
vfdev's avatar
vfdev committed
370

371
372
373
374
375
376
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

vfdev's avatar
vfdev committed
377
378
379
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
380
381
                batch_tensors = batch_tensors.to(dt)

382
            for size in [32, 26, [32, ], [32, 32], (32, 32), [26, 35]]:
vfdev's avatar
vfdev committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:
                    resized_tensor = F_t.resize(tensor, size=size, interpolation=interpolation)
                    resized_pil_img = F_pil.resize(pil_img, size=size, interpolation=interpolation)

                    self.assertEqual(
                        resized_tensor.size()[1:], resized_pil_img.size[::-1], msg="{}, {}".format(size, interpolation)
                    )

                    if interpolation != NEAREST:
                        # We can not check values if mode = NEAREST, as results are different
                        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
                        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
                        resized_tensor_f = resized_tensor
                        # we need to cast to uint8 to compare with PIL image
                        if resized_tensor_f.dtype == torch.uint8:
                            resized_tensor_f = resized_tensor_f.to(torch.float)

                        # Pay attention to high tolerance for MAE
                        self.approxEqualTensorToPIL(
                            resized_tensor_f, resized_pil_img, tol=8.0, msg="{}, {}".format(size, interpolation)
                        )

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size
409
410
                    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(resized_tensor.equal(resize_result), msg="{}, {}".format(size, interpolation))
vfdev's avatar
vfdev committed
411

412
413
414
415
                    self._test_fn_on_batch(
                        batch_tensors, F.resize, size=script_size, interpolation=interpolation
                    )

416
    def test_resized_crop(self):
417
418
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
419
        tensor, _ = self._create_data(26, 36, device=self.device)
420
421
422
423
424
        for i in [0, 2, 3]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=i)
            self.assertTrue(tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

        # 2) resize by half and crop a TL corner
425
        tensor, _ = self._create_data(26, 36, device=self.device)
426
427
428
429
430
431
432
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=0)
        expected_out_tensor = tensor[:, :20:2, :30:2]
        self.assertTrue(
            expected_out_tensor.equal(out_tensor),
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10])
        )

433
434
435
436
437
        batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
        self._test_fn_on_batch(
            batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=0
        )

438
439
440
    def _test_affine_identity_map(self, tensor, scripted_affine):
        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
vfdev's avatar
vfdev committed
441

442
443
444
445
446
447
448
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
        out_tensor = scripted_affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
    def _test_affine_square_rotations(self, tensor, pil_img, scripted_affine):
        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            out_pil_img = F.affine(
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
464
            )
465
466
467
468
469
470
471
472
473
474
475
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(self.device)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                )
                if true_tensor is not None:
                    self.assertTrue(
                        true_tensor.equal(out_tensor),
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5])
                    )
476

477
478
479
480
481
482
483
484
485
486
487
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
488
                    )
489
                )
490

491
492
493
494
495
    def _test_affine_rect_rotations(self, tensor, pil_img, scripted_affine):
        test_configs = [
            90, 45, 15, -30, -60, -120
        ]
        for a in test_configs:
496

497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
            out_pil_img = F.affine(
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
            )
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                ).cpu()

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 3% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.03,
                    msg="{}: {}\n{} vs \n{}".format(
                        a, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
518
                    )
519
                )
520

521
522
523
524
525
526
    def _test_affine_translations(self, tensor, pil_img, scripted_affine):
        # 3) Test translation
        test_configs = [
            [10, 12], (-12, -13)
        ]
        for t in test_configs:
527

528
            out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
529

530
531
            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
532

533
534
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)
535

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
                self.compareTensorToPIL(out_tensor, out_pil_img)

    def _test_affine_all_ops(self, tensor, pil_img, scripted_affine):
        # 4) Test rotation + translation + scale + share
        test_configs = [
            (45, [5, 6], 1.0, [0.0, 0.0]),
            (33, (5, -4), 1.0, [0.0, 0.0]),
            (45, [-5, 4], 1.2, [0.0, 0.0]),
            (33, (-4, -8), 2.0, [0.0, 0.0]),
            (85, (10, -10), 0.7, [0.0, 0.0]),
            (0, [0, 0], 1.0, [35.0, ]),
            (-25, [0, 0], 1.2, [0.0, 15.0]),
            (-45, [-10, 0], 0.7, [2.0, 5.0]),
            (-45, [-10, -10], 1.2, [4.0, 5.0]),
            (-90, [0, 0], 1.0, [0.0, 0.0]),
        ]
        for r in [0, ]:
            for a, t, s, sh in test_configs:
                out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, resample=r)
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.affine, scripted_affine]:
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, resample=r).cpu()

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                    tol = 0.06 if self.device == "cuda" else 0.05
                    self.assertLess(
                        ratio_diff_pixels,
                        tol,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, a, t, s, sh), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
vfdev's avatar
vfdev committed
572
                        )
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
                    )

    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_affine_identity_map(tensor, scripted_affine)
                if pil_img.size[0] == pil_img.size[1]:
                    self._test_affine_square_rotations(tensor, pil_img, scripted_affine)
                else:
                    self._test_affine_rect_rotations(tensor, pil_img, scripted_affine)
                self._test_affine_translations(tensor, pil_img, scripted_affine)
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
                self._test_affine_all_ops(tensor, pil_img, scripted_affine)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                self._test_fn_on_batch(
                    batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
                )

    def _test_rotate_all_options(self, tensor, pil_img, scripted_rotate, centers):
        img_size = pil_img.size
        dt = tensor.dtype
        for r in [0, ]:
            for a in range(-180, 180, 17):
                for e in [True, False]:
                    for c in centers:

                        out_pil_img = F.rotate(pil_img, angle=a, resample=r, expand=e, center=c)
                        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
                        for fn in [F.rotate, scripted_rotate]:
                            out_tensor = fn(tensor, angle=a, resample=r, expand=e, center=c).cpu()

                            if out_tensor.dtype != torch.uint8:
                                out_tensor = out_tensor.to(torch.uint8)

                            self.assertEqual(
                                out_tensor.shape,
                                out_pil_tensor.shape,
                                msg="{}: {} vs {}".format(
                                    (img_size, r, dt, a, e, c), out_tensor.shape, out_pil_tensor.shape
                                )
                            )
                            num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                            ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                            # Tolerance : less than 3% of different pixels
                            self.assertLess(
                                ratio_diff_pixels,
                                0.03,
                                msg="{}: {}\n{} vs \n{}".format(
                                    (img_size, r, dt, a, e, c),
                                    ratio_diff_pixels,
                                    out_tensor[0, :7, :7],
                                    out_pil_tensor[0, :7, :7]
                                )
                            )
vfdev's avatar
vfdev committed
643

644
    def test_rotate(self):
vfdev's avatar
vfdev committed
645
646
647
        # Tests on square image
        scripted_rotate = torch.jit.script(F.rotate)

648
649
        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:
650
651
652
653
654
655
656
657

            img_size = pil_img.size
            centers = [
                None,
                (int(img_size[0] * 0.3), int(img_size[0] * 0.4)),
                [int(img_size[0] * 0.5), int(img_size[0] * 0.6)]
            ]

658
659
660
661
662
663
664
665
666
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
                self._test_rotate_all_options(tensor, pil_img, scripted_rotate, centers)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                center = (20, 22)
                self._test_fn_on_batch(
                    batch_tensors, F.rotate, angle=32, resample=0, expand=True, center=center
                )

    def _test_perspective(self, tensor, pil_img, scripted_tranform, test_configs):
        dt = tensor.dtype
        for r in [0, ]:
            for spoints, epoints in test_configs:
                out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=r)
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.perspective, scripted_tranform]:
                    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=r).cpu()

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% of different pixels
                    self.assertLess(
                        ratio_diff_pixels,
                        0.05,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, dt, spoints, epoints),
                            ratio_diff_pixels,
                            out_tensor[0, :7, :7],
                            out_pil_tensor[0, :7, :7]
                        )
                    )
vfdev's avatar
vfdev committed
704

705
    def test_perspective(self):
706
707
708

        from torchvision.transforms import RandomPerspective

709
        data = [self._create_data(26, 34, device=self.device), self._create_data(26, 26, device=self.device)]
710
        scripted_tranform = torch.jit.script(F.perspective)
711

712
        for tensor, pil_img in data:
713
714
715
716
717
718
719
720
721
722
723

            test_configs = [
                [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
            ]
            n = 10
            test_configs += [
                RandomPerspective.get_params(pil_img.size[0], pil_img.size[1], i / n) for i in range(n)
            ]

724
725
726
727
728
729
730
731
732
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

733
                self._test_perspective(tensor, pil_img, scripted_tranform, test_configs)
734

735
736
737
                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)
738

739
740
741
742
                for spoints, epoints in test_configs:
                    self._test_fn_on_batch(
                        batch_tensors, F.perspective, startpoints=spoints, endpoints=epoints, interpolation=0
                    )
743

744
745
746
747
    def test_convert_image_dtype(self):
        # TODO: add tests of CPU/CUDA on tensor and batch
        pass

748

749
750
751
752
753
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"
754

755
756
757

if __name__ == '__main__':
    unittest.main()