models.rst 16.7 KB
Newer Older
1
2
.. _models:

3
4
Models and pre-trained weights
##############################
5

6
The ``torchvision.models`` subpackage contains definitions of models for addressing
7
different tasks, including: image classification, pixelwise semantic
8
segmentation, object detection, instance segmentation, person
9
keypoint detection, video classification, and optical flow.
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
General information on pre-trained weights
==========================================

TorchVision offers pre-trained weights for every provided architecture, using
the PyTorch :mod:`torch.hub`. Instancing a pre-trained model will download its
weights to a cache directory. This directory can be set using the `TORCH_HOME`
environment variable. See :func:`torch.hub.load_state_dict_from_url` for details.

.. note::

    The pre-trained models provided in this library may have their own licenses or
    terms and conditions derived from the dataset used for training. It is your
    responsibility to determine whether you have permission to use the models for
    your use case.

26
.. note ::
27
28
29
30
31
32
33
    Backward compatibility is guaranteed for loading a serialized
    ``state_dict`` to the model created using old PyTorch version.
    On the contrary, loading entire saved models or serialized
    ``ScriptModules`` (serialized using older versions of PyTorch)
    may not preserve the historic behaviour. Refer to the following
    `documentation
    <https://pytorch.org/docs/stable/notes/serialization.html#id6>`_
34

35

36
37
Initializing pre-trained models
-------------------------------
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
38

39
40
41
As of v0.13, TorchVision offers a new `Multi-weight support API
<https://pytorch.org/blog/introducing-torchvision-new-multi-weight-support-api/>`_
for loading different weights to the existing model builder methods:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
42
43
44

.. code:: python

45
    from torchvision.models import resnet50, ResNet50_Weights
46

47
48
    # Old weights with accuracy 76.130%
    resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
49

50
51
    # New weights with accuracy 80.858%
    resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
52

53
54
55
    # Best available weights (currently alias for IMAGENET1K_V2)
    # Note that these weights may change across versions
    resnet50(weights=ResNet50_Weights.DEFAULT)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
56

57
58
    # Strings are also supported
    resnet50(weights="IMAGENET1K_V2")
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
59

60
61
    # No weights - random initialization
    resnet50(weights=None)
62

Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
63

64
Migrating to the new API is very straightforward. The following method calls between the 2 APIs are all equivalent:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
65

66
.. code:: python
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
67

68
    from torchvision.models import resnet50, ResNet50_Weights
69

70
71
72
73
74
    # Using pretrained weights:
    resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
    resnet50(weights="IMAGENET1K_V1")
    resnet50(pretrained=True)  # deprecated
    resnet50(True)  # deprecated
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
75

76
77
78
79
80
    # Using no weights:
    resnet50(weights=None)
    resnet50()
    resnet50(pretrained=False)  # deprecated
    resnet50(False)  # deprecated
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
81

82
Note that the ``pretrained`` parameter is now deprecated, using it will emit warnings and will be removed on v0.15.
83

84
85
Using the pre-trained models
----------------------------
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
86

87
88
89
90
91
92
Before using the pre-trained models, one must preprocess the image
(resize with right resolution/interpolation, apply inference transforms,
rescale the values etc). There is no standard way to do this as it depends on
how a given model was trained. It can vary across model families, variants or
even weight versions. Using the correct preprocessing method is critical and
failing to do so may lead to decreased accuracy or incorrect outputs.
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
93

94
95
96
97
All the necessary information for the inference transforms of each pre-trained
model is provided on its weights documentation. To simplify inference, TorchVision
bundles the necessary preprocessing transforms into each model weight. These are
accessible via the ``weight.transforms`` attribute:
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
98

99
.. code:: python
100

101
102
103
    # Initialize the Weight Transforms
    weights = ResNet50_Weights.DEFAULT
    preprocess = weights.transforms()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
104

105
106
    # Apply it to the input image
    img_transformed = preprocess(img)
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
107

108

109
110
111
112
Some models use modules which have different training and evaluation
behavior, such as batch normalization. To switch between these modes, use
``model.train()`` or ``model.eval()`` as appropriate. See
:meth:`~torch.nn.Module.train` or :meth:`~torch.nn.Module.eval` for details.
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
113

114
.. code:: python
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
115

116
117
118
    # Initialize model
    weights = ResNet50_Weights.DEFAULT
    model = resnet50(weights=weights)
119

120
121
    # Set model to eval mode
    model.eval()
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
Model Registration Mechanism
----------------------------

.. betastatus:: registration mechanism

As of v0.14, TorchVision offers a new model registration mechanism which allows retreaving models
and weights by their names. Here are a few examples on how to use them:

.. code:: python

    # List available models
    all_models = list_models()
    classification_models = list_models(module=torchvision.models)

    # Initialize models
    m1 = get_model("mobilenet_v3_large", weights=None)
    m2 = get_model("quantized_mobilenet_v3_large", weights="DEFAULT")

    # Fetch weights
    weights = get_weight("MobileNet_V3_Large_QuantizedWeights.DEFAULT")
    assert weights == MobileNet_V3_Large_QuantizedWeights.DEFAULT

    weights_enum = get_model_weights("quantized_mobilenet_v3_large")
    assert weights_enum == MobileNet_V3_Large_QuantizedWeights

    weights_enum2 = get_model_weights(torchvision.models.quantization.mobilenet_v3_large)
    assert weights_enum == weights_enum2

Here are the available public methods of the model registration mechanism:

.. currentmodule:: torchvision.models
.. autosummary::
    :toctree: generated/
    :template: function.rst

    get_model
    get_model_weights
    get_weight
    list_models

163
164
Using models from Hub
---------------------
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
165

166
Most pre-trained models can be accessed directly via PyTorch Hub without having TorchVision installed:
167

168
.. code:: python
Sasank Chilamkurthy's avatar
Sasank Chilamkurthy committed
169

170
    import torch
171

172
173
    # Option 1: passing weights param as string
    model = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")
174

175
176
177
    # Option 2: passing weights param as enum
    weights = torch.hub.load("pytorch/vision", "get_weight", weights="ResNet50_Weights.IMAGENET1K_V2")
    model = torch.hub.load("pytorch/vision", "resnet50", weights=weights)
178

179
180
181
The only exception to the above are the detection models included on
:mod:`torchvision.models.detection`. These models require TorchVision
to be installed because they depend on custom C++ operators.
Bar's avatar
Bar committed
182

183
184
Classification
==============
185

186
.. currentmodule:: torchvision.models
Bar's avatar
Bar committed
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
The following classification models are available, with or without pre-trained
weights:

.. toctree::
   :maxdepth: 1

   models/alexnet
   models/convnext
   models/densenet
   models/efficientnet
   models/efficientnetv2
   models/googlenet
   models/inception
   models/mnasnet
   models/mobilenetv2
   models/mobilenetv3
   models/regnet
   models/resnet
   models/resnext
   models/shufflenetv2
   models/squeezenet
   models/swin_transformer
   models/vgg
   models/vision_transformer
   models/wide_resnet

|

Here is an example of how to use the pre-trained image classification models:
217

218
.. code:: python
219

220
221
    from torchvision.io import read_image
    from torchvision.models import resnet50, ResNet50_Weights
222

223
    img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
224

225
226
227
228
    # Step 1: Initialize model with the best available weights
    weights = ResNet50_Weights.DEFAULT
    model = resnet50(weights=weights)
    model.eval()
229

230
231
    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()
232

233
234
    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(img).unsqueeze(0)
235

236
237
238
239
240
241
    # Step 4: Use the model and print the predicted category
    prediction = model(batch).squeeze(0).softmax(0)
    class_id = prediction.argmax().item()
    score = prediction[class_id].item()
    category_name = weights.meta["categories"][class_id]
    print(f"{category_name}: {100 * score:.1f}%")
242

243
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
244

245
246
Table of all available classification weights
---------------------------------------------
247

248
Accuracies are reported on ImageNet-1K using single crops:
249

250
.. include:: generated/classification_table.rst
251

252
253
Quantized models
----------------
254

255
.. currentmodule:: torchvision.models.quantization
256

257
258
The following architectures provide support for INT8 quantized models, with or without
pre-trained weights:
259

260
261
.. toctree::
   :maxdepth: 1
262

263
264
265
266
267
268
269
   models/googlenet_quant
   models/inception_quant
   models/mobilenetv2_quant
   models/mobilenetv3_quant
   models/resnet_quant
   models/resnext_quant
   models/shufflenetv2_quant
270

271
|
272

273
Here is an example of how to use the pre-trained quantized image classification models:
274
275
276

.. code:: python

277
278
279
280
281
282
283
284
    from torchvision.io import read_image
    from torchvision.models.quantization import resnet50, ResNet50_QuantizedWeights

    img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

    # Step 1: Initialize model with the best available weights
    weights = ResNet50_QuantizedWeights.DEFAULT
    model = resnet50(weights=weights, quantize=True)
285
286
    model.eval()

287
288
    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()
289

290
291
    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(img).unsqueeze(0)
292

293
294
295
296
297
298
    # Step 4: Use the model and print the predicted category
    prediction = model(batch).squeeze(0).softmax(0)
    class_id = prediction.argmax().item()
    score = prediction[class_id].item()
    category_name = weights.meta["categories"][class_id]
    print(f"{category_name}: {100 * score}%")
299

300
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
301

302

303
304
Table of all available quantized classification weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
305

306
Accuracies are reported on ImageNet-1K using single crops:
307

308
.. include:: generated/classification_quant_table.rst
309

310
311
Semantic Segmentation
=====================
312

313
.. currentmodule:: torchvision.models.segmentation
314

315
316
.. betastatus:: segmentation module

317
318
The following semantic segmentation models are available, with or without
pre-trained weights:
319

320
321
.. toctree::
   :maxdepth: 1
322

323
324
325
326
327
   models/deeplabv3
   models/fcn
   models/lraspp

|
328

329
Here is an example of how to use the pre-trained semantic segmentation models:
330

331
.. code:: python
332

333
334
335
    from torchvision.io.image import read_image
    from torchvision.models.segmentation import fcn_resnet50, FCN_ResNet50_Weights
    from torchvision.transforms.functional import to_pil_image
336

337
    img = read_image("gallery/assets/dog1.jpg")
338

339
340
341
342
    # Step 1: Initialize model with the best available weights
    weights = FCN_ResNet50_Weights.DEFAULT
    model = fcn_resnet50(weights=weights)
    model.eval()
343

344
345
    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()
346

347
348
    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(img).unsqueeze(0)
349

350
351
352
353
354
355
    # Step 4: Use the model and visualize the prediction
    prediction = model(batch)["out"]
    normalized_masks = prediction.softmax(dim=1)
    class_to_idx = {cls: idx for (idx, cls) in enumerate(weights.meta["categories"])}
    mask = normalized_masks[0, class_to_idx["dog"]]
    to_pil_image(mask).show()
356

357
358
359
360
361
362
363
364
365
366
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
The output format of the models is illustrated in :ref:`semantic_seg_output`.


Table of all available semantic segmentation weights
----------------------------------------------------

All models are evaluated a subset of COCO val2017, on the 20 categories that are present in the Pascal VOC dataset:

.. include:: generated/segmentation_table.rst
367

368

369
.. _object_det_inst_seg_pers_keypoint_det:
370
371
372
373
374
375

Object Detection, Instance Segmentation and Person Keypoint Detection
=====================================================================

The pre-trained models for detection, instance segmentation and
keypoint detection are initialized with the classification models
376
377
in torchvision. The models expect a list of ``Tensor[C, H, W]``.
Check the constructor of the models for more information.
378

379
380
.. betastatus:: detection module

381
382
Object Detection
----------------
383

384
.. currentmodule:: torchvision.models.detection
385

386
387
The following object detection models are available, with or without pre-trained
weights:
388

389
390
.. toctree::
   :maxdepth: 1
391

392
393
394
395
396
   models/faster_rcnn
   models/fcos
   models/retinanet
   models/ssd
   models/ssdlite
397

398
|
399

400
Here is an example of how to use the pre-trained object detection models:
401

402
.. code:: python
403

404

405
406
407
408
    from torchvision.io.image import read_image
    from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights
    from torchvision.utils import draw_bounding_boxes
    from torchvision.transforms.functional import to_pil_image
409

410
    img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")
Hu Ye's avatar
Hu Ye committed
411

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    # Step 1: Initialize model with the best available weights
    weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
    model = fasterrcnn_resnet50_fpn_v2(weights=weights, box_score_thresh=0.9)
    model.eval()

    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()

    # Step 3: Apply inference preprocessing transforms
    batch = [preprocess(img)]

    # Step 4: Use the model and visualize the prediction
    prediction = model(batch)[0]
    labels = [weights.meta["categories"][i] for i in prediction["labels"]]
    box = draw_bounding_boxes(img, boxes=prediction["boxes"],
                              labels=labels,
                              colors="red",
                              width=4, font_size=30)
    im = to_pil_image(box.detach())
    im.show()

The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
For details on how to plot the bounding boxes of the models, you may refer to :ref:`instance_seg_output`.

Table of all available Object detection weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Box MAPs are reported on COCO val2017:

.. include:: generated/detection_table.rst
Hu Ye's avatar
Hu Ye committed
442
443


444
445
Instance Segmentation
---------------------
446

447
.. currentmodule:: torchvision.models.detection
448

449
450
The following instance segmentation models are available, with or without pre-trained
weights:
451

452
453
.. toctree::
   :maxdepth: 1
454

455
   models/mask_rcnn
456

457
|
458

459

460
For details on how to plot the masks of the models, you may refer to :ref:`instance_seg_output`.
461

462
463
Table of all available Instance segmentation weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
464

465
Box and Mask MAPs are reported on COCO val2017:
466

467
.. include:: generated/instance_segmentation_table.rst
468

469
470
Keypoint Detection
------------------
471

472
.. currentmodule:: torchvision.models.detection
473

474
475
The following person keypoint detection models are available, with or without
pre-trained weights:
476

477
478
.. toctree::
   :maxdepth: 1
479

480
   models/keypoint_rcnn
481

482
|
483

484
485
The classes of the pre-trained model outputs can be found at ``weights.meta["keypoint_names"]``.
For details on how to plot the bounding boxes of the models, you may refer to :ref:`keypoint_output`.
486

487
488
Table of all available Keypoint detection weights
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
489

490
Box and Keypoint MAPs are reported on COCO val2017:
491

492
.. include:: generated/detection_keypoint_table.rst
493

494
495

Video Classification
496
497
====================

498
.. currentmodule:: torchvision.models.video
499

500
501
.. betastatus:: video module

502
503
The following video classification models are available, with or without
pre-trained weights:
504

505
506
.. toctree::
   :maxdepth: 1
507

508
   models/video_mvit
509
   models/video_resnet
510

511
512
513
514
515
|

Here is an example of how to use the pre-trained video classification models:

.. code:: python
516
517


518
519
    from torchvision.io.video import read_video
    from torchvision.models.video import r3d_18, R3D_18_Weights
520

521
    vid, _, _ = read_video("test/assets/videos/v_SoccerJuggling_g23_c01.avi", output_format="TCHW")
522
    vid = vid[:32]  # optionally shorten duration
523

524
525
526
527
    # Step 1: Initialize model with the best available weights
    weights = R3D_18_Weights.DEFAULT
    model = r3d_18(weights=weights)
    model.eval()
528

529
530
    # Step 2: Initialize the inference transforms
    preprocess = weights.transforms()
531

532
533
    # Step 3: Apply inference preprocessing transforms
    batch = preprocess(vid).unsqueeze(0)
534

535
536
537
538
539
540
    # Step 4: Use the model and print the predicted category
    prediction = model(batch).squeeze(0).softmax(0)
    label = prediction.argmax().item()
    score = prediction[label].item()
    category_name = weights.meta["categories"][label]
    print(f"{category_name}: {100 * score}%")
541

542
The classes of the pre-trained model outputs can be found at ``weights.meta["categories"]``.
543

544

545
546
Table of all available video classification weights
---------------------------------------------------
547

548
Accuracies are reported on Kinetics-400 using single crops for clip length 16:
549

550
.. include:: generated/video_table.rst
551

552
Optical Flow
553
554
============

555
556
557
.. currentmodule:: torchvision.models.optical_flow

The following Optical Flow models are available, with or without pre-trained
558

559
560
.. toctree::
   :maxdepth: 1
561

562
   models/raft