test_aev.py 19.6 KB
Newer Older
1
2
3
4
5
import torch
import torchani
import unittest
import os
import pickle
6
7
import random
import copy
8
9
import itertools
import ase
10
import ase.io
11
import math
12
13
import traceback

14
15
16

path = os.path.dirname(os.path.realpath(__file__))
N = 97
17
tolerance = 1e-5
18
19


20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
class TestIsolated(unittest.TestCase):
    # Tests that there is no error when atoms are separated
    # a distance greater than the cutoff radius from all other atoms
    # this can throw an IndexError for large distances or lone atoms
    def setUp(self):
        if torch.cuda.is_available():
            self.device = 'cuda'
        else:
            self.device = 'cpu'
        ani1x = torchani.models.ANI1x().to(self.device)
        self.aev_computer = ani1x.aev_computer
        self.species_to_tensor = ani1x.species_to_tensor
        self.rcr = ani1x.aev_computer.Rcr
        self.rca = self.aev_computer.Rca

    def testCO2(self):
        species = self.species_to_tensor(['O', 'C', 'O']).to(self.device).unsqueeze(0)
        distances = [1.0, self.rca,
                     self.rca + 1e-4, self.rcr,
                     self.rcr + 1e-4, 2 * self.rcr]
        error = ()
        for dist in distances:
            coordinates = torch.tensor(
                [[[-dist, 0., 0.], [0., 0., 0.], [0., 0., dist]]],
                requires_grad=True, device=self.device)
            try:
                _, _ = self.aev_computer((species, coordinates))
            except IndexError:
                error = (traceback.format_exc(), dist)
            if error:
                self.fail(f'\n\n{error[0]}\nFailure at distance: {error[1]}\n'
                          f'Radial r_cut of aev_computer: {self.rcr}\n'
                          f'Angular r_cut of aev_computer: {self.rca}')

    def testH2(self):
        species = self.species_to_tensor(['H', 'H']).to(self.device).unsqueeze(0)
        distances = [1.0, self.rca,
                     self.rca + 1e-4, self.rcr,
                     self.rcr + 1e-4, 2 * self.rcr]
        error = ()
        for dist in distances:
            coordinates = torch.tensor(
                [[[0., 0., 0.], [0., 0., dist]]],
                requires_grad=True, device=self.device)
            try:
                _, _ = self.aev_computer((species, coordinates))
            except IndexError:
                error = (traceback.format_exc(), dist)
            if error:
                self.fail(f'\n\n{error[0]}\nFailure at distance: {error[1]}\n'
                          f'Radial r_cut of aev_computer: {self.rcr}\n'
                          f'Angular r_cut of aev_computer: {self.rca}')

    def testH(self):
        # Tests for failure on a single atom
        species = self.species_to_tensor(['H']).to(self.device).unsqueeze(0)
        error = ()
        coordinates = torch.tensor(
            [[[0., 0., 0.]]],
            requires_grad=True, device=self.device)
        try:
            _, _ = self.aev_computer((species, coordinates))
        except IndexError:
            error = (traceback.format_exc())
        if error:
            self.fail(f'\n\n{error}\nFailure on lone atom\n')


88
89
class TestAEV(unittest.TestCase):

90
    def setUp(self):
91
92
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer
93
        self.radial_length = self.aev_computer.radial_length
94
        self.debug = False
95

96
97
    def random_skip(self, prob=0):
        return random.random() < prob
98
99
100
101

    def transform(self, x):
        return x

102
    def assertAEVEqual(self, expected_radial, expected_angular, aev, tolerance=tolerance):
103
104
        radial = aev[..., :self.radial_length]
        angular = aev[..., self.radial_length:]
105
        radial_diff = expected_radial - radial
106
107
108
        if self.debug:
            aid = 1
            print(torch.stack([expected_radial[0, aid, :], radial[0, aid, :], radial_diff.abs()[0, aid, :]], dim=1))
109
110
111
        radial_max_error = torch.max(torch.abs(radial_diff)).item()
        angular_diff = expected_angular - angular
        angular_max_error = torch.max(torch.abs(angular_diff)).item()
112
113
        self.assertLess(radial_max_error, tolerance)
        self.assertLess(angular_max_error, tolerance)
114

115
116
    def testIsomers(self):
        for i in range(N):
117
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
118
119
120
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _ \
                    = pickle.load(f)
121
122
123
124
125
126
127
128
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                expected_radial = torch.from_numpy(expected_radial)
                expected_angular = torch.from_numpy(expected_angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
129
                _, aev = self.aev_computer((species, coordinates))
130
131
132
                self.assertAEVEqual(expected_radial, expected_angular, aev)

    def testBenzeneMD(self):
Gao, Xiang's avatar
Gao, Xiang committed
133
        for i in range(10):
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
            datafile = os.path.join(path, 'test_data/benzene-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _, cell, pbc \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0)
                species = torch.from_numpy(species).unsqueeze(0)
                expected_radial = torch.from_numpy(expected_radial).float().unsqueeze(0)
                expected_angular = torch.from_numpy(expected_angular).float().unsqueeze(0)
                cell = torch.from_numpy(cell).float()
                pbc = torch.from_numpy(pbc)
                coordinates = torchani.utils.map2central(cell, coordinates, pbc)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
149
                _, aev = self.aev_computer((species, coordinates), cell=cell, pbc=pbc)
Gao, Xiang's avatar
Gao, Xiang committed
150
                self.assertAEVEqual(expected_radial, expected_angular, aev, 5e-5)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

    def testTripeptideMD(self):
        tol = 5e-6
        for i in range(100):
            datafile = os.path.join(path, 'test_data/tripeptide-md/{}.dat'.format(i))
            with open(datafile, 'rb') as f:
                coordinates, species, expected_radial, expected_angular, _, _, _, _ \
                    = pickle.load(f)
                coordinates = torch.from_numpy(coordinates).float().unsqueeze(0)
                species = torch.from_numpy(species).unsqueeze(0)
                expected_radial = torch.from_numpy(expected_radial).float().unsqueeze(0)
                expected_angular = torch.from_numpy(expected_angular).float().unsqueeze(0)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                expected_radial = self.transform(expected_radial)
                expected_angular = self.transform(expected_angular)
                _, aev = self.aev_computer((species, coordinates))
                self.assertAEVEqual(expected_radial, expected_angular, aev, tol)
169
170
171
172

    def testPadding(self):
        species_coordinates = []
        radial_angular = []
173
        for i in range(N):
174
            datafile = os.path.join(path, 'test_data/ANI1_subset/{}'.format(i))
175
176
            with open(datafile, 'rb') as f:
                coordinates, species, radial, angular, _, _ = pickle.load(f)
177
178
179
180
181
182
183
184
                coordinates = torch.from_numpy(coordinates)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial)
                angular = torch.from_numpy(angular)
                coordinates = self.transform(coordinates)
                species = self.transform(species)
                radial = self.transform(radial)
                angular = self.transform(angular)
185
                species_coordinates.append({'species': species, 'coordinates': coordinates})
186
                radial_angular.append((radial, angular))
187
        species_coordinates = torchani.utils.pad_atomic_properties(
188
            species_coordinates)
189
        _, aev = self.aev_computer((species_coordinates['species'], species_coordinates['coordinates']))
190
191
192
193
        start = 0
        for expected_radial, expected_angular in radial_angular:
            conformations = expected_radial.shape[0]
            atoms = expected_radial.shape[1]
194
            aev_ = aev[start:(start + conformations), 0:atoms]
195
            start += conformations
196
            self.assertAEVEqual(expected_radial, expected_angular, aev_)
197

198
199
200
201
202
203
204
205
206
207
208
209
    def testNIST(self):
        datafile = os.path.join(path, 'test_data/NIST/all')
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, radial, angular, _, _ in data:
                if self.random_skip():
                    continue
                coordinates = torch.from_numpy(coordinates).to(torch.float)
                species = torch.from_numpy(species)
                radial = torch.from_numpy(radial).to(torch.float)
                angular = torch.from_numpy(angular).to(torch.float)
                _, aev = self.aev_computer((species, coordinates))
210
                self.assertAEVEqual(radial, angular, aev)
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    @unittest.skipIf(not torch.cuda.is_available(), "Too slow on CPU")
    def testGradient(self):
        """Test validity of autodiff by comparing analytical and numerical
        gradients.
        """
        datafile = os.path.join(path, 'test_data/NIST/all')
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        # Create local copy of aev_computer to avoid interference with other
        # tests.
        aev_computer = copy.deepcopy(self.aev_computer).to(device).to(torch.float64)
        with open(datafile, 'rb') as f:
            data = pickle.load(f)
            for coordinates, species, _, _, _, _ in data:
                coordinates = torch.from_numpy(coordinates).to(device).to(torch.float64)
                coordinates.requires_grad_(True)
                species = torch.from_numpy(species).to(device)

                # PyTorch gradcheck expects to test a funtion with inputs and
                # outputs of type torch.Tensor. The numerical estimation of
                # the deriviate involves making small modifications to the
                # input and observing how it affects the output. The species
                # tensor needs to be removed from the input so that gradcheck
                # does not attempt to estimate the gradient with respect to
                # species and fail.
                # Create simple function wrapper to handle this.
                def aev_forward_wrapper(coords):
                    # Return only the aev portion of the output.
                    return aev_computer((species, coords))[1]
                # Sanity Check: Forward wrapper returns aev without error.
                aev_forward_wrapper(coordinates)
                torch.autograd.gradcheck(
                    aev_forward_wrapper,
                    coordinates
                )

247

248
249
250
251
252
253
class TestAEVJIT(TestAEV):
    def setUp(self):
        super().setUp()
        self.aev_computer = torch.jit.script(self.aev_computer)


254
class TestPBCSeeEachOther(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
255
    def setUp(self):
256
257
        self.ani1x = torchani.models.ANI1x()
        self.aev_computer = self.ani1x.aev_computer.to(torch.double)
258
259
260
261
262
263
264
265
266
267
268

    def testTranslationalInvariancePBC(self):
        coordinates = torch.tensor(
            [[[0, 0, 0],
              [1, 0, 0],
              [0, 1, 0],
              [0, 0, 1],
              [0, 1, 1]]],
            dtype=torch.double, requires_grad=True)
        cell = torch.eye(3, dtype=torch.double) * 2
        species = torch.tensor([[1, 0, 0, 0, 0]], dtype=torch.long)
269
        pbc = torch.ones(3, dtype=torch.bool)
270

271
        _, aev = self.aev_computer((species, coordinates), cell=cell, pbc=pbc)
272
273
274

        for _ in range(100):
            translation = torch.randn(3, dtype=torch.double)
275
            _, aev2 = self.aev_computer((species, coordinates + translation), cell=cell, pbc=pbc)
276
277
278
279
280
            self.assertTrue(torch.allclose(aev, aev2))

    def testPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = torch.eye(3, dtype=torch.double) * 10
281
        pbc = torch.ones(3, dtype=torch.bool)
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.1])
        xyz2s = [
            torch.tensor([9.9, 0.0, 0.0]),
            torch.tensor([0.0, 9.9, 0.0]),
            torch.tensor([0.0, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 0.0]),
            torch.tensor([0.0, 9.9, 9.9]),
            torch.tensor([9.9, 0.0, 9.9]),
            torch.tensor([9.9, 9.9, 9.9]),
        ]

        for xyz2 in xyz2s:
            coordinates = torch.stack([xyz1, xyz2]).to(torch.double).unsqueeze(0)
297
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
298
299
300
301
302
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCSurfaceSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
303
        pbc = torch.ones(3, dtype=torch.bool)
304
305
306
307
308
309
310
311
312
313
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i in range(3):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz2 = xyz1.clone()
            xyz2[i] = 9.9

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
314
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
315
316
317
318
319
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testPBCEdgesSeeEachOther(self):
        cell = torch.eye(3, dtype=torch.double) * 10
320
        pbc = torch.ones(3, dtype=torch.bool)
321
322
323
324
325
326
327
328
329
330
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)
        species = torch.tensor([[0, 0]])

        for i, j in itertools.combinations(range(3), 2):
            xyz1 = torch.tensor([5.0, 5.0, 5.0], dtype=torch.double)
            xyz1[i] = 0.1
            xyz1[j] = 0.1
            for new_i, new_j in [[0.1, 9.9], [9.9, 0.1], [9.9, 9.9]]:
                xyz2 = xyz1.clone()
                xyz2[i] = new_i
331
                xyz2[j] = new_j
332
333

            coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
334
            atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
335
336
337
338
339
340
341
            self.assertEqual(atom_index1.tolist(), [0])
            self.assertEqual(atom_index2.tolist(), [1])

    def testNonRectangularPBCConnersSeeEachOther(self):
        species = torch.tensor([[0, 0]])
        cell = ase.geometry.cellpar_to_cell([10, 10, 10 * math.sqrt(2), 90, 45, 90])
        cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
342
        pbc = torch.ones(3, dtype=torch.bool)
343
344
345
346
347
348
        allshifts = torchani.aev.compute_shifts(cell, pbc, 1)

        xyz1 = torch.tensor([0.1, 0.1, 0.05], dtype=torch.double)
        xyz2 = torch.tensor([10.0, 0.1, 0.1], dtype=torch.double)

        coordinates = torch.stack([xyz1, xyz2]).unsqueeze(0)
349
        atom_index1, atom_index2, _ = torchani.aev.neighbor_pairs(species == -1, coordinates, cell, allshifts, 1)
350
351
352
353
354
        self.assertEqual(atom_index1.tolist(), [0])
        self.assertEqual(atom_index2.tolist(), [1])


class TestAEVOnBoundary(unittest.TestCase):
Gao, Xiang's avatar
Gao, Xiang committed
355

356
357
358
359
360
361
362
363
364
365
    def setUp(self):
        self.eps = 1e-9
        cell = ase.geometry.cellpar_to_cell([100, 100, 100 * math.sqrt(2), 90, 45, 90])
        self.cell = torch.tensor(ase.geometry.complete_cell(cell), dtype=torch.double)
        self.inv_cell = torch.inverse(self.cell)
        self.coordinates = torch.tensor([[[0.0, 0.0, 0.0],
                                          [1.0, -0.1, -0.1],
                                          [-0.1, 1.0, -0.1],
                                          [-0.1, -0.1, 1.0],
                                          [-1.0, -1.0, -1.0]]], dtype=torch.double)
366
        self.species = torch.tensor([[1, 0, 0, 0, 0]])
367
        self.pbc = torch.ones(3, dtype=torch.bool)
368
369
        self.v1, self.v2, self.v3 = self.cell
        self.center_coordinates = self.coordinates + 0.5 * (self.v1 + self.v2 + self.v3)
370
371
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer.to(torch.double)
372
        _, self.aev = self.aev_computer((self.species, self.center_coordinates), cell=self.cell, pbc=self.pbc)
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

    def assertInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertTrue(in_cell.all())

    def assertNotInCell(self, coordinates):
        coordinates_cell = coordinates @ self.inv_cell
        self.assertTrue(torch.allclose(coordinates, coordinates_cell @ self.cell))
        in_cell = (coordinates_cell >= -self.eps) & (coordinates_cell <= 1 + self.eps)
        self.assertFalse(in_cell.all())

    def testCornerSurfaceAndEdge(self):
        for i, j, k in itertools.product([0, 0.5, 1], repeat=3):
            if i == 0.5 and j == 0.5 and k == 0.5:
                continue
            coordinates = self.coordinates + i * self.v1 + j * self.v2 + k * self.v3
            self.assertNotInCell(coordinates)
            coordinates = torchani.utils.map2central(self.cell, coordinates, self.pbc)
            self.assertInCell(coordinates)
394
            _, aev = self.aev_computer((self.species, coordinates), cell=self.cell, pbc=self.pbc)
395
396
            self.assertGreater(aev.abs().max().item(), 0)
            self.assertTrue(torch.allclose(aev, self.aev))
397

Gao, Xiang's avatar
Gao, Xiang committed
398

399
400
401
class TestAEVOnBenzenePBC(unittest.TestCase):

    def setUp(self):
402
403
        ani1x = torchani.models.ANI1x()
        self.aev_computer = ani1x.aev_computer
404
405
406
        filename = os.path.join(path, '../tools/generate-unit-test-expect/others/Benzene.cif')
        benzene = ase.io.read(filename)
        self.cell = torch.tensor(benzene.get_cell(complete=True)).float()
407
        self.pbc = torch.tensor(benzene.get_pbc(), dtype=torch.bool)
408
409
410
        species_to_tensor = torchani.utils.ChemicalSymbolsToInts(['H', 'C', 'N', 'O'])
        self.species = species_to_tensor(benzene.get_chemical_symbols()).unsqueeze(0)
        self.coordinates = torch.tensor(benzene.get_positions()).unsqueeze(0).float()
411
        _, self.aev = self.aev_computer((self.species, self.coordinates), cell=self.cell, pbc=self.pbc)
412
        self.natoms = self.aev.shape[1]
413
414

    def testRepeat(self):
415
        tolerance = 5e-6
416
417
418
419
420
421
422
423
424
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 4)
        coordinates2 = torch.cat([
            self.coordinates,
            self.coordinates + c1,
            self.coordinates + 2 * c1,
            self.coordinates + 3 * c1,
        ], dim=1)
        cell2 = torch.stack([4 * c1, c2, c3])
425
        _, aev2 = self.aev_computer((species2, coordinates2), cell=cell2, pbc=self.pbc)
426
427
428
429
430
431
432
433
434
435
436
437
438
        for i in range(3):
            aev3 = aev2[:, i * self.natoms: (i + 1) * self.natoms, :]
            self.assertTrue(torch.allclose(self.aev, aev3, atol=tolerance))

    def testManualMirror(self):
        c1, c2, c3 = self.cell
        species2 = self.species.repeat(1, 3 ** 3)
        coordinates2 = torch.cat([
            self.coordinates + i * c1 + j * c2 + k * c3
            for i, j, k in itertools.product([0, -1, 1], repeat=3)
        ], dim=1)
        _, aev2 = self.aev_computer((species2, coordinates2))
        aev2 = aev2[:, :self.natoms, :]
439
440
441
        self.assertTrue(torch.allclose(self.aev, aev2))


442
443
if __name__ == '__main__':
    unittest.main()