tensor.py 20.2 KB
Newer Older
rusty1s's avatar
repr  
rusty1s committed
1
from textwrap import indent
rusty1s's avatar
rusty1s committed
2
from typing import Optional, List, Tuple, Union
rusty1s's avatar
rusty1s committed
3
4
5
6

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
7
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
8

rusty1s's avatar
rusty1s committed
9
10
11
12
13
14
15
16
17
18
# from torch_sparse.transpose import t
# from torch_sparse.narrow import narrow
# from torch_sparse.select import select
# from torch_sparse.index_select import index_select, index_select_nnz
# from torch_sparse.masked_select import masked_select, masked_select_nnz
# import torch_sparse.reduce
# from torch_sparse.diag import remove_diag, set_diag
# from torch_sparse.matmul import matmul
# from torch_sparse.add import add, add_, add_nnz, add_nnz_
# from torch_sparse.mul import mul, mul_, mul_nnz, mul_nnz_
rusty1s's avatar
rusty1s committed
19
from torch_sparse.utils import is_scalar
rusty1s's avatar
rusty1s committed
20
21


rusty1s's avatar
rusty1s committed
22
@torch.jit.script
rusty1s's avatar
rusty1s committed
23
class SparseTensor(object):
rusty1s's avatar
rusty1s committed
24
25
26
27
28
29
30
    storage: SparseStorage

    def __init__(self, row: Optional[torch.Tensor] = None,
                 rowptr: Optional[torch.Tensor] = None,
                 col: Optional[torch.Tensor] = None,
                 value: Optional[torch.Tensor] = None,
                 sparse_sizes: List[int] = None, is_sorted: bool = False):
rusty1s's avatar
rusty1s committed
31
        self.storage = SparseStorage(row=row, rowptr=rowptr, col=col,
rusty1s's avatar
rusty1s committed
32
33
34
                                     value=value, sparse_sizes=sparse_sizes,
                                     rowcount=None, colptr=None, colcount=None,
                                     csr2csc=None, csc2csr=None,
rusty1s's avatar
rusty1s committed
35
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
36
37

    @classmethod
rusty1s's avatar
rusty1s committed
38
    def from_storage(self, storage: SparseStorage):
rusty1s's avatar
rusty1s committed
39
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
40
        self.storage = storage
rusty1s's avatar
rusty1s committed
41
42
43
        return self

    @classmethod
rusty1s's avatar
rusty1s committed
44
    def from_dense(self, mat: torch.Tensor):
rusty1s's avatar
rusty1s committed
45
46
47
48
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()
rusty1s's avatar
rusty1s committed
49
        index = index.t()
rusty1s's avatar
rusty1s committed
50

rusty1s's avatar
rusty1s committed
51
52
53
        row, col = index[0], index[1]
        return SparseTensor(row=row, rowptr=None, col=col, value=mat[row, col],
                            sparse_sizes=mat.size()[:2], is_sorted=True)
rusty1s's avatar
rusty1s committed
54
55

    @classmethod
rusty1s's avatar
rusty1s committed
56
57
58
59
60
61
    def from_torch_sparse_coo_tensor(self, mat: torch.Tensor):
        mat = mat.coalesce()
        index = mat._indices()
        row, col = index[0], index[1]
        return SparseTensor(row=row, rowptr=None, col=col, value=mat._values(),
                            sparse_sizes=mat.size()[:2], is_sorted=True)
rusty1s's avatar
rusty1s committed
62
63

    @classmethod
rusty1s's avatar
rusty1s committed
64
65
66
    def eye(self, M: int, N: Optional[int] = None,
            options: Optional[torch.Tensor] = None, has_value: bool = True,
            fill_cache: bool = False):
rusty1s's avatar
rusty1s committed
67

rusty1s's avatar
rusty1s committed
68
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
69

rusty1s's avatar
rusty1s committed
70
71
72
73
        if options is not None:
            row = torch.arange(min(M, N), device=options.device)
        else:
            row = torch.arange(min(M, N))
rusty1s's avatar
rusty1s committed
74
        col = row
rusty1s's avatar
rusty1s committed
75

rusty1s's avatar
rusty1s committed
76
77
78
79
80
        rowptr = torch.arange(M + 1, dtype=torch.long, device=row.device)
        if M > N:
            rowptr[N + 1:] = M

        value: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
81
        if has_value:
rusty1s's avatar
rusty1s committed
82
83
84
85
86
87
88
89
90
91
92
            if options is not None:
                value = torch.ones(row.numel(), dtype=options.dtype,
                                   device=row.device)
            else:
                value = torch.ones(row.numel(), device=row.device)

        rowcount: Optional[torch.Tensor] = None
        colptr: Optional[torch.Tensor] = None
        colcount: Optional[torch.Tensor] = None
        csr2csc: Optional[torch.Tensor] = None
        csc2csr: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
93
94

        if fill_cache:
rusty1s's avatar
rusty1s committed
95
            rowcount = torch.ones(M, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
96
            if M > N:
rusty1s's avatar
rusty1s committed
97
98
99
100
                rowcount[N:] = 0

            colptr = torch.arange(N + 1, dtype=torch.long, device=row.device)
            colcount = torch.ones(N, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
101
            if N > M:
rusty1s's avatar
rusty1s committed
102
103
                colptr[M + 1:] = M
                colcount[M:] = 0
rusty1s's avatar
rusty1s committed
104
105
            csr2csc = csc2csr = row

rusty1s's avatar
rusty1s committed
106
107
108
109
110
        storage: SparseStorage = SparseStorage(
            row=row, rowptr=rowptr, col=col, value=value,
            sparse_sizes=torch.Size([M, N]), rowcount=rowcount, colptr=colptr,
            colcount=colcount, csr2csc=csr2csc, csc2csr=csc2csr,
            is_sorted=True)
rusty1s's avatar
rusty1s committed
111

rusty1s's avatar
rusty1s committed
112
113
114
115
116
        self = SparseTensor.__new__(SparseTensor)
        self.storage = storage
        return self

    def copy(self):
rusty1s's avatar
rusty1s committed
117
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
118
119

    def clone(self):
rusty1s's avatar
rusty1s committed
120
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
121

rusty1s's avatar
rusty1s committed
122
123
124
125
126
127
128
129
130
131
    def type_as(self, tensor=torch.Tensor):
        value = self.storage._value
        if value is None or tensor.dtype == value.dtype:
            return self
        return self.from_storage(self.storage.type_as(tensor))

    def device_as(self, tensor: torch.Tensor, non_blocking: bool = False):
        if tensor.device == self.device():
            return self
        return self.from_storage(self.storage.device_as(tensor, non_blocking))
rusty1s's avatar
rusty1s committed
132
133
134

    # Formats #################################################################

rusty1s's avatar
rusty1s committed
135
136
    def coo(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.row(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
137

rusty1s's avatar
rusty1s committed
138
139
    def csr(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.rowptr(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
140

rusty1s's avatar
rusty1s committed
141
142
143
144
145
146
    def csc(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        perm = self.storage.csr2csc()
        value = self.storage.value()
        if value is not None:
            value = value[perm]
        return self.storage.colptr(), self.storage.row()[perm], value
rusty1s's avatar
rusty1s committed
147
148
149

    # Storage inheritance #####################################################

rusty1s's avatar
rusty1s committed
150
    def has_value(self) -> bool:
rusty1s's avatar
rusty1s committed
151
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
152

rusty1s's avatar
rusty1s committed
153
154
155
    def set_value_(self, value: Optional[torch.Tensor],
                   layout: Optional[str] = None):
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
156
157
        return self

rusty1s's avatar
rusty1s committed
158
159
160
161
162
163
    def set_value(self, value: Optional[torch.Tensor],
                  layout: Optional[str] = None):
        return self.from_storage(self.storage.set_value(value, layout))

    def sparse_sizes(self) -> List[int]:
        return self.storage.sparse_sizes()
rusty1s's avatar
rusty1s committed
164

rusty1s's avatar
rusty1s committed
165
166
    def sparse_size(self, dim: int) -> int:
        return self.storage.sparse_sizes()[dim]
rusty1s's avatar
rusty1s committed
167

rusty1s's avatar
rusty1s committed
168
169
    def sparse_resize(self, sparse_sizes: List[int]):
        return self.from_storage(self.storage.sparse_resize(sparse_sizes))
rusty1s's avatar
rusty1s committed
170

rusty1s's avatar
rusty1s committed
171
    def is_coalesced(self) -> bool:
rusty1s's avatar
rusty1s committed
172
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
173

rusty1s's avatar
rusty1s committed
174
    def coalesce(self, reduce: str = "add"):
rusty1s's avatar
rusty1s committed
175
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
176

rusty1s's avatar
rusty1s committed
177
178
    def fill_cache_(self):
        self.storage.fill_cache_()
rusty1s's avatar
rusty1s committed
179
180
        return self

rusty1s's avatar
rusty1s committed
181
182
    def clear_cache_(self):
        self.storage.clear_cache_()
rusty1s's avatar
rusty1s committed
183
184
185
186
        return self

    # Utility functions #######################################################

rusty1s's avatar
rusty1s committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    def fill_value_(self, fill_value: float,
                    options: Optional[torch.Tensor] = None):
        if options is not None:
            value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype,
                               device=self.device())
        else:
            value = torch.full((self.nnz(), ), fill_value,
                               device=self.device())
        return self.set_value_(value, layout='coo')

    def fill_value(self, fill_value: float,
                   options: Optional[torch.Tensor] = None):
        if options is not None:
            value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype,
                               device=self.device())
        else:
            value = torch.full((self.nnz(), ), fill_value,
                               device=self.device())
        return self.set_value(value, layout='coo')

    def sizes(self) -> List[int]:
        sizes = self.sparse_sizes()
        value = self.storage.value()
        if value is not None:
            sizes += value.size()[1:]
        return sizes

    def size(self, dim: int) -> int:
        return self.sizes()[dim]

    def dim(self) -> int:
        return len(self.sizes())

    def nnz(self) -> int:
        return self.storage.col().numel()

    def numel(self) -> int:
        value = self.storage.value()
        if value is not None:
            return value.numel()
        else:
            return self.nnz()
rusty1s's avatar
rusty1s committed
229

rusty1s's avatar
rusty1s committed
230
    def density(self) -> float:
rusty1s's avatar
rusty1s committed
231
232
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

rusty1s's avatar
rusty1s committed
233
    def sparsity(self) -> float:
rusty1s's avatar
rusty1s committed
234
235
        return 1 - self.density()

rusty1s's avatar
rusty1s committed
236
    def avg_row_length(self) -> float:
rusty1s's avatar
rusty1s committed
237
238
        return self.nnz() / self.sparse_size(0)

rusty1s's avatar
rusty1s committed
239
    def avg_col_length(self) -> float:
rusty1s's avatar
rusty1s committed
240
241
        return self.nnz() / self.sparse_size(1)

rusty1s's avatar
rusty1s committed
242
    def is_quadratic(self) -> bool:
rusty1s's avatar
rusty1s committed
243
244
        return self.sparse_size(0) == self.sparse_size(1)

rusty1s's avatar
rusty1s committed
245
246
    def is_symmetric(self) -> bool:
        if not self.is_quadratic():
rusty1s's avatar
rusty1s committed
247
248
            return False

rusty1s's avatar
rusty1s committed
249
250
251
252
253
254
        rowptr, col, value1 = self.csr()
        colptr, row, value2 = self.csc()

        if (rowptr != colptr).any() or (col != row).any():
            return False

rusty1s's avatar
rusty1s committed
255
        if value1 is None or value2 is None:
rusty1s's avatar
rusty1s committed
256
            return True
rusty1s's avatar
rusty1s committed
257
258
        else:
            return bool((value1 == value2).all())
rusty1s's avatar
rusty1s committed
259
260

    def detach_(self):
rusty1s's avatar
rusty1s committed
261
262
263
        value = self.storage.value()
        if value is not None:
            value.detach_()
rusty1s's avatar
rusty1s committed
264
265
266
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
267
268
269
270
271
272
273
274
275
276
277
        value = self.storage.value()
        if value is not None:
            value = value.detach()
        return self.set_value(value, layout='coo')

    def requires_grad(self) -> bool:
        value = self.storage.value()
        if value is not None:
            return value.requires_grad
        else:
            return False
rusty1s's avatar
rusty1s committed
278

rusty1s's avatar
rusty1s committed
279
280
    def requires_grad_(self, requires_grad: bool = True,
                       options: Optional[torch.Tensor] = None):
rusty1s's avatar
rusty1s committed
281
        if requires_grad and not self.has_value():
rusty1s's avatar
rusty1s committed
282
            self.fill_value_(1., options=options)
rusty1s's avatar
rusty1s committed
283

rusty1s's avatar
rusty1s committed
284
285
286
        value = self.storage.value()
        if value is not None:
            value.requires_grad_(requires_grad)
rusty1s's avatar
rusty1s committed
287
288
        return self

rusty1s's avatar
rusty1s committed
289
    def pin_memory(self):
rusty1s's avatar
rusty1s committed
290
        return self.from_storage(self.storage.pin_memory())
rusty1s's avatar
rusty1s committed
291

rusty1s's avatar
rusty1s committed
292
293
    def is_pinned(self) -> bool:
        return self.storage.is_pinned()
rusty1s's avatar
rusty1s committed
294

rusty1s's avatar
rusty1s committed
295
296
297
298
299
300
    def options(self) -> torch.Tensor:
        value = self.storage.value()
        if value is not None:
            return value
        else:
            return torch.tensor(0., device=self.storage.col().device)
rusty1s's avatar
rusty1s committed
301
302

    def device(self):
rusty1s's avatar
rusty1s committed
303
        return self.storage.col().device
rusty1s's avatar
rusty1s committed
304
305

    def cpu(self):
rusty1s's avatar
rusty1s committed
306
        return self.device_as(torch.tensor(0.), non_blocking=False)
rusty1s's avatar
rusty1s committed
307

rusty1s's avatar
rusty1s committed
308
309
310
    def cuda(self, options=Optional[torch.Tensor], non_blocking: bool = False):
        if options is not None:
            return self.device_as(options, non_blocking)
rusty1s's avatar
rusty1s committed
311
        else:
rusty1s's avatar
rusty1s committed
312
313
            options = torch.tensor(0.).cuda()
            return self.device_as(options, non_blocking)
rusty1s's avatar
rusty1s committed
314

rusty1s's avatar
rusty1s committed
315
316
    def is_cuda(self) -> bool:
        return self.storage.col().is_cuda
rusty1s's avatar
rusty1s committed
317

rusty1s's avatar
rusty1s committed
318
319
    def dtype(self):
        return self.options().dtype
rusty1s's avatar
rusty1s committed
320

rusty1s's avatar
rusty1s committed
321
322
    def is_floating_point(self) -> bool:
        return torch.is_floating_point(self.options())
rusty1s's avatar
rusty1s committed
323
324

    def bfloat16(self):
rusty1s's avatar
rusty1s committed
325
        return self.type_as(torch.tensor(0, dtype=torch.bfloat16))
rusty1s's avatar
rusty1s committed
326
327

    def bool(self):
rusty1s's avatar
rusty1s committed
328
        return self.type_as(torch.tensor(0, dtype=torch.bool))
rusty1s's avatar
rusty1s committed
329
330

    def byte(self):
rusty1s's avatar
rusty1s committed
331
        return self.type_as(torch.tensor(0, dtype=torch.uint8))
rusty1s's avatar
rusty1s committed
332
333

    def char(self):
rusty1s's avatar
rusty1s committed
334
        return self.type_as(torch.tensor(0, dtype=torch.int8))
rusty1s's avatar
rusty1s committed
335
336

    def half(self):
rusty1s's avatar
rusty1s committed
337
        return self.type_as(torch.tensor(0, dtype=torch.half))
rusty1s's avatar
rusty1s committed
338
339

    def float(self):
rusty1s's avatar
rusty1s committed
340
        return self.type_as(torch.tensor(0, dtype=torch.float))
rusty1s's avatar
rusty1s committed
341
342

    def double(self):
rusty1s's avatar
rusty1s committed
343
        return self.type_as(torch.tensor(0, dtype=torch.double))
rusty1s's avatar
rusty1s committed
344
345

    def short(self):
rusty1s's avatar
rusty1s committed
346
        return self.type_as(torch.tensor(0, dtype=torch.short))
rusty1s's avatar
rusty1s committed
347
348

    def int(self):
rusty1s's avatar
rusty1s committed
349
        return self.type_as(torch.tensor(0, dtype=torch.int))
rusty1s's avatar
rusty1s committed
350
351

    def long(self):
rusty1s's avatar
rusty1s committed
352
        return self.type_as(torch.tensor(0, dtype=torch.long))
rusty1s's avatar
rusty1s committed
353
354
355

    # Conversions #############################################################

rusty1s's avatar
rusty1s committed
356
    def to_dense(self, options: Optional[torch.Tensor] = None):
rusty1s's avatar
rusty1s committed
357
        row, col, value = self.coo()
rusty1s's avatar
rusty1s committed
358
359
360
361
362
363
364
365
366
367
368
369
370

        if options is not None:
            mat = torch.zeros(self.sizes(), dtype=options.dtype,
                              device=self.device())
        else:
            mat = torch.zeros(self.sizes(), device=self.device())

        if value is not None:
            mat[row, col] = value
        else:
            mat[row, col] = torch.ones(self.nnz(), dtype=mat.dtype,
                                       device=mat.device)

rusty1s's avatar
rusty1s committed
371
372
        return mat

rusty1s's avatar
rusty1s committed
373
    def to_torch_sparse_coo_tensor(self, options: Optional[torch.Tensor]):
rusty1s's avatar
rusty1s committed
374
375
376
        row, col, value = self.coo()
        index = torch.stack([row, col], dim=0)
        if value is None:
rusty1s's avatar
rusty1s committed
377
378
379
            if options is not None:
                value = torch.ones(self.nnz(), dtype=options.dtype,
                                   device=self.device())
rusty1s's avatar
rusty1s committed
380
            else:
rusty1s's avatar
rusty1s committed
381
                value = torch.ones(self.nnz(), device=self.device())
rusty1s's avatar
rusty1s committed
382

rusty1s's avatar
rusty1s committed
383
        return torch.sparse_coo_tensor(index, value, self.sizes())
rusty1s's avatar
rusty1s committed
384

rusty1s's avatar
repr  
rusty1s committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    # Standard Operators ######################################################

    # def __add__(self, other):
    #     return self.add(other)

    # def __radd__(self, other):
    #     return self.add(other)

    # def __iadd__(self, other):
    #     return self.add_(other)

    # def __mul__(self, other):
    #     return self.mul(other)

    # def __rmul__(self, other):
    #     return self.mul(other)

    # def __imul__(self, other):
    #     return self.mul_(other)

    # def __matmul__(self, other):
    #     return matmul(self, other, reduce='sum')
rusty1s's avatar
rusty1s committed
407

rusty1s's avatar
rusty1s committed
408
409

# Bindings ####################################################################
rusty1s's avatar
rusty1s committed
410

rusty1s's avatar
rusty1s committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# SparseTensor.t = t
# SparseTensor.narrow = narrow
# SparseTensor.select = select
# SparseTensor.index_select = index_select
# SparseTensor.index_select_nnz = index_select_nnz
# SparseTensor.masked_select = masked_select
# SparseTensor.masked_select_nnz = masked_select_nnz
# SparseTensor.reduction = torch_sparse.reduce.reduction
# SparseTensor.sum = torch_sparse.reduce.sum
# SparseTensor.mean = torch_sparse.reduce.mean
# SparseTensor.min = torch_sparse.reduce.min
# SparseTensor.max = torch_sparse.reduce.max
# SparseTensor.remove_diag = remove_diag
# SparseTensor.set_diag = set_diag
# SparseTensor.matmul = matmul
# SparseTensor.add = add
# SparseTensor.add_ = add_
# SparseTensor.add_nnz = add_nnz
# SparseTensor.add_nnz_ = add_nnz_
# SparseTensor.mul = mul
# SparseTensor.mul_ = mul_
# SparseTensor.mul_nnz = mul_nnz
# SparseTensor.mul_nnz_ = mul_nnz_

# Python Bindings #############################################################

Dtype = Optional[torch.dtype]
Device = Optional[Union[torch.device, str]]


@torch.jit.ignore
def share_memory_(self: SparseTensor) -> SparseTensor:
    self.storage.share_memory_()


@torch.jit.ignore
def is_shared(self: SparseTensor) -> bool:
    return self.storage.is_shared()


@torch.jit.ignore
def to(self, *args, **kwargs):
    dtype: Dtype = getattr(kwargs, 'dtype', None)
    device: Device = getattr(kwargs, 'device', None)
    non_blocking: bool = getattr(kwargs, 'non_blocking', False)

    for arg in args:
        if isinstance(arg, str) or isinstance(arg, torch.device):
            device = arg
        if isinstance(arg, torch.dtype):
            dtype = arg

    if dtype is not None:
        self = self.type_as(torch.tensor(0., dtype=dtype))
    if device is not None:
        self = self.device_as(torch.tensor(0., device=device), non_blocking)

    return self


rusty1s's avatar
repr  
rusty1s committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
@torch.jit.ignore
def __getitem__(self, index):
    raise NotImplementedError
    index = list(index) if isinstance(index, tuple) else [index]
    # More than one `Ellipsis` is not allowed...
    if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
        raise SyntaxError

    dim = 0
    out = self
    while len(index) > 0:
        item = index.pop(0)
        if isinstance(item, int):
            out = out.select(dim, item)
            dim += 1
        elif isinstance(item, slice):
            if item.step is not None:
                raise ValueError('Step parameter not yet supported.')

            start = 0 if item.start is None else item.start
            start = self.size(dim) + start if start < 0 else start

            stop = self.size(dim) if item.stop is None else item.stop
            stop = self.size(dim) + stop if stop < 0 else stop

            out = out.narrow(dim, start, max(stop - start, 0))
            dim += 1
        elif torch.is_tensor(item):
            if item.dtype == torch.bool:
                out = out.masked_select(dim, item)
                dim += 1
            elif item.dtype == torch.long:
                out = out.index_select(dim, item)
                dim += 1
        elif item == Ellipsis:
            if self.dim() - len(index) < dim:
                raise SyntaxError
            dim = self.dim() - len(index)
        else:
            raise SyntaxError

    return out


@torch.jit.ignore
def __repr__(self):
    i = ' ' * 6
    row, col, value = self.coo()
    infos = []
    infos += [f'row={indent(row.__repr__(), i)[len(i):]}']
    infos += [f'col={indent(col.__repr__(), i)[len(i):]}']

    if value is not None:
        infos += [f'val={indent(value.__repr__(), i)[len(i):]}']

    infos += [
        f'size={tuple(self.sizes())}, '
        f'nnz={self.nnz()}, '
        f'density={100 * self.density():.02f}%'
    ]
    infos = ',\n'.join(infos)

    i = ' ' * (len(self.__class__.__name__) + 1)
    return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


rusty1s's avatar
rusty1s committed
537
538
539
SparseTensor.share_memory_ = share_memory_
SparseTensor.is_shared = is_shared
SparseTensor.to = to
rusty1s's avatar
repr  
rusty1s committed
540
541
SparseTensor.__getitem__ = __getitem__
SparseTensor.__repr__ = __repr__
rusty1s's avatar
rusty1s committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606

# Scipy Conversions ###########################################################

ScipySparseMatrix = Union[scipy.sparse.coo_matrix, scipy.sparse.
                          csr_matrix, scipy.sparse.csc_matrix]


@torch.jit.ignore
def from_scipy(mat: ScipySparseMatrix) -> SparseTensor:
    colptr = None
    if isinstance(mat, scipy.sparse.csc_matrix):
        colptr = torch.from_numpy(mat.indptr).to(torch.long)

    mat = mat.tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(torch.long)
    mat = mat.tocoo()
    row = torch.from_numpy(mat.row).to(torch.long)
    col = torch.from_numpy(mat.col).to(torch.long)
    value = torch.from_numpy(mat.data)
    sparse_sizes = mat.shape[:2]

    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                            sparse_sizes=sparse_sizes, rowcount=None,
                            colptr=colptr, colcount=None, csr2csc=None,
                            csc2csr=None, is_sorted=True)

    return SparseTensor.from_storage(storage)


@torch.jit.ignore
def to_scipy(self: SparseTensor, layout: Optional[str] = None,
             dtype: Optional[torch.dtype] = None) -> ScipySparseMatrix:
    assert self.dim() == 2
    layout = get_layout(layout)

    if not self.has_value():
        ones = torch.ones(self.nnz(), dtype=dtype).numpy()

    if layout == 'coo':
        row, col, value = self.coo()
        row = row.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.coo_matrix((value, (row, col)), self.sizes())
    elif layout == 'csr':
        rowptr, col, value = self.csr()
        rowptr = rowptr.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csr_matrix((value, col, rowptr), self.sizes())
    elif layout == 'csc':
        colptr, row, value = self.csc()
        colptr = colptr.detach().cpu().numpy()
        row = row.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csc_matrix((value, row, colptr), self.sizes())


SparseTensor.from_scipy = from_scipy
SparseTensor.to_scipy = to_scipy

# Hacky fixes #################################################################

# Fix standard operators of `torch.Tensor` for PyTorch<=1.3.
# https://github.com/pytorch/pytorch/pull/31769
rusty1s's avatar
rusty1s committed
607
608
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
rusty1s's avatar
typo  
rusty1s committed
609
if (TORCH_MAJOR < 1) or (TORCH_MAJOR == 1 and TORCH_MINOR < 4):
rusty1s's avatar
rusty1s committed
610
611

    def add(self, other):
rusty1s's avatar
rusty1s committed
612
613
614
        if torch.is_tensor(other) or is_scalar(other):
            return self.add(other)
        return NotImplemented
rusty1s's avatar
rusty1s committed
615
616

    def mul(self, other):
rusty1s's avatar
rusty1s committed
617
618
619
        if torch.is_tensor(other) or is_scalar(other):
            return self.mul(other)
        return NotImplemented
rusty1s's avatar
rusty1s committed
620
621

    torch.Tensor.__add__ = add
rusty1s's avatar
rusty1s committed
622
    torch.Tensor.__mul__ = mul