"test/test_transforms_v2_utils.py" did not exist on "1ea73f5832f6b7ccf7c74dacb38a63b7ea2dd720"
tensor.py 18.7 KB
Newer Older
rusty1s's avatar
repr  
rusty1s committed
1
from textwrap import indent
rusty1s's avatar
typing  
rusty1s committed
2
from typing import Optional, List, Tuple, Dict, Union, Any
rusty1s's avatar
rusty1s committed
3
4
5
6

import torch
import scipy.sparse

rusty1s's avatar
rusty1s committed
7
from torch_sparse.storage import SparseStorage, get_layout
rusty1s's avatar
rusty1s committed
8
from torch_sparse.utils import is_scalar
rusty1s's avatar
rusty1s committed
9
10


rusty1s's avatar
rusty1s committed
11
@torch.jit.script
rusty1s's avatar
rusty1s committed
12
class SparseTensor(object):
rusty1s's avatar
rusty1s committed
13
14
15
16
17
18
19
    storage: SparseStorage

    def __init__(self, row: Optional[torch.Tensor] = None,
                 rowptr: Optional[torch.Tensor] = None,
                 col: Optional[torch.Tensor] = None,
                 value: Optional[torch.Tensor] = None,
                 sparse_sizes: List[int] = None, is_sorted: bool = False):
rusty1s's avatar
rusty1s committed
20
        self.storage = SparseStorage(row=row, rowptr=rowptr, col=col,
rusty1s's avatar
rusty1s committed
21
22
23
                                     value=value, sparse_sizes=sparse_sizes,
                                     rowcount=None, colptr=None, colcount=None,
                                     csr2csc=None, csc2csr=None,
rusty1s's avatar
rusty1s committed
24
                                     is_sorted=is_sorted)
rusty1s's avatar
rusty1s committed
25
26

    @classmethod
rusty1s's avatar
rusty1s committed
27
    def from_storage(self, storage: SparseStorage):
rusty1s's avatar
rusty1s committed
28
        self = SparseTensor.__new__(SparseTensor)
rusty1s's avatar
rusty1s committed
29
        self.storage = storage
rusty1s's avatar
rusty1s committed
30
31
32
        return self

    @classmethod
rusty1s's avatar
rusty1s committed
33
    def from_dense(self, mat: torch.Tensor):
rusty1s's avatar
rusty1s committed
34
35
36
37
        if mat.dim() > 2:
            index = mat.abs().sum([i for i in range(2, mat.dim())]).nonzero()
        else:
            index = mat.nonzero()
rusty1s's avatar
rusty1s committed
38
        index = index.t()
rusty1s's avatar
rusty1s committed
39

rusty1s's avatar
rusty1s committed
40
41
42
        row, col = index[0], index[1]
        return SparseTensor(row=row, rowptr=None, col=col, value=mat[row, col],
                            sparse_sizes=mat.size()[:2], is_sorted=True)
rusty1s's avatar
rusty1s committed
43
44

    @classmethod
rusty1s's avatar
rusty1s committed
45
46
47
48
49
50
    def from_torch_sparse_coo_tensor(self, mat: torch.Tensor):
        mat = mat.coalesce()
        index = mat._indices()
        row, col = index[0], index[1]
        return SparseTensor(row=row, rowptr=None, col=col, value=mat._values(),
                            sparse_sizes=mat.size()[:2], is_sorted=True)
rusty1s's avatar
rusty1s committed
51
52

    @classmethod
rusty1s's avatar
rusty1s committed
53
54
55
    def eye(self, M: int, N: Optional[int] = None,
            options: Optional[torch.Tensor] = None, has_value: bool = True,
            fill_cache: bool = False):
rusty1s's avatar
rusty1s committed
56

rusty1s's avatar
rusty1s committed
57
        N = M if N is None else N
rusty1s's avatar
rusty1s committed
58

rusty1s's avatar
rusty1s committed
59
60
61
62
        if options is not None:
            row = torch.arange(min(M, N), device=options.device)
        else:
            row = torch.arange(min(M, N))
rusty1s's avatar
rusty1s committed
63
        col = row
rusty1s's avatar
rusty1s committed
64

rusty1s's avatar
rusty1s committed
65
66
67
68
69
        rowptr = torch.arange(M + 1, dtype=torch.long, device=row.device)
        if M > N:
            rowptr[N + 1:] = M

        value: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
70
        if has_value:
rusty1s's avatar
rusty1s committed
71
72
73
74
75
76
77
78
79
80
81
            if options is not None:
                value = torch.ones(row.numel(), dtype=options.dtype,
                                   device=row.device)
            else:
                value = torch.ones(row.numel(), device=row.device)

        rowcount: Optional[torch.Tensor] = None
        colptr: Optional[torch.Tensor] = None
        colcount: Optional[torch.Tensor] = None
        csr2csc: Optional[torch.Tensor] = None
        csc2csr: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
82
83

        if fill_cache:
rusty1s's avatar
rusty1s committed
84
            rowcount = torch.ones(M, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
85
            if M > N:
rusty1s's avatar
rusty1s committed
86
87
88
89
                rowcount[N:] = 0

            colptr = torch.arange(N + 1, dtype=torch.long, device=row.device)
            colcount = torch.ones(N, dtype=torch.long, device=row.device)
rusty1s's avatar
rusty1s committed
90
            if N > M:
rusty1s's avatar
rusty1s committed
91
92
                colptr[M + 1:] = M
                colcount[M:] = 0
rusty1s's avatar
rusty1s committed
93
94
            csr2csc = csc2csr = row

rusty1s's avatar
rusty1s committed
95
96
97
98
99
        storage: SparseStorage = SparseStorage(
            row=row, rowptr=rowptr, col=col, value=value,
            sparse_sizes=torch.Size([M, N]), rowcount=rowcount, colptr=colptr,
            colcount=colcount, csr2csc=csr2csc, csc2csr=csc2csr,
            is_sorted=True)
rusty1s's avatar
rusty1s committed
100

rusty1s's avatar
rusty1s committed
101
102
103
104
105
        self = SparseTensor.__new__(SparseTensor)
        self.storage = storage
        return self

    def copy(self):
rusty1s's avatar
rusty1s committed
106
        return self.from_storage(self.storage)
rusty1s's avatar
rusty1s committed
107
108

    def clone(self):
rusty1s's avatar
rusty1s committed
109
        return self.from_storage(self.storage.clone())
rusty1s's avatar
rusty1s committed
110

rusty1s's avatar
rusty1s committed
111
112
113
114
115
116
117
118
119
120
    def type_as(self, tensor=torch.Tensor):
        value = self.storage._value
        if value is None or tensor.dtype == value.dtype:
            return self
        return self.from_storage(self.storage.type_as(tensor))

    def device_as(self, tensor: torch.Tensor, non_blocking: bool = False):
        if tensor.device == self.device():
            return self
        return self.from_storage(self.storage.device_as(tensor, non_blocking))
rusty1s's avatar
rusty1s committed
121
122
123

    # Formats #################################################################

rusty1s's avatar
rusty1s committed
124
125
    def coo(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.row(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
126

rusty1s's avatar
rusty1s committed
127
128
    def csr(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        return self.storage.rowptr(), self.storage.col(), self.storage.value()
rusty1s's avatar
rusty1s committed
129

rusty1s's avatar
rusty1s committed
130
131
132
133
134
135
    def csc(self) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
        perm = self.storage.csr2csc()
        value = self.storage.value()
        if value is not None:
            value = value[perm]
        return self.storage.colptr(), self.storage.row()[perm], value
rusty1s's avatar
rusty1s committed
136
137
138

    # Storage inheritance #####################################################

rusty1s's avatar
rusty1s committed
139
    def has_value(self) -> bool:
rusty1s's avatar
rusty1s committed
140
        return self.storage.has_value()
rusty1s's avatar
rusty1s committed
141

rusty1s's avatar
rusty1s committed
142
143
144
    def set_value_(self, value: Optional[torch.Tensor],
                   layout: Optional[str] = None):
        self.storage.set_value_(value, layout)
rusty1s's avatar
rusty1s committed
145
146
        return self

rusty1s's avatar
rusty1s committed
147
148
149
150
151
152
    def set_value(self, value: Optional[torch.Tensor],
                  layout: Optional[str] = None):
        return self.from_storage(self.storage.set_value(value, layout))

    def sparse_sizes(self) -> List[int]:
        return self.storage.sparse_sizes()
rusty1s's avatar
rusty1s committed
153

rusty1s's avatar
rusty1s committed
154
155
    def sparse_size(self, dim: int) -> int:
        return self.storage.sparse_sizes()[dim]
rusty1s's avatar
rusty1s committed
156

rusty1s's avatar
rusty1s committed
157
158
    def sparse_resize(self, sparse_sizes: List[int]):
        return self.from_storage(self.storage.sparse_resize(sparse_sizes))
rusty1s's avatar
rusty1s committed
159

rusty1s's avatar
rusty1s committed
160
    def is_coalesced(self) -> bool:
rusty1s's avatar
rusty1s committed
161
        return self.storage.is_coalesced()
rusty1s's avatar
rusty1s committed
162

rusty1s's avatar
rusty1s committed
163
    def coalesce(self, reduce: str = "add"):
rusty1s's avatar
rusty1s committed
164
        return self.from_storage(self.storage.coalesce(reduce))
rusty1s's avatar
rusty1s committed
165

rusty1s's avatar
rusty1s committed
166
167
    def fill_cache_(self):
        self.storage.fill_cache_()
rusty1s's avatar
rusty1s committed
168
169
        return self

rusty1s's avatar
rusty1s committed
170
171
    def clear_cache_(self):
        self.storage.clear_cache_()
rusty1s's avatar
rusty1s committed
172
173
174
175
        return self

    # Utility functions #######################################################

rusty1s's avatar
rusty1s committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    def fill_value_(self, fill_value: float,
                    options: Optional[torch.Tensor] = None):
        if options is not None:
            value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype,
                               device=self.device())
        else:
            value = torch.full((self.nnz(), ), fill_value,
                               device=self.device())
        return self.set_value_(value, layout='coo')

    def fill_value(self, fill_value: float,
                   options: Optional[torch.Tensor] = None):
        if options is not None:
            value = torch.full((self.nnz(), ), fill_value, dtype=options.dtype,
                               device=self.device())
        else:
            value = torch.full((self.nnz(), ), fill_value,
                               device=self.device())
        return self.set_value(value, layout='coo')

    def sizes(self) -> List[int]:
        sizes = self.sparse_sizes()
        value = self.storage.value()
        if value is not None:
            sizes += value.size()[1:]
        return sizes

    def size(self, dim: int) -> int:
        return self.sizes()[dim]

    def dim(self) -> int:
        return len(self.sizes())

    def nnz(self) -> int:
        return self.storage.col().numel()

    def numel(self) -> int:
        value = self.storage.value()
        if value is not None:
            return value.numel()
        else:
            return self.nnz()
rusty1s's avatar
rusty1s committed
218

rusty1s's avatar
rusty1s committed
219
    def density(self) -> float:
rusty1s's avatar
rusty1s committed
220
221
        return self.nnz() / (self.sparse_size(0) * self.sparse_size(1))

rusty1s's avatar
rusty1s committed
222
    def sparsity(self) -> float:
rusty1s's avatar
rusty1s committed
223
224
        return 1 - self.density()

rusty1s's avatar
rusty1s committed
225
    def avg_row_length(self) -> float:
rusty1s's avatar
rusty1s committed
226
227
        return self.nnz() / self.sparse_size(0)

rusty1s's avatar
rusty1s committed
228
    def avg_col_length(self) -> float:
rusty1s's avatar
rusty1s committed
229
230
        return self.nnz() / self.sparse_size(1)

rusty1s's avatar
rusty1s committed
231
    def is_quadratic(self) -> bool:
rusty1s's avatar
rusty1s committed
232
233
        return self.sparse_size(0) == self.sparse_size(1)

rusty1s's avatar
rusty1s committed
234
235
    def is_symmetric(self) -> bool:
        if not self.is_quadratic():
rusty1s's avatar
rusty1s committed
236
237
            return False

rusty1s's avatar
rusty1s committed
238
239
240
241
242
243
        rowptr, col, value1 = self.csr()
        colptr, row, value2 = self.csc()

        if (rowptr != colptr).any() or (col != row).any():
            return False

rusty1s's avatar
rusty1s committed
244
        if value1 is None or value2 is None:
rusty1s's avatar
rusty1s committed
245
            return True
rusty1s's avatar
rusty1s committed
246
247
        else:
            return bool((value1 == value2).all())
rusty1s's avatar
rusty1s committed
248
249

    def detach_(self):
rusty1s's avatar
rusty1s committed
250
251
252
        value = self.storage.value()
        if value is not None:
            value.detach_()
rusty1s's avatar
rusty1s committed
253
254
255
        return self

    def detach(self):
rusty1s's avatar
rusty1s committed
256
257
258
259
260
261
262
263
264
265
266
        value = self.storage.value()
        if value is not None:
            value = value.detach()
        return self.set_value(value, layout='coo')

    def requires_grad(self) -> bool:
        value = self.storage.value()
        if value is not None:
            return value.requires_grad
        else:
            return False
rusty1s's avatar
rusty1s committed
267

rusty1s's avatar
rusty1s committed
268
269
    def requires_grad_(self, requires_grad: bool = True,
                       options: Optional[torch.Tensor] = None):
rusty1s's avatar
rusty1s committed
270
        if requires_grad and not self.has_value():
rusty1s's avatar
rusty1s committed
271
            self.fill_value_(1., options=options)
rusty1s's avatar
rusty1s committed
272

rusty1s's avatar
rusty1s committed
273
274
275
        value = self.storage.value()
        if value is not None:
            value.requires_grad_(requires_grad)
rusty1s's avatar
rusty1s committed
276
277
        return self

rusty1s's avatar
rusty1s committed
278
    def pin_memory(self):
rusty1s's avatar
rusty1s committed
279
        return self.from_storage(self.storage.pin_memory())
rusty1s's avatar
rusty1s committed
280

rusty1s's avatar
rusty1s committed
281
282
    def is_pinned(self) -> bool:
        return self.storage.is_pinned()
rusty1s's avatar
rusty1s committed
283

rusty1s's avatar
rusty1s committed
284
285
286
287
288
289
    def options(self) -> torch.Tensor:
        value = self.storage.value()
        if value is not None:
            return value
        else:
            return torch.tensor(0., device=self.storage.col().device)
rusty1s's avatar
rusty1s committed
290
291

    def device(self):
rusty1s's avatar
rusty1s committed
292
        return self.storage.col().device
rusty1s's avatar
rusty1s committed
293
294

    def cpu(self):
rusty1s's avatar
rusty1s committed
295
        return self.device_as(torch.tensor(0.), non_blocking=False)
rusty1s's avatar
rusty1s committed
296

rusty1s's avatar
rusty1s committed
297
298
299
    def cuda(self, options=Optional[torch.Tensor], non_blocking: bool = False):
        if options is not None:
            return self.device_as(options, non_blocking)
rusty1s's avatar
rusty1s committed
300
        else:
rusty1s's avatar
rusty1s committed
301
302
            options = torch.tensor(0.).cuda()
            return self.device_as(options, non_blocking)
rusty1s's avatar
rusty1s committed
303

rusty1s's avatar
rusty1s committed
304
305
    def is_cuda(self) -> bool:
        return self.storage.col().is_cuda
rusty1s's avatar
rusty1s committed
306

rusty1s's avatar
rusty1s committed
307
308
    def dtype(self):
        return self.options().dtype
rusty1s's avatar
rusty1s committed
309

rusty1s's avatar
rusty1s committed
310
311
    def is_floating_point(self) -> bool:
        return torch.is_floating_point(self.options())
rusty1s's avatar
rusty1s committed
312
313

    def bfloat16(self):
rusty1s's avatar
rusty1s committed
314
        return self.type_as(torch.tensor(0, dtype=torch.bfloat16))
rusty1s's avatar
rusty1s committed
315
316

    def bool(self):
rusty1s's avatar
rusty1s committed
317
        return self.type_as(torch.tensor(0, dtype=torch.bool))
rusty1s's avatar
rusty1s committed
318
319

    def byte(self):
rusty1s's avatar
rusty1s committed
320
        return self.type_as(torch.tensor(0, dtype=torch.uint8))
rusty1s's avatar
rusty1s committed
321
322

    def char(self):
rusty1s's avatar
rusty1s committed
323
        return self.type_as(torch.tensor(0, dtype=torch.int8))
rusty1s's avatar
rusty1s committed
324
325

    def half(self):
rusty1s's avatar
rusty1s committed
326
        return self.type_as(torch.tensor(0, dtype=torch.half))
rusty1s's avatar
rusty1s committed
327
328

    def float(self):
rusty1s's avatar
rusty1s committed
329
        return self.type_as(torch.tensor(0, dtype=torch.float))
rusty1s's avatar
rusty1s committed
330
331

    def double(self):
rusty1s's avatar
rusty1s committed
332
        return self.type_as(torch.tensor(0, dtype=torch.double))
rusty1s's avatar
rusty1s committed
333
334

    def short(self):
rusty1s's avatar
rusty1s committed
335
        return self.type_as(torch.tensor(0, dtype=torch.short))
rusty1s's avatar
rusty1s committed
336
337

    def int(self):
rusty1s's avatar
rusty1s committed
338
        return self.type_as(torch.tensor(0, dtype=torch.int))
rusty1s's avatar
rusty1s committed
339
340

    def long(self):
rusty1s's avatar
rusty1s committed
341
        return self.type_as(torch.tensor(0, dtype=torch.long))
rusty1s's avatar
rusty1s committed
342
343
344

    # Conversions #############################################################

rusty1s's avatar
rusty1s committed
345
    def to_dense(self, options: Optional[torch.Tensor] = None):
rusty1s's avatar
rusty1s committed
346
        row, col, value = self.coo()
rusty1s's avatar
rusty1s committed
347

rusty1s's avatar
fixes  
rusty1s committed
348
349
350
351
        if value is not None:
            mat = torch.zeros(self.sizes(), dtype=value.dtype,
                              device=self.device())
        elif options is not None:
rusty1s's avatar
rusty1s committed
352
353
354
355
356
357
358
359
360
361
362
            mat = torch.zeros(self.sizes(), dtype=options.dtype,
                              device=self.device())
        else:
            mat = torch.zeros(self.sizes(), device=self.device())

        if value is not None:
            mat[row, col] = value
        else:
            mat[row, col] = torch.ones(self.nnz(), dtype=mat.dtype,
                                       device=mat.device)

rusty1s's avatar
rusty1s committed
363
364
        return mat

rusty1s's avatar
rusty1s committed
365
    def to_torch_sparse_coo_tensor(self, options: Optional[torch.Tensor]):
rusty1s's avatar
rusty1s committed
366
367
368
        row, col, value = self.coo()
        index = torch.stack([row, col], dim=0)
        if value is None:
rusty1s's avatar
rusty1s committed
369
370
371
            if options is not None:
                value = torch.ones(self.nnz(), dtype=options.dtype,
                                   device=self.device())
rusty1s's avatar
rusty1s committed
372
            else:
rusty1s's avatar
rusty1s committed
373
                value = torch.ones(self.nnz(), device=self.device())
rusty1s's avatar
rusty1s committed
374

rusty1s's avatar
rusty1s committed
375
        return torch.sparse_coo_tensor(index, value, self.sizes())
rusty1s's avatar
rusty1s committed
376

rusty1s's avatar
repr  
rusty1s committed
377
378
379
380
    # Standard Operators ######################################################

    # def __matmul__(self, other):
    #     return matmul(self, other, reduce='sum')
rusty1s's avatar
rusty1s committed
381

rusty1s's avatar
rusty1s committed
382

rusty1s's avatar
rusty1s committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# SparseTensor.matmul = matmul

# Python Bindings #############################################################

Dtype = Optional[torch.dtype]
Device = Optional[Union[torch.device, str]]


@torch.jit.ignore
def share_memory_(self: SparseTensor) -> SparseTensor:
    self.storage.share_memory_()


@torch.jit.ignore
def is_shared(self: SparseTensor) -> bool:
    return self.storage.is_shared()


@torch.jit.ignore
rusty1s's avatar
typing  
rusty1s committed
402
403
404
def to(self, *args: Optional[List[Any]],
       **kwargs: Optional[Dict[str, Any]]) -> SparseTensor:

rusty1s's avatar
rusty1s committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    dtype: Dtype = getattr(kwargs, 'dtype', None)
    device: Device = getattr(kwargs, 'device', None)
    non_blocking: bool = getattr(kwargs, 'non_blocking', False)

    for arg in args:
        if isinstance(arg, str) or isinstance(arg, torch.device):
            device = arg
        if isinstance(arg, torch.dtype):
            dtype = arg

    if dtype is not None:
        self = self.type_as(torch.tensor(0., dtype=dtype))
    if device is not None:
        self = self.device_as(torch.tensor(0., device=device), non_blocking)

    return self


rusty1s's avatar
repr  
rusty1s committed
423
@torch.jit.ignore
rusty1s's avatar
typing  
rusty1s committed
424
def __getitem__(self: SparseTensor, index: Any) -> SparseTensor:
rusty1s's avatar
repr  
rusty1s committed
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
    index = list(index) if isinstance(index, tuple) else [index]
    # More than one `Ellipsis` is not allowed...
    if len([i for i in index if not torch.is_tensor(i) and i == ...]) > 1:
        raise SyntaxError

    dim = 0
    out = self
    while len(index) > 0:
        item = index.pop(0)
        if isinstance(item, int):
            out = out.select(dim, item)
            dim += 1
        elif isinstance(item, slice):
            if item.step is not None:
                raise ValueError('Step parameter not yet supported.')

            start = 0 if item.start is None else item.start
            start = self.size(dim) + start if start < 0 else start

            stop = self.size(dim) if item.stop is None else item.stop
            stop = self.size(dim) + stop if stop < 0 else stop

            out = out.narrow(dim, start, max(stop - start, 0))
            dim += 1
        elif torch.is_tensor(item):
            if item.dtype == torch.bool:
                out = out.masked_select(dim, item)
                dim += 1
            elif item.dtype == torch.long:
                out = out.index_select(dim, item)
                dim += 1
        elif item == Ellipsis:
            if self.dim() - len(index) < dim:
                raise SyntaxError
            dim = self.dim() - len(index)
        else:
            raise SyntaxError

    return out


@torch.jit.ignore
rusty1s's avatar
typing  
rusty1s committed
467
def __repr__(self: SparseTensor) -> str:
rusty1s's avatar
repr  
rusty1s committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
    i = ' ' * 6
    row, col, value = self.coo()
    infos = []
    infos += [f'row={indent(row.__repr__(), i)[len(i):]}']
    infos += [f'col={indent(col.__repr__(), i)[len(i):]}']

    if value is not None:
        infos += [f'val={indent(value.__repr__(), i)[len(i):]}']

    infos += [
        f'size={tuple(self.sizes())}, '
        f'nnz={self.nnz()}, '
        f'density={100 * self.density():.02f}%'
    ]
    infos = ',\n'.join(infos)

    i = ' ' * (len(self.__class__.__name__) + 1)
    return f'{self.__class__.__name__}({indent(infos, i)[len(i):]})'


rusty1s's avatar
rusty1s committed
488
489
490
SparseTensor.share_memory_ = share_memory_
SparseTensor.is_shared = is_shared
SparseTensor.to = to
rusty1s's avatar
repr  
rusty1s committed
491
492
SparseTensor.__getitem__ = __getitem__
SparseTensor.__repr__ = __repr__
rusty1s's avatar
rusty1s committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557

# Scipy Conversions ###########################################################

ScipySparseMatrix = Union[scipy.sparse.coo_matrix, scipy.sparse.
                          csr_matrix, scipy.sparse.csc_matrix]


@torch.jit.ignore
def from_scipy(mat: ScipySparseMatrix) -> SparseTensor:
    colptr = None
    if isinstance(mat, scipy.sparse.csc_matrix):
        colptr = torch.from_numpy(mat.indptr).to(torch.long)

    mat = mat.tocsr()
    rowptr = torch.from_numpy(mat.indptr).to(torch.long)
    mat = mat.tocoo()
    row = torch.from_numpy(mat.row).to(torch.long)
    col = torch.from_numpy(mat.col).to(torch.long)
    value = torch.from_numpy(mat.data)
    sparse_sizes = mat.shape[:2]

    storage = SparseStorage(row=row, rowptr=rowptr, col=col, value=value,
                            sparse_sizes=sparse_sizes, rowcount=None,
                            colptr=colptr, colcount=None, csr2csc=None,
                            csc2csr=None, is_sorted=True)

    return SparseTensor.from_storage(storage)


@torch.jit.ignore
def to_scipy(self: SparseTensor, layout: Optional[str] = None,
             dtype: Optional[torch.dtype] = None) -> ScipySparseMatrix:
    assert self.dim() == 2
    layout = get_layout(layout)

    if not self.has_value():
        ones = torch.ones(self.nnz(), dtype=dtype).numpy()

    if layout == 'coo':
        row, col, value = self.coo()
        row = row.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.coo_matrix((value, (row, col)), self.sizes())
    elif layout == 'csr':
        rowptr, col, value = self.csr()
        rowptr = rowptr.detach().cpu().numpy()
        col = col.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csr_matrix((value, col, rowptr), self.sizes())
    elif layout == 'csc':
        colptr, row, value = self.csc()
        colptr = colptr.detach().cpu().numpy()
        row = row.detach().cpu().numpy()
        value = value.detach().cpu().numpy() if self.has_value() else ones
        return scipy.sparse.csc_matrix((value, row, colptr), self.sizes())


SparseTensor.from_scipy = from_scipy
SparseTensor.to_scipy = to_scipy

# Hacky fixes #################################################################

# Fix standard operators of `torch.Tensor` for PyTorch<=1.3.
# https://github.com/pytorch/pytorch/pull/31769
rusty1s's avatar
rusty1s committed
558
559
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])
rusty1s's avatar
typo  
rusty1s committed
560
if (TORCH_MAJOR < 1) or (TORCH_MAJOR == 1 and TORCH_MINOR < 4):
rusty1s's avatar
rusty1s committed
561
562

    def add(self, other):
rusty1s's avatar
rusty1s committed
563
564
565
        if torch.is_tensor(other) or is_scalar(other):
            return self.add(other)
        return NotImplemented
rusty1s's avatar
rusty1s committed
566
567

    def mul(self, other):
rusty1s's avatar
rusty1s committed
568
569
570
        if torch.is_tensor(other) or is_scalar(other):
            return self.mul(other)
        return NotImplemented
rusty1s's avatar
rusty1s committed
571
572

    torch.Tensor.__add__ = add
rusty1s's avatar
rusty1s committed
573
    torch.Tensor.__mul__ = mul