test_distributed_convolution.py 13.8 KB
Newer Older
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import unittest
from parameterized import parameterized

import torch
import torch.nn.functional as F
import torch.distributed as dist
Boris Bonev's avatar
Boris Bonev committed
39
import torch_harmonics as th
40
41
42
import torch_harmonics.distributed as thd


43
class TestDistributedDiscreteContinuousConvolution(unittest.TestCase):
44
    """Test the distributed discrete-continuous convolution module."""
45
46
47

    @classmethod
    def setUpClass(cls):
apaaris's avatar
apaaris committed
48
49
50
51
52
53
54
55
        """
        Set up the distributed convolution test.
        
        Parameters
        ----------
        cls : TestDistributedDiscreteContinuousConvolution
            The test class instance
        """
56
57

        # set up distributed
Boris Bonev's avatar
Boris Bonev committed
58
59
60
61
62
        cls.world_rank = int(os.getenv("WORLD_RANK", 0))
        cls.grid_size_h = int(os.getenv("GRID_H", 1))
        cls.grid_size_w = int(os.getenv("GRID_W", 1))
        port = int(os.getenv("MASTER_PORT", "29501"))
        master_address = os.getenv("MASTER_ADDR", "localhost")
63
64
65
66
67
68
69
        cls.world_size = cls.grid_size_h * cls.grid_size_w

        if torch.cuda.is_available():
            if cls.world_rank == 0:
                print("Running test on GPU")
            local_rank = cls.world_rank % torch.cuda.device_count()
            cls.device = torch.device(f"cuda:{local_rank}")
70
            torch.cuda.set_device(local_rank)
71
            torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
72
            proc_backend = "nccl"
73
74
75
        else:
            if cls.world_rank == 0:
                print("Running test on CPU")
Boris Bonev's avatar
Boris Bonev committed
76
77
            cls.device = torch.device("cpu")
            proc_backend = "gloo"
78
79
        torch.manual_seed(333)

Boris Bonev's avatar
Boris Bonev committed
80
81
        dist.init_process_group(backend=proc_backend, init_method=f"tcp://{master_address}:{port}", rank=cls.world_rank, world_size=cls.world_size)

82
83
84
85
        cls.wrank = cls.world_rank % cls.grid_size_w
        cls.hrank = cls.world_rank // cls.grid_size_w

        # now set up the comm groups:
Boris Bonev's avatar
Boris Bonev committed
86
        # set default
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        cls.w_group = None
        cls.h_group = None

        # do the init
        wgroups = []
        for w in range(0, cls.world_size, cls.grid_size_w):
            start = w
            end = w + cls.grid_size_w
            wgroups.append(list(range(start, end)))

        if cls.world_rank == 0:
            print("w-groups:", wgroups)
        for grp in wgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.w_group = tmp_group

        # transpose:
        hgroups = [sorted(list(i)) for i in zip(*wgroups)]

        if cls.world_rank == 0:
            print("h-groups:", hgroups)
        for grp in hgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.h_group = tmp_group

        if cls.world_rank == 0:
            print(f"Running distributed tests on grid H x W = {cls.grid_size_h} x {cls.grid_size_w}")

        # initializing sht
        thd.init(cls.h_group, cls.w_group)

124
125
    @classmethod
    def tearDownClass(cls):
126
127
        thd.finalize()
        dist.destroy_process_group(None)
128

129
    def _split_helper(self, tensor):
apaaris's avatar
apaaris committed
130

131
132
133
134
135
136
137
138
139
140
        with torch.no_grad():
            # split in W
            tensor_list_local = thd.split_tensor_along_dim(tensor, dim=-1, num_chunks=self.grid_size_w)
            tensor_local = tensor_list_local[self.wrank]

            # split in H
            tensor_list_local = thd.split_tensor_along_dim(tensor_local, dim=-2, num_chunks=self.grid_size_h)
            tensor_local = tensor_list_local[self.hrank]

        return tensor_local
Boris Bonev's avatar
Boris Bonev committed
141

142
    def _gather_helper_fwd(self, tensor, B, C, convolution_dist):
apaaris's avatar
apaaris committed
143

144
        # we need the shapes
145
146
        lat_shapes = convolution_dist.lat_out_shapes
        lon_shapes = convolution_dist.lon_out_shapes
147
148

        # gather in W
Thorsten Kurth's avatar
Thorsten Kurth committed
149
        tensor = tensor.contiguous()
150
        if self.grid_size_w > 1:
151
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
152
153
154
155
156
157
158
159
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
Thorsten Kurth's avatar
Thorsten Kurth committed
160
        tensor_gather = tensor_gather.contiguous()
161
        if self.grid_size_h > 1:
162
            gather_shapes = [(B, C, h, convolution_dist.nlon_out) for h in lat_shapes]
163
164
165
166
167
168
169
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

170
    def _gather_helper_bwd(self, tensor, B, C, convolution_dist):
171

172
        # we need the shapes
173
174
        lat_shapes = convolution_dist.lat_in_shapes
        lon_shapes = convolution_dist.lon_in_shapes
175
176
177

        # gather in W
        if self.grid_size_w > 1:
178
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
179
180
181
182
183
184
185
186
187
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
188
            gather_shapes = [(B, C, h, convolution_dist.nlon_in) for h in lat_shapes]
189
190
191
192
193
194
195
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

Boris Bonev's avatar
Boris Bonev committed
196
197
    @parameterized.expand(
        [
Thorsten Kurth's avatar
Thorsten Kurth committed
198
199
200
201
202
203
204
205
206
207
208
209
            [128, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [129, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, (3, 2), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 64, 128, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 2, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 6, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [129, 256, 129, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 8, (3, 2), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [64, 128, 128, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 2, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 6, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
210
211
212
213
            [129, 256, 129, 256, 32, 8, (3, 4), "morlet", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [129, 256, 129, 256, 32, 8, (3, 4), "morlet", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [65, 128, 129, 256, 32, 8, (3, 4), "morlet", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [129, 256, 65, 128, 32, 8, (3, 4), "morlet", "mean", 1, "equiangular", "equiangular", False, 1e-5],
Boris Bonev's avatar
Boris Bonev committed
214
215
        ]
    )
216
217
218
    def test_distributed_disco_conv(
        self, nlat_in, nlon_in, nlat_out, nlon_out, batch_size, num_chan, kernel_shape, basis_type, basis_norm_mode, groups, grid_in, grid_out, transpose, tol
    ):
219

apaaris's avatar
apaaris committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        """
        Test the distributed discrete-continuous convolution module.
        
        Parameters
        ----------
        nlat_in : int
            Number of latitude points in input
        nlon_in : int
            Number of longitude points in input
        nlat_out : int
            Number of latitude points in output
        nlon_out : int
            Number of longitude points in output
        batch_size : int
            Batch size
        num_chan : int
            Number of channels
        kernel_shape : tuple
            Kernel shape
        basis_type : str
            Basis type
        basis_norm_mode : str
            Basis normalization mode
        groups : int
            Number of groups
        grid_in : str
            Grid type for input
        grid_out : str
            Grid type for output
        transpose : bool
            Whether to transpose the convolution
        tol : float
            Tolerance for numerical equivalence
        """
        
255
        B, C, H, W = batch_size, num_chan, nlat_in, nlon_in
Boris Bonev's avatar
Boris Bonev committed
256
257
258
259
260
261

        disco_args = dict(
            in_channels=C,
            out_channels=C,
            in_shape=(nlat_in, nlon_in),
            out_shape=(nlat_out, nlon_out),
262
263
            basis_type=basis_type,
            basis_norm_mode=basis_norm_mode,
Boris Bonev's avatar
Boris Bonev committed
264
265
266
267
268
269
270
            kernel_shape=kernel_shape,
            groups=groups,
            grid_in=grid_in,
            grid_out=grid_out,
            bias=True,
        )

271
        # set up handles
272
        if transpose:
Boris Bonev's avatar
Boris Bonev committed
273
            conv_local = th.DiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
274
            conv_dist = thd.DistributedDiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
275
        else:
Boris Bonev's avatar
Boris Bonev committed
276
            conv_local = th.DiscreteContinuousConvS2(**disco_args).to(self.device)
277
            conv_dist = thd.DistributedDiscreteContinuousConvS2(**disco_args).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
278

279
280
281
        # copy the weights from the local conv into the dist conv
        with torch.no_grad():
            conv_dist.weight.copy_(conv_local.weight)
Boris Bonev's avatar
Boris Bonev committed
282
283
            if disco_args["bias"]:
                conv_dist.bias.copy_(conv_local.bias)
284
285

        # create tensors
286
        inp_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)
Boris Bonev's avatar
Boris Bonev committed
287

288
        #############################################################
289
        # local conv
290
291
292
        #############################################################
        # FWD pass
        inp_full.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
293
294
        out_full = conv_local(inp_full)

295
296
297
298
        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)
Boris Bonev's avatar
Boris Bonev committed
299

300
301
302
        # BWD pass
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
303

304
        #############################################################
305
        # distributed conv
306
307
308
309
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
310
311
        out_local = conv_dist(inp_local)

312
313
        # BWD pass
        ograd_local = self._split_helper(ograd_full)
Boris Bonev's avatar
Boris Bonev committed
314
        out_local = conv_dist(inp_local)
315
316
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
317

318
319
320
321
        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
322
            out_gather_full = self._gather_helper_fwd(out_local, B, C, conv_dist)
Boris Bonev's avatar
Boris Bonev committed
323
            err = torch.mean(torch.norm(out_full - out_gather_full, p="fro", dim=(-1, -2)) / torch.norm(out_full, p="fro", dim=(-1, -2)))
324
325
326
            if self.world_rank == 0:
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)
Boris Bonev's avatar
Boris Bonev committed
327

328
329
330
331
        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
332
            igrad_gather_full = self._gather_helper_bwd(igrad_local, B, C, conv_dist)
Thorsten Kurth's avatar
Thorsten Kurth committed
333

Boris Bonev's avatar
Boris Bonev committed
334
            err = torch.mean(torch.norm(igrad_full - igrad_gather_full, p="fro", dim=(-1, -2)) / torch.norm(igrad_full, p="fro", dim=(-1, -2)))
335
336
337
338
339
            if self.world_rank == 0:
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)


Boris Bonev's avatar
Boris Bonev committed
340
if __name__ == "__main__":
341
    unittest.main()