test_distributed_convolution.py 12.6 KB
Newer Older
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import unittest
from parameterized import parameterized

import torch
import torch.nn.functional as F
import torch.distributed as dist
Boris Bonev's avatar
Boris Bonev committed
39
import torch_harmonics as th
40
41
42
import torch_harmonics.distributed as thd


43
class TestDistributedDiscreteContinuousConvolution(unittest.TestCase):
44
45
46
47
48

    @classmethod
    def setUpClass(cls):

        # set up distributed
Boris Bonev's avatar
Boris Bonev committed
49
50
51
52
53
        cls.world_rank = int(os.getenv("WORLD_RANK", 0))
        cls.grid_size_h = int(os.getenv("GRID_H", 1))
        cls.grid_size_w = int(os.getenv("GRID_W", 1))
        port = int(os.getenv("MASTER_PORT", "29501"))
        master_address = os.getenv("MASTER_ADDR", "localhost")
54
55
56
57
58
59
60
        cls.world_size = cls.grid_size_h * cls.grid_size_w

        if torch.cuda.is_available():
            if cls.world_rank == 0:
                print("Running test on GPU")
            local_rank = cls.world_rank % torch.cuda.device_count()
            cls.device = torch.device(f"cuda:{local_rank}")
61
            torch.cuda.set_device(local_rank)
62
            torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
63
            proc_backend = "nccl"
64
65
66
        else:
            if cls.world_rank == 0:
                print("Running test on CPU")
Boris Bonev's avatar
Boris Bonev committed
67
68
            cls.device = torch.device("cpu")
            proc_backend = "gloo"
69
70
        torch.manual_seed(333)

Boris Bonev's avatar
Boris Bonev committed
71
72
        dist.init_process_group(backend=proc_backend, init_method=f"tcp://{master_address}:{port}", rank=cls.world_rank, world_size=cls.world_size)

73
74
75
76
        cls.wrank = cls.world_rank % cls.grid_size_w
        cls.hrank = cls.world_rank // cls.grid_size_w

        # now set up the comm groups:
Boris Bonev's avatar
Boris Bonev committed
77
        # set default
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        cls.w_group = None
        cls.h_group = None

        # do the init
        wgroups = []
        for w in range(0, cls.world_size, cls.grid_size_w):
            start = w
            end = w + cls.grid_size_w
            wgroups.append(list(range(start, end)))

        if cls.world_rank == 0:
            print("w-groups:", wgroups)
        for grp in wgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.w_group = tmp_group

        # transpose:
        hgroups = [sorted(list(i)) for i in zip(*wgroups)]

        if cls.world_rank == 0:
            print("h-groups:", hgroups)
        for grp in hgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.h_group = tmp_group

        if cls.world_rank == 0:
            print(f"Running distributed tests on grid H x W = {cls.grid_size_h} x {cls.grid_size_w}")

        # initializing sht
        thd.init(cls.h_group, cls.w_group)

115
116
    @classmethod
    def tearDownClass(cls):
117
118
        thd.finalize()
        dist.destroy_process_group(None)
119

120
121
122
123
124
125
126
127
128
129
130
    def _split_helper(self, tensor):
        with torch.no_grad():
            # split in W
            tensor_list_local = thd.split_tensor_along_dim(tensor, dim=-1, num_chunks=self.grid_size_w)
            tensor_local = tensor_list_local[self.wrank]

            # split in H
            tensor_list_local = thd.split_tensor_along_dim(tensor_local, dim=-2, num_chunks=self.grid_size_h)
            tensor_local = tensor_list_local[self.hrank]

        return tensor_local
Boris Bonev's avatar
Boris Bonev committed
131

132
    def _gather_helper_fwd(self, tensor, B, C, convolution_dist):
133
        # we need the shapes
134
135
        lat_shapes = convolution_dist.lat_out_shapes
        lon_shapes = convolution_dist.lon_out_shapes
136
137

        # gather in W
Thorsten Kurth's avatar
Thorsten Kurth committed
138
        tensor = tensor.contiguous()
139
        if self.grid_size_w > 1:
140
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
141
142
143
144
145
146
147
148
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
Thorsten Kurth's avatar
Thorsten Kurth committed
149
        tensor_gather = tensor_gather.contiguous()
150
        if self.grid_size_h > 1:
151
            gather_shapes = [(B, C, h, convolution_dist.nlon_out) for h in lat_shapes]
152
153
154
155
156
157
158
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

159
    def _gather_helper_bwd(self, tensor, B, C, convolution_dist):
160
        # we need the shapes
161
162
        lat_shapes = convolution_dist.lat_in_shapes
        lon_shapes = convolution_dist.lon_in_shapes
163
164
165

        # gather in W
        if self.grid_size_w > 1:
166
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
167
168
169
170
171
172
173
174
175
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
176
            gather_shapes = [(B, C, h, convolution_dist.nlon_in) for h in lat_shapes]
177
178
179
180
181
182
183
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

Boris Bonev's avatar
Boris Bonev committed
184
185
    @parameterized.expand(
        [
Thorsten Kurth's avatar
Thorsten Kurth committed
186
187
188
189
190
191
192
193
194
195
196
197
            [128, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [129, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, (3, 2), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 64, 128, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 2, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 6, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [129, 256, 129, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 8, (3, 2), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [64, 128, 128, 256, 32, 8, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 8, (3), "piecewise linear", "mean", 2, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 6, (3), "piecewise linear", "mean", 1, "equiangular", "equiangular", True, 1e-5],
198
199
200
201
            [129, 256, 129, 256, 32, 8, (3, 4), "morlet", "mean", 1, "equiangular", "equiangular", False, 1e-5],
            [129, 256, 129, 256, 32, 8, (3, 4), "morlet", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [65, 128, 129, 256, 32, 8, (3, 4), "morlet", "mean", 1, "equiangular", "equiangular", True, 1e-5],
            [129, 256, 65, 128, 32, 8, (3, 4), "morlet", "mean", 1, "equiangular", "equiangular", False, 1e-5],
Boris Bonev's avatar
Boris Bonev committed
202
203
        ]
    )
204
205
206
    def test_distributed_disco_conv(
        self, nlat_in, nlon_in, nlat_out, nlon_out, batch_size, num_chan, kernel_shape, basis_type, basis_norm_mode, groups, grid_in, grid_out, transpose, tol
    ):
207

208
        B, C, H, W = batch_size, num_chan, nlat_in, nlon_in
Boris Bonev's avatar
Boris Bonev committed
209
210
211
212
213
214

        disco_args = dict(
            in_channels=C,
            out_channels=C,
            in_shape=(nlat_in, nlon_in),
            out_shape=(nlat_out, nlon_out),
215
216
            basis_type=basis_type,
            basis_norm_mode=basis_norm_mode,
Boris Bonev's avatar
Boris Bonev committed
217
218
219
220
221
222
223
            kernel_shape=kernel_shape,
            groups=groups,
            grid_in=grid_in,
            grid_out=grid_out,
            bias=True,
        )

224
        # set up handles
225
        if transpose:
Boris Bonev's avatar
Boris Bonev committed
226
            conv_local = th.DiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
227
            conv_dist = thd.DistributedDiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
228
        else:
Boris Bonev's avatar
Boris Bonev committed
229
            conv_local = th.DiscreteContinuousConvS2(**disco_args).to(self.device)
230
            conv_dist = thd.DistributedDiscreteContinuousConvS2(**disco_args).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
231

232
233
234
        # copy the weights from the local conv into the dist conv
        with torch.no_grad():
            conv_dist.weight.copy_(conv_local.weight)
Boris Bonev's avatar
Boris Bonev committed
235
236
            if disco_args["bias"]:
                conv_dist.bias.copy_(conv_local.bias)
237
238

        # create tensors
239
        inp_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)
Boris Bonev's avatar
Boris Bonev committed
240

241
        #############################################################
242
        # local conv
243
244
245
        #############################################################
        # FWD pass
        inp_full.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
246
247
        out_full = conv_local(inp_full)

248
249
250
251
        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)
Boris Bonev's avatar
Boris Bonev committed
252

253
254
255
        # BWD pass
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
256

257
        #############################################################
258
        # distributed conv
259
260
261
262
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
263
264
        out_local = conv_dist(inp_local)

265
266
        # BWD pass
        ograd_local = self._split_helper(ograd_full)
Boris Bonev's avatar
Boris Bonev committed
267
        out_local = conv_dist(inp_local)
268
269
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
270

271
272
273
274
        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
275
            out_gather_full = self._gather_helper_fwd(out_local, B, C, conv_dist)
Boris Bonev's avatar
Boris Bonev committed
276
            err = torch.mean(torch.norm(out_full - out_gather_full, p="fro", dim=(-1, -2)) / torch.norm(out_full, p="fro", dim=(-1, -2)))
277
278
279
            if self.world_rank == 0:
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)
Boris Bonev's avatar
Boris Bonev committed
280

281
282
283
284
        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
285
            igrad_gather_full = self._gather_helper_bwd(igrad_local, B, C, conv_dist)
Thorsten Kurth's avatar
Thorsten Kurth committed
286

Boris Bonev's avatar
Boris Bonev committed
287
            err = torch.mean(torch.norm(igrad_full - igrad_gather_full, p="fro", dim=(-1, -2)) / torch.norm(igrad_full, p="fro", dim=(-1, -2)))
288
289
290
291
292
            if self.world_rank == 0:
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)


Boris Bonev's avatar
Boris Bonev committed
293
if __name__ == "__main__":
294
    unittest.main()