test_distributed_convolution.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
# 
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import unittest
from parameterized import parameterized

import torch
import torch.nn.functional as F
import torch.distributed as dist
import torch_harmonics as harmonics
import torch_harmonics.distributed as thd


43
class TestDistributedDiscreteContinuousConvolution(unittest.TestCase):
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

    @classmethod
    def setUpClass(cls):

        # set up distributed
        cls.world_rank = int(os.getenv('WORLD_RANK', 0))
        cls.grid_size_h = int(os.getenv('GRID_H', 1))
        cls.grid_size_w = int(os.getenv('GRID_W', 1))
        port = int(os.getenv('MASTER_PORT', '29501'))
        master_address = os.getenv('MASTER_ADDR', 'localhost')
        cls.world_size = cls.grid_size_h * cls.grid_size_w

        if torch.cuda.is_available():
            if cls.world_rank == 0:
                print("Running test on GPU")
            local_rank = cls.world_rank % torch.cuda.device_count()
            cls.device = torch.device(f"cuda:{local_rank}")
61
            torch.cuda.set_device(local_rank)
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
            torch.cuda.manual_seed(333)
            proc_backend = 'nccl'
        else:
            if cls.world_rank == 0:
                print("Running test on CPU")
            cls.device = torch.device('cpu')
            proc_backend = 'gloo'
        torch.manual_seed(333)

        dist.init_process_group(backend = proc_backend,
                                init_method = f"tcp://{master_address}:{port}",
                                rank = cls.world_rank,
				world_size = cls.world_size)
            
        cls.wrank = cls.world_rank % cls.grid_size_w
        cls.hrank = cls.world_rank // cls.grid_size_w

        # now set up the comm groups:
        #set default
        cls.w_group = None
        cls.h_group = None

        # do the init
        wgroups = []
        for w in range(0, cls.world_size, cls.grid_size_w):
            start = w
            end = w + cls.grid_size_w
            wgroups.append(list(range(start, end)))

        if cls.world_rank == 0:
            print("w-groups:", wgroups)
        for grp in wgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.w_group = tmp_group

        # transpose:
        hgroups = [sorted(list(i)) for i in zip(*wgroups)]

        if cls.world_rank == 0:
            print("h-groups:", hgroups)
        for grp in hgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.h_group = tmp_group
        

        if cls.world_rank == 0:
            print(f"Running distributed tests on grid H x W = {cls.grid_size_h} x {cls.grid_size_w}")

        # initializing sht
        thd.init(cls.h_group, cls.w_group)

        
    def _split_helper(self, tensor):
        with torch.no_grad():
            # split in W
            tensor_list_local = thd.split_tensor_along_dim(tensor, dim=-1, num_chunks=self.grid_size_w)
            tensor_local = tensor_list_local[self.wrank]

            # split in H
            tensor_list_local = thd.split_tensor_along_dim(tensor_local, dim=-2, num_chunks=self.grid_size_h)
            tensor_local = tensor_list_local[self.hrank]

        return tensor_local
        
        
133
    def _gather_helper_fwd(self, tensor, B, C, convolution_dist):
134
        # we need the shapes
135
136
        lat_shapes = convolution_dist.lat_out_shapes
        lon_shapes = convolution_dist.lon_out_shapes
137

138
139
        #print("tensor before gather shape", tensor.shape)
        
140
141
        # gather in W
        if self.grid_size_w > 1:
142
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
143
144
145
146
147
148
149
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

150
151
        #print("tensor_gather shape", tensor_gather.shape)
            
152
153
        # gather in H
        if self.grid_size_h > 1:
154
            gather_shapes = [(B, C, h, convolution_dist.nlon_out) for h in lat_shapes]
155
156
157
158
159
160
161
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

162
163
    
    def _gather_helper_bwd(self, tensor, B, C, convolution_dist):
164
        # we need the shapes
165
166
        lat_shapes = convolution_dist.lat_in_shapes
        lon_shapes = convolution_dist.lon_in_shapes
167
168
169

        # gather in W
        if self.grid_size_w > 1:
170
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
171
172
173
174
175
176
177
178
179
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
180
            gather_shapes = [(B, C, h, convolution_dist.nlon_in) for h in lat_shapes]
181
182
183
184
185
186
187
188
189
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather


    @parameterized.expand([
190
191
192
193
194
195
196
197
198
199
200
201
202
        [128, 256, 128, 256, 32, 8, [3   ], 1, "equiangular",  "equiangular", False, 1e-6],
        [129, 256, 128, 256, 32, 8, [3   ], 1, "equiangular",  "equiangular", False, 1e-6],
        [128, 256, 128, 256, 32, 8, [3, 2], 1, "equiangular",  "equiangular", False, 1e-6],
        [128, 256,  64, 128, 32, 8, [3   ], 1, "equiangular",  "equiangular", False, 1e-6],
        [128, 256, 128, 256, 32, 8, [3   ], 2, "equiangular",  "equiangular", False, 1e-6],
        [128, 256, 128, 256, 32, 5, [3   ], 1, "equiangular",  "equiangular", False, 1e-6],

        [128, 256, 128, 256, 32, 8, [3   ], 1, "equiangular",  "equiangular", True,  1e-6],
        [129, 256, 128, 256, 32, 8, [3   ], 1, "equiangular",  "equiangular", True,  1e-6],
        [128, 256, 128, 256, 32, 8, [3, 2], 1, "equiangular",  "equiangular", True,  1e-6],
        [ 64, 128, 128, 256, 32, 8, [3   ], 1, "equiangular",  "equiangular", True,  1e-6],
        [128, 256, 128, 256, 32, 8, [3   ], 2, "equiangular",  "equiangular", True,  1e-6],
        [128, 256, 128, 256, 32, 5, [3   ], 1, "equiangular",  "equiangular", True,  1e-6],
203
    ])
204
205
206
207
208
209
210
211
212
213
    def test_distributed_disco_conv(self, nlat_in, nlon_in, nlat_out, nlon_out, batch_size, num_chan,
                                    kernel_shape, groups, grid_in, grid_out, transpose, tol):
        
        B, C, H, W = batch_size, num_chan, nlat_in, nlon_in
    
        disco_args = dict(in_channels=C, out_channels=C,
            in_shape=(nlat_in, nlon_in), out_shape=(nlat_out, nlon_out),
            kernel_shape=kernel_shape, groups=groups,
            grid_in=grid_in, grid_out=grid_out,	bias=True)
        
214
        # set up handles
215
216
217
        if transpose:
            conv_local = harmonics.DiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
            conv_dist = thd.DistributedDiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
218
        else:
219
220
221
222
223
224
225
            conv_local = harmonics.DiscreteContinuousConvS2(**disco_args).to(self.device)
            conv_dist = thd.DistributedDiscreteContinuousConvS2(**disco_args).to(self.device)
            
        # copy the weights from the local conv into the dist conv
        with torch.no_grad():
            conv_dist.weight.copy_(conv_local.weight)
            conv_dist.bias.copy_(conv_local.bias)
226
227

        # create tensors
228
229
        inp_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)
    
230
        #############################################################
231
        # local conv
232
233
234
        #############################################################
        # FWD pass
        inp_full.requires_grad = True
235
236
        out_full = conv_local(inp_full, use_triton_kernel=True)
        
237
238
239
240
241
242
243
244
        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)
            
        # BWD pass
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()
245
    
246
        #############################################################
247
        # distributed conv
248
249
250
251
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
252
253
        out_local = conv_dist(inp_local, use_triton_kernel=True)
    
254
255
        # BWD pass
        ograd_local = self._split_helper(ograd_full)
256
        out_local = conv_dist(inp_local, use_triton_kernel=True)
257
258
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()
259
    
260
261
262
263
        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
264
            out_gather_full = self._gather_helper_fwd(out_local, B, C, conv_dist)
265
266
267
268
            err = torch.mean(torch.norm(out_full-out_gather_full, p='fro', dim=(-1,-2)) / torch.norm(out_full, p='fro', dim=(-1,-2)) )
            if self.world_rank == 0:
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)
269
    
270
271
272
273
        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
274
            igrad_gather_full = self._gather_helper_bwd(igrad_local, B, C, conv_dist)
275
276
277
278
279
280
281
282
            err = torch.mean(torch.norm(igrad_full-igrad_gather_full, p='fro', dim=(-1,-2)) / torch.norm(igrad_full, p='fro', dim=(-1,-2)) )
            if self.world_rank == 0:
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)


if __name__ == '__main__':
    unittest.main()