test_distributed_convolution.py 11.7 KB
Newer Older
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import unittest
from parameterized import parameterized

import torch
import torch.nn.functional as F
import torch.distributed as dist
import torch_harmonics as harmonics
import torch_harmonics.distributed as thd


43
class TestDistributedDiscreteContinuousConvolution(unittest.TestCase):
44
45
46
47
48

    @classmethod
    def setUpClass(cls):

        # set up distributed
Boris Bonev's avatar
Boris Bonev committed
49
50
51
52
53
        cls.world_rank = int(os.getenv("WORLD_RANK", 0))
        cls.grid_size_h = int(os.getenv("GRID_H", 1))
        cls.grid_size_w = int(os.getenv("GRID_W", 1))
        port = int(os.getenv("MASTER_PORT", "29501"))
        master_address = os.getenv("MASTER_ADDR", "localhost")
54
55
56
57
58
59
60
        cls.world_size = cls.grid_size_h * cls.grid_size_w

        if torch.cuda.is_available():
            if cls.world_rank == 0:
                print("Running test on GPU")
            local_rank = cls.world_rank % torch.cuda.device_count()
            cls.device = torch.device(f"cuda:{local_rank}")
61
            torch.cuda.set_device(local_rank)
62
            torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
63
            proc_backend = "nccl"
64
65
66
        else:
            if cls.world_rank == 0:
                print("Running test on CPU")
Boris Bonev's avatar
Boris Bonev committed
67
68
            cls.device = torch.device("cpu")
            proc_backend = "gloo"
69
70
        torch.manual_seed(333)

Boris Bonev's avatar
Boris Bonev committed
71
72
        dist.init_process_group(backend=proc_backend, init_method=f"tcp://{master_address}:{port}", rank=cls.world_rank, world_size=cls.world_size)

73
74
75
76
        cls.wrank = cls.world_rank % cls.grid_size_w
        cls.hrank = cls.world_rank // cls.grid_size_w

        # now set up the comm groups:
Boris Bonev's avatar
Boris Bonev committed
77
        # set default
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        cls.w_group = None
        cls.h_group = None

        # do the init
        wgroups = []
        for w in range(0, cls.world_size, cls.grid_size_w):
            start = w
            end = w + cls.grid_size_w
            wgroups.append(list(range(start, end)))

        if cls.world_rank == 0:
            print("w-groups:", wgroups)
        for grp in wgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.w_group = tmp_group

        # transpose:
        hgroups = [sorted(list(i)) for i in zip(*wgroups)]

        if cls.world_rank == 0:
            print("h-groups:", hgroups)
        for grp in hgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.h_group = tmp_group

        if cls.world_rank == 0:
            print(f"Running distributed tests on grid H x W = {cls.grid_size_h} x {cls.grid_size_w}")

        # initializing sht
        thd.init(cls.h_group, cls.w_group)

115
116
    @classmethod
    def tearDownClass(cls):
117
118
        thd.finalize()
        dist.destroy_process_group(None)
119

120
121
122
123
124
125
126
127
128
129
130
    def _split_helper(self, tensor):
        with torch.no_grad():
            # split in W
            tensor_list_local = thd.split_tensor_along_dim(tensor, dim=-1, num_chunks=self.grid_size_w)
            tensor_local = tensor_list_local[self.wrank]

            # split in H
            tensor_list_local = thd.split_tensor_along_dim(tensor_local, dim=-2, num_chunks=self.grid_size_h)
            tensor_local = tensor_list_local[self.hrank]

        return tensor_local
Boris Bonev's avatar
Boris Bonev committed
131

132
    def _gather_helper_fwd(self, tensor, B, C, convolution_dist):
133
        # we need the shapes
134
135
        lat_shapes = convolution_dist.lat_out_shapes
        lon_shapes = convolution_dist.lon_out_shapes
136
137

        # gather in W
Thorsten Kurth's avatar
Thorsten Kurth committed
138
        tensor = tensor.contiguous()
139
        if self.grid_size_w > 1:
140
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
141
142
143
144
145
146
147
148
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
Thorsten Kurth's avatar
Thorsten Kurth committed
149
        tensor_gather = tensor_gather.contiguous()
150
        if self.grid_size_h > 1:
151
            gather_shapes = [(B, C, h, convolution_dist.nlon_out) for h in lat_shapes]
152
153
154
155
156
157
158
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

159
    def _gather_helper_bwd(self, tensor, B, C, convolution_dist):
160
        # we need the shapes
161
162
        lat_shapes = convolution_dist.lat_in_shapes
        lon_shapes = convolution_dist.lon_in_shapes
163
164
165

        # gather in W
        if self.grid_size_w > 1:
166
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
167
168
169
170
171
172
173
174
175
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
176
            gather_shapes = [(B, C, h, convolution_dist.nlon_in) for h in lat_shapes]
177
178
179
180
181
182
183
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

Boris Bonev's avatar
Boris Bonev committed
184
185
186
187
188
189
190
191
192
    @parameterized.expand(
        [
            [128, 256, 128, 256, 32, 8, [3], 1, "equiangular", "equiangular", False, 1e-5],
            [129, 256, 128, 256, 32, 8, [3], 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, [3, 2], 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 64, 128, 32, 8, [3], 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, [3], 2, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 6, [3], 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, [3], 1, "equiangular", "equiangular", True, 1e-5],
193
            [129, 256, 129, 256, 32, 8, [3], 1, "equiangular", "equiangular", True, 1e-5],
Boris Bonev's avatar
Boris Bonev committed
194
195
196
197
198
199
200
            [128, 256, 128, 256, 32, 8, [3, 2], 1, "equiangular", "equiangular", True, 1e-5],
            [64, 128, 128, 256, 32, 8, [3], 1, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 8, [3], 2, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 6, [3], 1, "equiangular", "equiangular", True, 1e-5],
        ]
    )
    def test_distributed_disco_conv(self, nlat_in, nlon_in, nlat_out, nlon_out, batch_size, num_chan, kernel_shape, groups, grid_in, grid_out, transpose, tol):
201

202
        B, C, H, W = batch_size, num_chan, nlat_in, nlon_in
Boris Bonev's avatar
Boris Bonev committed
203
204
205
206
207
208
209
210
211
212
213
214
215

        disco_args = dict(
            in_channels=C,
            out_channels=C,
            in_shape=(nlat_in, nlon_in),
            out_shape=(nlat_out, nlon_out),
            kernel_shape=kernel_shape,
            groups=groups,
            grid_in=grid_in,
            grid_out=grid_out,
            bias=True,
        )

216
        # set up handles
217
218
219
        if transpose:
            conv_local = harmonics.DiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
            conv_dist = thd.DistributedDiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
220
        else:
221
222
            conv_local = harmonics.DiscreteContinuousConvS2(**disco_args).to(self.device)
            conv_dist = thd.DistributedDiscreteContinuousConvS2(**disco_args).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
223

224
225
226
        # copy the weights from the local conv into the dist conv
        with torch.no_grad():
            conv_dist.weight.copy_(conv_local.weight)
Boris Bonev's avatar
Boris Bonev committed
227
228
            if disco_args["bias"]:
                conv_dist.bias.copy_(conv_local.bias)
229
230

        # create tensors
231
        inp_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)
Boris Bonev's avatar
Boris Bonev committed
232

233
        #############################################################
234
        # local conv
235
236
237
        #############################################################
        # FWD pass
        inp_full.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
238
239
        out_full = conv_local(inp_full)

240
241
242
243
        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)
Boris Bonev's avatar
Boris Bonev committed
244

245
246
247
        # BWD pass
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
248

249
        #############################################################
250
        # distributed conv
251
252
253
254
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
255
256
        out_local = conv_dist(inp_local)

257
258
        # BWD pass
        ograd_local = self._split_helper(ograd_full)
Boris Bonev's avatar
Boris Bonev committed
259
        out_local = conv_dist(inp_local)
260
261
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
262

263
264
265
266
        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
267
            out_gather_full = self._gather_helper_fwd(out_local, B, C, conv_dist)
Boris Bonev's avatar
Boris Bonev committed
268
            err = torch.mean(torch.norm(out_full - out_gather_full, p="fro", dim=(-1, -2)) / torch.norm(out_full, p="fro", dim=(-1, -2)))
269
270
271
            if self.world_rank == 0:
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)
Boris Bonev's avatar
Boris Bonev committed
272

273
274
275
276
        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
277
            igrad_gather_full = self._gather_helper_bwd(igrad_local, B, C, conv_dist)
Thorsten Kurth's avatar
Thorsten Kurth committed
278

Boris Bonev's avatar
Boris Bonev committed
279
            err = torch.mean(torch.norm(igrad_full - igrad_gather_full, p="fro", dim=(-1, -2)) / torch.norm(igrad_full, p="fro", dim=(-1, -2)))
280
281
282
283
284
            if self.world_rank == 0:
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)


Boris Bonev's avatar
Boris Bonev committed
285
if __name__ == "__main__":
286
    unittest.main()