test_distributed_convolution.py 11.6 KB
Newer Older
1
2
3
4
# coding=utf-8

# SPDX-FileCopyrightText: Copyright (c) 2022 The torch-harmonics Authors. All rights reserved.
# SPDX-License-Identifier: BSD-3-Clause
Boris Bonev's avatar
Boris Bonev committed
5
#
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#

import os
import unittest
from parameterized import parameterized

import torch
import torch.nn.functional as F
import torch.distributed as dist
import torch_harmonics as harmonics
import torch_harmonics.distributed as thd


43
class TestDistributedDiscreteContinuousConvolution(unittest.TestCase):
44
45
46
47
48

    @classmethod
    def setUpClass(cls):

        # set up distributed
Boris Bonev's avatar
Boris Bonev committed
49
50
51
52
53
        cls.world_rank = int(os.getenv("WORLD_RANK", 0))
        cls.grid_size_h = int(os.getenv("GRID_H", 1))
        cls.grid_size_w = int(os.getenv("GRID_W", 1))
        port = int(os.getenv("MASTER_PORT", "29501"))
        master_address = os.getenv("MASTER_ADDR", "localhost")
54
55
56
57
58
59
60
        cls.world_size = cls.grid_size_h * cls.grid_size_w

        if torch.cuda.is_available():
            if cls.world_rank == 0:
                print("Running test on GPU")
            local_rank = cls.world_rank % torch.cuda.device_count()
            cls.device = torch.device(f"cuda:{local_rank}")
61
            torch.cuda.set_device(local_rank)
62
            torch.cuda.manual_seed(333)
Boris Bonev's avatar
Boris Bonev committed
63
            proc_backend = "nccl"
64
65
66
        else:
            if cls.world_rank == 0:
                print("Running test on CPU")
Boris Bonev's avatar
Boris Bonev committed
67
68
            cls.device = torch.device("cpu")
            proc_backend = "gloo"
69
70
        torch.manual_seed(333)

Boris Bonev's avatar
Boris Bonev committed
71
72
        dist.init_process_group(backend=proc_backend, init_method=f"tcp://{master_address}:{port}", rank=cls.world_rank, world_size=cls.world_size)

73
74
75
76
        cls.wrank = cls.world_rank % cls.grid_size_w
        cls.hrank = cls.world_rank // cls.grid_size_w

        # now set up the comm groups:
Boris Bonev's avatar
Boris Bonev committed
77
        # set default
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        cls.w_group = None
        cls.h_group = None

        # do the init
        wgroups = []
        for w in range(0, cls.world_size, cls.grid_size_w):
            start = w
            end = w + cls.grid_size_w
            wgroups.append(list(range(start, end)))

        if cls.world_rank == 0:
            print("w-groups:", wgroups)
        for grp in wgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.w_group = tmp_group

        # transpose:
        hgroups = [sorted(list(i)) for i in zip(*wgroups)]

        if cls.world_rank == 0:
            print("h-groups:", hgroups)
        for grp in hgroups:
            if len(grp) == 1:
                continue
            tmp_group = dist.new_group(ranks=grp)
            if cls.world_rank in grp:
                cls.h_group = tmp_group

        if cls.world_rank == 0:
            print(f"Running distributed tests on grid H x W = {cls.grid_size_h} x {cls.grid_size_w}")

        # initializing sht
        thd.init(cls.h_group, cls.w_group)

    def _split_helper(self, tensor):
        with torch.no_grad():
            # split in W
            tensor_list_local = thd.split_tensor_along_dim(tensor, dim=-1, num_chunks=self.grid_size_w)
            tensor_local = tensor_list_local[self.wrank]

            # split in H
            tensor_list_local = thd.split_tensor_along_dim(tensor_local, dim=-2, num_chunks=self.grid_size_h)
            tensor_local = tensor_list_local[self.hrank]

        return tensor_local
Boris Bonev's avatar
Boris Bonev committed
126

127
    def _gather_helper_fwd(self, tensor, B, C, convolution_dist):
128
        # we need the shapes
129
130
        lat_shapes = convolution_dist.lat_out_shapes
        lon_shapes = convolution_dist.lon_out_shapes
131
132

        # gather in W
Thorsten Kurth's avatar
Thorsten Kurth committed
133
        tensor = tensor.contiguous()
134
        if self.grid_size_w > 1:
135
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
136
137
138
139
140
141
142
143
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
Thorsten Kurth's avatar
Thorsten Kurth committed
144
        tensor_gather = tensor_gather.contiguous()
145
        if self.grid_size_h > 1:
146
            gather_shapes = [(B, C, h, convolution_dist.nlon_out) for h in lat_shapes]
147
148
149
150
151
152
153
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

154
    def _gather_helper_bwd(self, tensor, B, C, convolution_dist):
155
        # we need the shapes
156
157
        lat_shapes = convolution_dist.lat_in_shapes
        lon_shapes = convolution_dist.lon_in_shapes
158
159
160

        # gather in W
        if self.grid_size_w > 1:
161
            gather_shapes = [(B, C, lat_shapes[self.hrank], w) for w in lon_shapes]
162
163
164
165
166
167
168
169
170
            olist = [torch.empty(shape, dtype=tensor.dtype, device=tensor.device) for shape in gather_shapes]
            olist[self.wrank] = tensor
            dist.all_gather(olist, tensor, group=self.w_group)
            tensor_gather = torch.cat(olist, dim=-1)
        else:
            tensor_gather = tensor

        # gather in H
        if self.grid_size_h > 1:
171
            gather_shapes = [(B, C, h, convolution_dist.nlon_in) for h in lat_shapes]
172
173
174
175
176
177
178
            olist = [torch.empty(shape, dtype=tensor_gather.dtype, device=tensor_gather.device) for shape in gather_shapes]
            olist[self.hrank] = tensor_gather
            dist.all_gather(olist, tensor_gather, group=self.h_group)
            tensor_gather = torch.cat(olist, dim=-2)

        return tensor_gather

Boris Bonev's avatar
Boris Bonev committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    @parameterized.expand(
        [
            [128, 256, 128, 256, 32, 8, [3], 1, "equiangular", "equiangular", False, 1e-5],
            [129, 256, 128, 256, 32, 8, [3], 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, [3, 2], 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 64, 128, 32, 8, [3], 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, [3], 2, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 6, [3], 1, "equiangular", "equiangular", False, 1e-5],
            [128, 256, 128, 256, 32, 8, [3], 1, "equiangular", "equiangular", True, 1e-5],
            [129, 256, 128, 256, 32, 8, [3], 1, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 8, [3, 2], 1, "equiangular", "equiangular", True, 1e-5],
            [64, 128, 128, 256, 32, 8, [3], 1, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 8, [3], 2, "equiangular", "equiangular", True, 1e-5],
            [128, 256, 128, 256, 32, 6, [3], 1, "equiangular", "equiangular", True, 1e-5],
        ]
    )
    def test_distributed_disco_conv(self, nlat_in, nlon_in, nlat_out, nlon_out, batch_size, num_chan, kernel_shape, groups, grid_in, grid_out, transpose, tol):
196

197
        B, C, H, W = batch_size, num_chan, nlat_in, nlon_in
Boris Bonev's avatar
Boris Bonev committed
198
199
200
201
202
203
204
205
206
207
208
209
210

        disco_args = dict(
            in_channels=C,
            out_channels=C,
            in_shape=(nlat_in, nlon_in),
            out_shape=(nlat_out, nlon_out),
            kernel_shape=kernel_shape,
            groups=groups,
            grid_in=grid_in,
            grid_out=grid_out,
            bias=True,
        )

211
        # set up handles
212
213
214
        if transpose:
            conv_local = harmonics.DiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
            conv_dist = thd.DistributedDiscreteContinuousConvTransposeS2(**disco_args).to(self.device)
215
        else:
216
217
            conv_local = harmonics.DiscreteContinuousConvS2(**disco_args).to(self.device)
            conv_dist = thd.DistributedDiscreteContinuousConvS2(**disco_args).to(self.device)
Boris Bonev's avatar
Boris Bonev committed
218

219
220
221
        # copy the weights from the local conv into the dist conv
        with torch.no_grad():
            conv_dist.weight.copy_(conv_local.weight)
Boris Bonev's avatar
Boris Bonev committed
222
223
            if disco_args["bias"]:
                conv_dist.bias.copy_(conv_local.bias)
224
225

        # create tensors
226
        inp_full = torch.randn((B, C, H, W), dtype=torch.float32, device=self.device)
Boris Bonev's avatar
Boris Bonev committed
227

228
        #############################################################
229
        # local conv
230
231
232
        #############################################################
        # FWD pass
        inp_full.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
233
234
        out_full = conv_local(inp_full)

235
236
237
238
        # create grad for backward
        with torch.no_grad():
            # create full grad
            ograd_full = torch.randn_like(out_full)
Boris Bonev's avatar
Boris Bonev committed
239

240
241
242
        # BWD pass
        out_full.backward(ograd_full)
        igrad_full = inp_full.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
243

244
        #############################################################
245
        # distributed conv
246
247
248
249
        #############################################################
        # FWD pass
        inp_local = self._split_helper(inp_full)
        inp_local.requires_grad = True
Boris Bonev's avatar
Boris Bonev committed
250
251
        out_local = conv_dist(inp_local)

252
253
        # BWD pass
        ograd_local = self._split_helper(ograd_full)
Boris Bonev's avatar
Boris Bonev committed
254
        out_local = conv_dist(inp_local)
255
256
        out_local.backward(ograd_local)
        igrad_local = inp_local.grad.clone()
Boris Bonev's avatar
Boris Bonev committed
257

258
259
260
261
        #############################################################
        # evaluate FWD pass
        #############################################################
        with torch.no_grad():
262
            out_gather_full = self._gather_helper_fwd(out_local, B, C, conv_dist)
Boris Bonev's avatar
Boris Bonev committed
263
            err = torch.mean(torch.norm(out_full - out_gather_full, p="fro", dim=(-1, -2)) / torch.norm(out_full, p="fro", dim=(-1, -2)))
264
265
266
            if self.world_rank == 0:
                print(f"final relative error of output: {err.item()}")
        self.assertTrue(err.item() <= tol)
Boris Bonev's avatar
Boris Bonev committed
267

268
269
270
271
        #############################################################
        # evaluate BWD pass
        #############################################################
        with torch.no_grad():
272
            igrad_gather_full = self._gather_helper_bwd(igrad_local, B, C, conv_dist)
Thorsten Kurth's avatar
Thorsten Kurth committed
273

Boris Bonev's avatar
Boris Bonev committed
274
            err = torch.mean(torch.norm(igrad_full - igrad_gather_full, p="fro", dim=(-1, -2)) / torch.norm(igrad_full, p="fro", dim=(-1, -2)))
275
276
277
278
279
            if self.world_rank == 0:
                print(f"final relative error of gradients: {err.item()}")
        self.assertTrue(err.item() <= tol)


Boris Bonev's avatar
Boris Bonev committed
280
if __name__ == "__main__":
281
    unittest.main()