radius.py 5.2 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
from typing import Optional
rusty1s's avatar
rusty1s committed
2

rusty1s's avatar
rusty1s committed
3
4
import torch

5

rusty1s's avatar
rusty1s committed
6
@torch.jit.script
rusty1s's avatar
rusty1s committed
7
8
def radius(x: torch.Tensor, y: torch.Tensor, r: float,
           batch_x: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
9
10
           batch_y: Optional[torch.Tensor] = None, max_num_neighbors: int = 32,
           num_workers: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
11
12
    r"""Finds for each element in :obj:`y` all points in :obj:`x` within
    distance :obj:`r`.
rusty1s's avatar
docs  
rusty1s committed
13
14

    Args:
rusty1s's avatar
rusty1s committed
15
16
17
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        y (Tensor): Node feature matrix
Vadim Bereznyuk's avatar
typos  
Vadim Bereznyuk committed
18
            :math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`.
rusty1s's avatar
docs  
rusty1s committed
19
        r (float): The radius.
rusty1s's avatar
rusty1s committed
20
        batch_x (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
21
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
22
23
24
            node to a specific example. :obj:`batch_x` needs to be sorted.
            (default: :obj:`None`)
        batch_y (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
25
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
rusty1s's avatar
rusty1s committed
26
27
            node to a specific example. :obj:`batch_y` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
docs  
rusty1s committed
28
        max_num_neighbors (int, optional): The maximum number of neighbors to
rusty1s's avatar
rusty1s committed
29
30
31
32
            return for each element in :obj:`y`.
            If the number of actual neighbors is greater than
            :obj:`max_num_neighbors`, returned neighbors are picked randomly.
            (default: :obj:`32`)
rusty1s's avatar
rusty1s committed
33
34
35
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch_x` or :obj:`batch_y` is not
            :obj:`None`, or the input lies on the GPU. (default: :obj:`1`)
rusty1s's avatar
docs  
rusty1s committed
36

rusty1s's avatar
rusty1s committed
37
    .. code-block:: python
rusty1s's avatar
rusty1s committed
38
39
40
41

        import torch
        from torch_cluster import radius

rusty1s's avatar
rusty1s committed
42
43
44
45
46
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch_x = torch.tensor([0, 0, 0, 0])
        y = torch.Tensor([[-1, 0], [1, 0]])
        batch_y = torch.tensor([0, 0])
        assign_index = radius(x, y, 1.5, batch_x, batch_y)
rusty1s's avatar
docs  
rusty1s committed
47
    """
rusty1s's avatar
rusty1s committed
48
49
    if x.numel() == 0 or y.numel() == 0:
        return torch.empty(2, 0, dtype=torch.long, device=x.device)
rusty1s's avatar
rusty1s committed
50
51
52

    x = x.view(-1, 1) if x.dim() == 1 else x
    y = y.view(-1, 1) if y.dim() == 1 else y
rusty1s's avatar
rusty1s committed
53
    x, y = x.contiguous(), y.contiguous()
rusty1s's avatar
rusty1s committed
54

55
    batch_size = 1
rusty1s's avatar
rusty1s committed
56
57
58
59
60
    if batch_x is not None:
        assert x.size(0) == batch_x.numel()
        batch_size = int(batch_x.max()) + 1
    if batch_y is not None:
        assert y.size(0) == batch_y.numel()
61
        batch_size = max(batch_size, int(batch_y.max()) + 1)
rusty1s's avatar
rusty1s committed
62

63
64
65
66
67
68
69
70
    ptr_x: Optional[torch.Tensor] = None
    ptr_y: Optional[torch.Tensor] = None
    if batch_size > 1:
        assert batch_x is not None
        assert batch_y is not None
        arange = torch.arange(batch_size + 1, device=x.device)
        ptr_x = torch.bucketize(arange, batch_x)
        ptr_y = torch.bucketize(arange, batch_y)
rusty1s's avatar
rusty1s committed
71

rusty1s's avatar
rusty1s committed
72
73
    return torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r,
                                          max_num_neighbors, num_workers)
rusty1s's avatar
rusty1s committed
74

Alexander Liao's avatar
Alexander Liao committed
75

rusty1s's avatar
rusty1s committed
76
@torch.jit.script
rusty1s's avatar
rusty1s committed
77
78
def radius_graph(x: torch.Tensor, r: float,
                 batch: Optional[torch.Tensor] = None, loop: bool = False,
rusty1s's avatar
rusty1s committed
79
80
                 max_num_neighbors: int = 32, flow: str = 'source_to_target',
                 num_workers: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
81
    r"""Computes graph edges to all points within a given distance.
rusty1s's avatar
docs  
rusty1s committed
82
83

    Args:
rusty1s's avatar
rusty1s committed
84
85
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
rusty1s's avatar
docs  
rusty1s committed
86
        r (float): The radius.
rusty1s's avatar
rusty1s committed
87
        batch (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
88
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
89
90
            node to a specific example. :obj:`batch` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
91
92
        loop (bool, optional): If :obj:`True`, the graph will contain
            self-loops. (default: :obj:`False`)
rusty1s's avatar
docs  
rusty1s committed
93
        max_num_neighbors (int, optional): The maximum number of neighbors to
rusty1s's avatar
rusty1s committed
94
95
96
97
            return for each element.
            If the number of actual neighbors is greater than
            :obj:`max_num_neighbors`, returned neighbors are picked randomly.
            (default: :obj:`32`)
98
        flow (string, optional): The flow direction when used in combination
rusty1s's avatar
rusty1s committed
99
100
            with message passing (:obj:`"source_to_target"` or
            :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
rusty1s's avatar
rusty1s committed
101
102
103
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch` is not :obj:`None`, or the input lies
            on the GPU. (default: :obj:`1`)
rusty1s's avatar
docs  
rusty1s committed
104
105
106

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
107
    .. code-block:: python
rusty1s's avatar
rusty1s committed
108
109
110
111

        import torch
        from torch_cluster import radius_graph

rusty1s's avatar
rusty1s committed
112
113
114
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch = torch.tensor([0, 0, 0, 0])
        edge_index = radius_graph(x, r=1.5, batch=batch, loop=False)
rusty1s's avatar
docs  
rusty1s committed
115
116
    """

rusty1s's avatar
rusty1s committed
117
    assert flow in ['source_to_target', 'target_to_source']
rusty1s's avatar
rusty1s committed
118
119
120
121
122
123
124
125
    edge_index = radius(x, x, r, batch, batch,
                        max_num_neighbors if loop else max_num_neighbors + 1,
                        num_workers)
    if flow == 'source_to_target':
        row, col = edge_index[1], edge_index[0]
    else:
        row, col = edge_index[0], edge_index[1]

rusty1s's avatar
rusty1s committed
126
127
128
    if not loop:
        mask = row != col
        row, col = row[mask], col[mask]
rusty1s's avatar
rusty1s committed
129

rusty1s's avatar
rusty1s committed
130
    return torch.stack([row, col], dim=0)