Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
torch-cluster
Commits
b07543b6
Commit
b07543b6
authored
Jul 16, 2020
by
rusty1s
Browse files
remove scipy dependency
parent
cce00c84
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
7 additions
and
78 deletions
+7
-78
.gitignore
.gitignore
+1
-0
setup.py
setup.py
+2
-2
torch_cluster/knn.py
torch_cluster/knn.py
+2
-45
torch_cluster/radius.py
torch_cluster/radius.py
+2
-31
No files found.
.gitignore
View file @
b07543b6
...
@@ -2,6 +2,7 @@ __pycache__/
...
@@ -2,6 +2,7 @@ __pycache__/
_ext/
_ext/
build/
build/
dist/
dist/
alpha/
.cache/
.cache/
.eggs/
.eggs/
*.egg-info/
*.egg-info/
...
...
setup.py
View file @
b07543b6
...
@@ -57,9 +57,9 @@ def get_extensions():
...
@@ -57,9 +57,9 @@ def get_extensions():
return
extensions
return
extensions
install_requires
=
[
'scipy'
]
install_requires
=
[]
setup_requires
=
[
'pytest-runner'
]
setup_requires
=
[
'pytest-runner'
]
tests_require
=
[
'pytest'
,
'pytest-cov'
]
tests_require
=
[
'pytest'
,
'pytest-cov'
,
'scipy'
]
setup
(
setup
(
name
=
'torch_cluster'
,
name
=
'torch_cluster'
,
...
...
torch_cluster/knn.py
View file @
b07543b6
from
typing
import
Optional
from
typing
import
Optional
import
torch
import
torch
import
scipy.spatial
def
knn_cpu
(
x
:
torch
.
Tensor
,
y
:
torch
.
Tensor
,
k
:
int
,
@
torch
.
jit
.
script
batch_x
:
Optional
[
torch
.
Tensor
]
=
None
,
batch_y
:
Optional
[
torch
.
Tensor
]
=
None
,
cosine
:
bool
=
False
,
num_workers
:
int
=
1
)
->
torch
.
Tensor
:
if
cosine
:
raise
NotImplementedError
(
'`cosine` argument not supported on CPU'
)
if
batch_x
is
None
:
batch_x
=
x
.
new_zeros
(
x
.
size
(
0
),
dtype
=
torch
.
long
)
if
batch_y
is
None
:
batch_y
=
y
.
new_zeros
(
y
.
size
(
0
),
dtype
=
torch
.
long
)
# Translate and rescale x and y to [0, 1].
min_xy
=
min
(
x
.
min
().
item
(),
y
.
min
().
item
())
x
,
y
=
x
-
min_xy
,
y
-
min_xy
max_xy
=
max
(
x
.
max
().
item
(),
y
.
max
().
item
())
x
.
div_
(
max_xy
)
y
.
div_
(
max_xy
)
# Concat batch/features to ensure no cross-links between examples.
x
=
torch
.
cat
([
x
,
2
*
x
.
size
(
1
)
*
batch_x
.
view
(
-
1
,
1
).
to
(
x
.
dtype
)],
-
1
)
y
=
torch
.
cat
([
y
,
2
*
y
.
size
(
1
)
*
batch_y
.
view
(
-
1
,
1
).
to
(
y
.
dtype
)],
-
1
)
tree
=
scipy
.
spatial
.
cKDTree
(
x
.
detach
().
numpy
())
dist
,
col
=
tree
.
query
(
y
.
detach
().
cpu
(),
k
=
k
,
distance_upper_bound
=
x
.
size
(
1
))
dist
=
torch
.
from_numpy
(
dist
).
to
(
x
.
dtype
)
col
=
torch
.
from_numpy
(
col
).
to
(
torch
.
long
)
row
=
torch
.
arange
(
col
.
size
(
0
),
dtype
=
torch
.
long
)
row
=
row
.
view
(
-
1
,
1
).
repeat
(
1
,
k
)
mask
=
~
torch
.
isinf
(
dist
).
view
(
-
1
)
row
,
col
=
row
.
view
(
-
1
)[
mask
],
col
.
view
(
-
1
)[
mask
]
return
torch
.
stack
([
row
,
col
],
dim
=
0
)
# @torch.jit.script
def
knn
(
x
:
torch
.
Tensor
,
y
:
torch
.
Tensor
,
k
:
int
,
def
knn
(
x
:
torch
.
Tensor
,
y
:
torch
.
Tensor
,
k
:
int
,
batch_x
:
Optional
[
torch
.
Tensor
]
=
None
,
batch_x
:
Optional
[
torch
.
Tensor
]
=
None
,
batch_y
:
Optional
[
torch
.
Tensor
]
=
None
,
cosine
:
bool
=
False
,
batch_y
:
Optional
[
torch
.
Tensor
]
=
None
,
cosine
:
bool
=
False
,
...
@@ -90,9 +50,6 @@ def knn(x: torch.Tensor, y: torch.Tensor, k: int,
...
@@ -90,9 +50,6 @@ def knn(x: torch.Tensor, y: torch.Tensor, k: int,
y
=
y
.
view
(
-
1
,
1
)
if
y
.
dim
()
==
1
else
y
y
=
y
.
view
(
-
1
,
1
)
if
y
.
dim
()
==
1
else
y
x
,
y
=
x
.
contiguous
(),
y
.
contiguous
()
x
,
y
=
x
.
contiguous
(),
y
.
contiguous
()
if
not
x
.
is_cuda
:
return
knn_cpu
(
x
,
y
,
k
,
batch_x
,
batch_y
,
cosine
,
num_workers
)
ptr_x
:
Optional
[
torch
.
Tensor
]
=
None
ptr_x
:
Optional
[
torch
.
Tensor
]
=
None
if
batch_x
is
not
None
:
if
batch_x
is
not
None
:
assert
x
.
size
(
0
)
==
batch_x
.
numel
()
assert
x
.
size
(
0
)
==
batch_x
.
numel
()
...
@@ -119,7 +76,7 @@ def knn(x: torch.Tensor, y: torch.Tensor, k: int,
...
@@ -119,7 +76,7 @@ def knn(x: torch.Tensor, y: torch.Tensor, k: int,
num_workers
)
num_workers
)
#
@torch.jit.script
@
torch
.
jit
.
script
def
knn_graph
(
x
:
torch
.
Tensor
,
k
:
int
,
batch
:
Optional
[
torch
.
Tensor
]
=
None
,
def
knn_graph
(
x
:
torch
.
Tensor
,
k
:
int
,
batch
:
Optional
[
torch
.
Tensor
]
=
None
,
loop
:
bool
=
False
,
flow
:
str
=
'source_to_target'
,
loop
:
bool
=
False
,
flow
:
str
=
'source_to_target'
,
cosine
:
bool
=
False
,
num_workers
:
int
=
1
)
->
torch
.
Tensor
:
cosine
:
bool
=
False
,
num_workers
:
int
=
1
)
->
torch
.
Tensor
:
...
...
torch_cluster/radius.py
View file @
b07543b6
from
typing
import
Optional
from
typing
import
Optional
import
torch
import
torch
import
scipy.spatial
def
radius_cpu
(
x
:
torch
.
Tensor
,
y
:
torch
.
Tensor
,
r
:
float
,
@
torch
.
jit
.
script
batch_x
:
Optional
[
torch
.
Tensor
]
=
None
,
batch_y
:
Optional
[
torch
.
Tensor
]
=
None
,
max_num_neighbors
:
int
=
32
,
num_workers
:
int
=
1
)
->
torch
.
Tensor
:
if
batch_x
is
None
:
batch_x
=
x
.
new_zeros
(
x
.
size
(
0
),
dtype
=
torch
.
long
)
if
batch_y
is
None
:
batch_y
=
y
.
new_zeros
(
y
.
size
(
0
),
dtype
=
torch
.
long
)
x
=
torch
.
cat
([
x
,
2
*
r
*
batch_x
.
view
(
-
1
,
1
).
to
(
x
.
dtype
)],
dim
=-
1
)
y
=
torch
.
cat
([
y
,
2
*
r
*
batch_y
.
view
(
-
1
,
1
).
to
(
y
.
dtype
)],
dim
=-
1
)
tree
=
scipy
.
spatial
.
cKDTree
(
x
.
detach
().
numpy
())
col
=
tree
.
query_ball_point
(
y
.
detach
().
numpy
(),
r
)
col
=
[
torch
.
tensor
(
c
)[:
max_num_neighbors
]
for
c
in
col
]
row
=
[
torch
.
full_like
(
c
,
i
)
for
i
,
c
in
enumerate
(
col
)]
row
,
col
=
torch
.
cat
(
row
,
dim
=
0
),
torch
.
cat
(
col
,
dim
=
0
)
mask
=
col
<
int
(
tree
.
n
)
return
torch
.
stack
([
row
[
mask
],
col
[
mask
]],
dim
=
0
)
# @torch.jit.script
def
radius
(
x
:
torch
.
Tensor
,
y
:
torch
.
Tensor
,
r
:
float
,
def
radius
(
x
:
torch
.
Tensor
,
y
:
torch
.
Tensor
,
r
:
float
,
batch_x
:
Optional
[
torch
.
Tensor
]
=
None
,
batch_x
:
Optional
[
torch
.
Tensor
]
=
None
,
batch_y
:
Optional
[
torch
.
Tensor
]
=
None
,
max_num_neighbors
:
int
=
32
,
batch_y
:
Optional
[
torch
.
Tensor
]
=
None
,
max_num_neighbors
:
int
=
32
,
...
@@ -72,10 +47,6 @@ def radius(x: torch.Tensor, y: torch.Tensor, r: float,
...
@@ -72,10 +47,6 @@ def radius(x: torch.Tensor, y: torch.Tensor, r: float,
y
=
y
.
view
(
-
1
,
1
)
if
y
.
dim
()
==
1
else
y
y
=
y
.
view
(
-
1
,
1
)
if
y
.
dim
()
==
1
else
y
x
,
y
=
x
.
contiguous
(),
y
.
contiguous
()
x
,
y
=
x
.
contiguous
(),
y
.
contiguous
()
if
not
x
.
is_cuda
:
return
radius_cpu
(
x
,
y
,
r
,
batch_x
,
batch_y
,
max_num_neighbors
,
num_workers
)
ptr_x
:
Optional
[
torch
.
Tensor
]
=
None
ptr_x
:
Optional
[
torch
.
Tensor
]
=
None
if
batch_x
is
not
None
:
if
batch_x
is
not
None
:
assert
x
.
size
(
0
)
==
batch_x
.
numel
()
assert
x
.
size
(
0
)
==
batch_x
.
numel
()
...
@@ -102,7 +73,7 @@ def radius(x: torch.Tensor, y: torch.Tensor, r: float,
...
@@ -102,7 +73,7 @@ def radius(x: torch.Tensor, y: torch.Tensor, r: float,
max_num_neighbors
,
num_workers
)
max_num_neighbors
,
num_workers
)
#
@torch.jit.script
@
torch
.
jit
.
script
def
radius_graph
(
x
:
torch
.
Tensor
,
r
:
float
,
def
radius_graph
(
x
:
torch
.
Tensor
,
r
:
float
,
batch
:
Optional
[
torch
.
Tensor
]
=
None
,
loop
:
bool
=
False
,
batch
:
Optional
[
torch
.
Tensor
]
=
None
,
loop
:
bool
=
False
,
max_num_neighbors
:
int
=
32
,
flow
:
str
=
'source_to_target'
,
max_num_neighbors
:
int
=
32
,
flow
:
str
=
'source_to_target'
,
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment