radius.py 6.01 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
from typing import Optional
rusty1s's avatar
rusty1s committed
2

rusty1s's avatar
rusty1s committed
3
import torch
4
import scipy.spatial
rusty1s's avatar
rusty1s committed
5

6

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
def radius_cpu(x: torch.Tensor, y: torch.Tensor, r: float,
               batch_x: Optional[torch.Tensor] = None,
               batch_y: Optional[torch.Tensor] = None,
               max_num_neighbors: int = 32,
               num_workers: int = 1) -> torch.Tensor:

    if batch_x is None:
        batch_x = x.new_zeros(x.size(0), dtype=torch.long)

    if batch_y is None:
        batch_y = y.new_zeros(y.size(0), dtype=torch.long)

    x = torch.cat([x, 2 * r * batch_x.view(-1, 1).to(x.dtype)], dim=-1)
    y = torch.cat([y, 2 * r * batch_y.view(-1, 1).to(y.dtype)], dim=-1)

    tree = scipy.spatial.cKDTree(x.detach().numpy())
    col = tree.query_ball_point(y.detach().numpy(), r)
    col = [torch.tensor(c)[:max_num_neighbors] for c in col]
    row = [torch.full_like(c, i) for i, c in enumerate(col)]
    row, col = torch.cat(row, dim=0), torch.cat(col, dim=0)
    mask = col < int(tree.n)
    return torch.stack([row[mask], col[mask]], dim=0)


# @torch.jit.script
rusty1s's avatar
rusty1s committed
32
33
def radius(x: torch.Tensor, y: torch.Tensor, r: float,
           batch_x: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
34
35
           batch_y: Optional[torch.Tensor] = None, max_num_neighbors: int = 32,
           num_workers: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
36
37
    r"""Finds for each element in :obj:`y` all points in :obj:`x` within
    distance :obj:`r`.
rusty1s's avatar
docs  
rusty1s committed
38
39

    Args:
rusty1s's avatar
rusty1s committed
40
41
42
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        y (Tensor): Node feature matrix
Vadim Bereznyuk's avatar
typos  
Vadim Bereznyuk committed
43
            :math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`.
rusty1s's avatar
docs  
rusty1s committed
44
        r (float): The radius.
rusty1s's avatar
rusty1s committed
45
        batch_x (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
46
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
47
48
49
            node to a specific example. :obj:`batch_x` needs to be sorted.
            (default: :obj:`None`)
        batch_y (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
50
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
rusty1s's avatar
rusty1s committed
51
52
            node to a specific example. :obj:`batch_y` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
docs  
rusty1s committed
53
        max_num_neighbors (int, optional): The maximum number of neighbors to
rusty1s's avatar
rusty1s committed
54
            return for each element in :obj:`y`. (default: :obj:`32`)
rusty1s's avatar
rusty1s committed
55
56
57
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch_x` or :obj:`batch_y` is not
            :obj:`None`, or the input lies on the GPU. (default: :obj:`1`)
rusty1s's avatar
docs  
rusty1s committed
58

rusty1s's avatar
rusty1s committed
59
    .. code-block:: python
rusty1s's avatar
rusty1s committed
60
61
62
63

        import torch
        from torch_cluster import radius

rusty1s's avatar
rusty1s committed
64
65
66
67
68
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch_x = torch.tensor([0, 0, 0, 0])
        y = torch.Tensor([[-1, 0], [1, 0]])
        batch_y = torch.tensor([0, 0])
        assign_index = radius(x, y, 1.5, batch_x, batch_y)
rusty1s's avatar
docs  
rusty1s committed
69
    """
rusty1s's avatar
rusty1s committed
70
71
72

    x = x.view(-1, 1) if x.dim() == 1 else x
    y = y.view(-1, 1) if y.dim() == 1 else y
rusty1s's avatar
rusty1s committed
73
    x, y = x.contiguous(), y.contiguous()
rusty1s's avatar
rusty1s committed
74

75
76
77
78
    if not x.is_cuda:
        return radius_cpu(x, y, r, batch_x, batch_y, max_num_neighbors,
                          num_workers)

rusty1s's avatar
rusty1s committed
79
    ptr_x: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
80
81
82
83
84
85
86
87
88
    if batch_x is not None:
        assert x.size(0) == batch_x.numel()
        batch_size = int(batch_x.max()) + 1

        deg = x.new_zeros(batch_size, dtype=torch.long)
        deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))

        ptr_x = deg.new_zeros(batch_size + 1)
        torch.cumsum(deg, 0, out=ptr_x[1:])
89

rusty1s's avatar
rusty1s committed
90
    ptr_y: Optional[torch.Tensor] = None
rusty1s's avatar
rusty1s committed
91
92
93
    if batch_y is not None:
        assert y.size(0) == batch_y.numel()
        batch_size = int(batch_y.max()) + 1
rusty1s's avatar
rusty1s committed
94

rusty1s's avatar
rusty1s committed
95
96
97
98
99
        deg = y.new_zeros(batch_size, dtype=torch.long)
        deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))

        ptr_y = deg.new_zeros(batch_size + 1)
        torch.cumsum(deg, 0, out=ptr_y[1:])
rusty1s's avatar
rusty1s committed
100

rusty1s's avatar
rusty1s committed
101
102
    return torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r,
                                          max_num_neighbors, num_workers)
rusty1s's avatar
rusty1s committed
103

Alexander Liao's avatar
Alexander Liao committed
104

105
# @torch.jit.script
rusty1s's avatar
rusty1s committed
106
107
def radius_graph(x: torch.Tensor, r: float,
                 batch: Optional[torch.Tensor] = None, loop: bool = False,
rusty1s's avatar
rusty1s committed
108
109
                 max_num_neighbors: int = 32, flow: str = 'source_to_target',
                 num_workers: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
110
    r"""Computes graph edges to all points within a given distance.
rusty1s's avatar
docs  
rusty1s committed
111
112

    Args:
rusty1s's avatar
rusty1s committed
113
114
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
rusty1s's avatar
docs  
rusty1s committed
115
        r (float): The radius.
rusty1s's avatar
rusty1s committed
116
        batch (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
117
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
118
119
            node to a specific example. :obj:`batch` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
120
121
        loop (bool, optional): If :obj:`True`, the graph will contain
            self-loops. (default: :obj:`False`)
rusty1s's avatar
docs  
rusty1s committed
122
        max_num_neighbors (int, optional): The maximum number of neighbors to
123
124
            return for each element. (default: :obj:`32`)
        flow (string, optional): The flow direction when used in combination
rusty1s's avatar
rusty1s committed
125
126
            with message passing (:obj:`"source_to_target"` or
            :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
rusty1s's avatar
rusty1s committed
127
128
129
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch` is not :obj:`None`, or the input lies
            on the GPU. (default: :obj:`1`)
rusty1s's avatar
docs  
rusty1s committed
130
131
132

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
133
    .. code-block:: python
rusty1s's avatar
rusty1s committed
134
135
136
137

        import torch
        from torch_cluster import radius_graph

rusty1s's avatar
rusty1s committed
138
139
140
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch = torch.tensor([0, 0, 0, 0])
        edge_index = radius_graph(x, r=1.5, batch=batch, loop=False)
rusty1s's avatar
docs  
rusty1s committed
141
142
    """

rusty1s's avatar
rusty1s committed
143
    assert flow in ['source_to_target', 'target_to_source']
rusty1s's avatar
rusty1s committed
144
145
146
147
148
149
150
151
    edge_index = radius(x, x, r, batch, batch,
                        max_num_neighbors if loop else max_num_neighbors + 1,
                        num_workers)
    if flow == 'source_to_target':
        row, col = edge_index[1], edge_index[0]
    else:
        row, col = edge_index[0], edge_index[1]

rusty1s's avatar
rusty1s committed
152
153
154
    if not loop:
        mask = row != col
        row, col = row[mask], col[mask]
rusty1s's avatar
rusty1s committed
155

rusty1s's avatar
rusty1s committed
156
    return torch.stack([row, col], dim=0)