radius.py 4.8 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
from typing import Optional
rusty1s's avatar
rusty1s committed
2

rusty1s's avatar
rusty1s committed
3
4
import torch

5

rusty1s's avatar
rusty1s committed
6
@torch.jit.script
rusty1s's avatar
rusty1s committed
7
8
def radius(x: torch.Tensor, y: torch.Tensor, r: float,
           batch_x: Optional[torch.Tensor] = None,
rusty1s's avatar
rusty1s committed
9
10
           batch_y: Optional[torch.Tensor] = None, max_num_neighbors: int = 32,
           num_workers: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
11
12
    r"""Finds for each element in :obj:`y` all points in :obj:`x` within
    distance :obj:`r`.
rusty1s's avatar
docs  
rusty1s committed
13
14

    Args:
rusty1s's avatar
rusty1s committed
15
16
17
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        y (Tensor): Node feature matrix
Vadim Bereznyuk's avatar
typos  
Vadim Bereznyuk committed
18
            :math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`.
rusty1s's avatar
docs  
rusty1s committed
19
        r (float): The radius.
rusty1s's avatar
rusty1s committed
20
        batch_x (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
21
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
22
23
24
            node to a specific example. :obj:`batch_x` needs to be sorted.
            (default: :obj:`None`)
        batch_y (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
25
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
rusty1s's avatar
rusty1s committed
26
27
            node to a specific example. :obj:`batch_y` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
docs  
rusty1s committed
28
        max_num_neighbors (int, optional): The maximum number of neighbors to
rusty1s's avatar
rusty1s committed
29
            return for each element in :obj:`y`. (default: :obj:`32`)
rusty1s's avatar
rusty1s committed
30
31
32
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch_x` or :obj:`batch_y` is not
            :obj:`None`, or the input lies on the GPU. (default: :obj:`1`)
rusty1s's avatar
docs  
rusty1s committed
33

rusty1s's avatar
rusty1s committed
34
    .. code-block:: python
rusty1s's avatar
rusty1s committed
35
36
37
38

        import torch
        from torch_cluster import radius

rusty1s's avatar
rusty1s committed
39
40
41
42
43
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch_x = torch.tensor([0, 0, 0, 0])
        y = torch.Tensor([[-1, 0], [1, 0]])
        batch_y = torch.tensor([0, 0])
        assign_index = radius(x, y, 1.5, batch_x, batch_y)
rusty1s's avatar
docs  
rusty1s committed
44
    """
rusty1s's avatar
rusty1s committed
45
46
47
48

    x = x.view(-1, 1) if x.dim() == 1 else x
    y = y.view(-1, 1) if y.dim() == 1 else y

rusty1s's avatar
rusty1s committed
49
50
51
52
53
54
55
56
57
    if batch_x is not None:
        assert x.size(0) == batch_x.numel()
        batch_size = int(batch_x.max()) + 1

        deg = x.new_zeros(batch_size, dtype=torch.long)
        deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))

        ptr_x = deg.new_zeros(batch_size + 1)
        torch.cumsum(deg, 0, out=ptr_x[1:])
rusty1s's avatar
rusty1s committed
58
    else:
rusty1s's avatar
rusty1s committed
59
        ptr_x = None
60

rusty1s's avatar
rusty1s committed
61
62
63
    if batch_y is not None:
        assert y.size(0) == batch_y.numel()
        batch_size = int(batch_y.max()) + 1
rusty1s's avatar
rusty1s committed
64

rusty1s's avatar
rusty1s committed
65
66
67
68
69
70
71
        deg = y.new_zeros(batch_size, dtype=torch.long)
        deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))

        ptr_y = deg.new_zeros(batch_size + 1)
        torch.cumsum(deg, 0, out=ptr_y[1:])
    else:
        ptr_y = None
rusty1s's avatar
rusty1s committed
72

rusty1s's avatar
rusty1s committed
73
74
    return torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r,
                                          max_num_neighbors, num_workers)
rusty1s's avatar
rusty1s committed
75

Alexander Liao's avatar
Alexander Liao committed
76

rusty1s's avatar
rusty1s committed
77
@torch.jit.script
rusty1s's avatar
rusty1s committed
78
79
def radius_graph(x: torch.Tensor, r: float,
                 batch: Optional[torch.Tensor] = None, loop: bool = False,
rusty1s's avatar
rusty1s committed
80
81
                 max_num_neighbors: int = 32, flow: str = 'source_to_target',
                 num_workers: int = 1) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
82
    r"""Computes graph edges to all points within a given distance.
rusty1s's avatar
docs  
rusty1s committed
83
84

    Args:
rusty1s's avatar
rusty1s committed
85
86
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
rusty1s's avatar
docs  
rusty1s committed
87
        r (float): The radius.
rusty1s's avatar
rusty1s committed
88
        batch (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
89
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
90
91
            node to a specific example. :obj:`batch` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
92
93
        loop (bool, optional): If :obj:`True`, the graph will contain
            self-loops. (default: :obj:`False`)
rusty1s's avatar
docs  
rusty1s committed
94
        max_num_neighbors (int, optional): The maximum number of neighbors to
rusty1s's avatar
rusty1s committed
95
            return for each element in :obj:`y`. (default: :obj:`32`)
rusty1s's avatar
rusty1s committed
96
97
98
        flow (string, optional): The flow direction when using in combination
            with message passing (:obj:`"source_to_target"` or
            :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
rusty1s's avatar
rusty1s committed
99
100
101
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch` is not :obj:`None`, or the input lies
            on the GPU. (default: :obj:`1`)
rusty1s's avatar
docs  
rusty1s committed
102
103
104

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
105
    .. code-block:: python
rusty1s's avatar
rusty1s committed
106
107
108
109

        import torch
        from torch_cluster import radius_graph

rusty1s's avatar
rusty1s committed
110
111
112
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch = torch.tensor([0, 0, 0, 0])
        edge_index = radius_graph(x, r=1.5, batch=batch, loop=False)
rusty1s's avatar
docs  
rusty1s committed
113
114
    """

rusty1s's avatar
rusty1s committed
115
    assert flow in ['source_to_target', 'target_to_source']
116
    row, col = radius(x, x, r, batch, batch,
117
                      max_num_neighbors if loop else max_num_neighbors + 1,
rusty1s's avatar
rusty1s committed
118
                      num_workers)
119
    row, col = (col, row) if flow == 'source_to_target' else (row, col)
rusty1s's avatar
rusty1s committed
120
121
122
    if not loop:
        mask = row != col
        row, col = row[mask], col[mask]
rusty1s's avatar
rusty1s committed
123
    return torch.stack([row, col], dim=0)