radius.py 5.8 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
from typing import Optional

rusty1s's avatar
rusty1s committed
3
import torch
rusty1s's avatar
rusty1s committed
4
import scipy.spatial
rusty1s's avatar
rusty1s committed
5
6


rusty1s's avatar
rusty1s committed
7
8
@torch.jit.script
def sample(col: torch.Tensor, count: int) -> torch.Tensor:
9
    if col.size(0) > count:
rusty1s's avatar
rusty1s committed
10
        col = col[torch.randperm(col.size(0), dtype=torch.long)][:count]
11
12
13
    return col


rusty1s's avatar
rusty1s committed
14
15
16
17
def radius(x: torch.Tensor, y: torch.Tensor, r: float,
           batch_x: Optional[torch.Tensor] = None,
           batch_y: Optional[torch.Tensor] = None,
           max_num_neighbors: int = 32) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
18
19
    r"""Finds for each element in :obj:`y` all points in :obj:`x` within
    distance :obj:`r`.
rusty1s's avatar
docs  
rusty1s committed
20
21

    Args:
rusty1s's avatar
rusty1s committed
22
23
24
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        y (Tensor): Node feature matrix
Vadim Bereznyuk's avatar
typos  
Vadim Bereznyuk committed
25
            :math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`.
rusty1s's avatar
docs  
rusty1s committed
26
        r (float): The radius.
rusty1s's avatar
rusty1s committed
27
28
29
30
31
32
        batch_x (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
            node to a specific example. (default: :obj:`None`)
        batch_y (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
            node to a specific example. (default: :obj:`None`)
rusty1s's avatar
docs  
rusty1s committed
33
        max_num_neighbors (int, optional): The maximum number of neighbors to
rusty1s's avatar
rusty1s committed
34
            return for each element in :obj:`y`. (default: :obj:`32`)
rusty1s's avatar
docs  
rusty1s committed
35

rusty1s's avatar
rusty1s committed
36
    .. code-block:: python
rusty1s's avatar
rusty1s committed
37
38
39
40

        import torch
        from torch_cluster import radius

rusty1s's avatar
rusty1s committed
41
42
43
44
45
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch_x = torch.tensor([0, 0, 0, 0])
        y = torch.Tensor([[-1, 0], [1, 0]])
        batch_y = torch.tensor([0, 0])
        assign_index = radius(x, y, 1.5, batch_x, batch_y)
rusty1s's avatar
docs  
rusty1s committed
46
    """
rusty1s's avatar
rusty1s committed
47
48
49
50

    x = x.view(-1, 1) if x.dim() == 1 else x
    y = y.view(-1, 1) if y.dim() == 1 else y

rusty1s's avatar
rusty1s committed
51
    if x.is_cuda:
rusty1s's avatar
rusty1s committed
52
53
54
55
56
57
58
59
        if batch_x is not None:
            assert x.size(0) == batch_x.numel()
            batch_size = int(batch_x.max()) + 1

            deg = x.new_zeros(batch_size, dtype=torch.long)
            deg.scatter_add_(0, batch_x, torch.ones_like(batch_x))

            ptr_x = deg.new_zeros(batch_size + 1)
rusty1s's avatar
fix  
rusty1s committed
60
            torch.cumsum(deg, 0, out=ptr_x[1:])
rusty1s's avatar
rusty1s committed
61
62
63
64
65
        else:
            ptr_x = torch.tensor([0, x.size(0)], device=x.device)

        if batch_y is not None:
            assert y.size(0) == batch_y.numel()
rusty1s's avatar
fix  
rusty1s committed
66
            batch_size = int(batch_y.max()) + 1
rusty1s's avatar
rusty1s committed
67
68
69
70

            deg = y.new_zeros(batch_size, dtype=torch.long)
            deg.scatter_add_(0, batch_y, torch.ones_like(batch_y))
            ptr_y = deg.new_zeros(batch_size + 1)
rusty1s's avatar
fix  
rusty1s committed
71
            torch.cumsum(deg, 0, out=ptr_y[1:])
rusty1s's avatar
rusty1s committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        else:
            ptr_y = torch.tensor([0, y.size(0)], device=y.device)

        return torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r,
                                              max_num_neighbors)
    else:
        if batch_x is None:
            batch_x = x.new_zeros(x.size(0), dtype=torch.long)

        if batch_y is None:
            batch_y = y.new_zeros(y.size(0), dtype=torch.long)

        assert x.dim() == 2 and batch_x.dim() == 1
        assert y.dim() == 2 and batch_y.dim() == 1
        assert x.size(1) == y.size(1)
        assert x.size(0) == batch_x.size(0)
        assert y.size(0) == batch_y.size(0)

Alexander Liao's avatar
Alexander Liao committed
90
        
rusty1s's avatar
rusty1s committed
91
92
93
        x = torch.cat([x, 2 * r * batch_x.view(-1, 1).to(x.dtype)], dim=-1)
        y = torch.cat([y, 2 * r * batch_y.view(-1, 1).to(y.dtype)], dim=-1)

Alexander Liao's avatar
Alexander Liao committed
94
95
96
        return torch.ops.torch_cluster.radius(x, y, x, y, r,
                                              max_num_neighbors)
        """
rusty1s's avatar
rusty1s committed
97
98
        tree = scipy.spatial.cKDTree(x.detach().numpy())
        col = tree.query_ball_point(y.detach().numpy(), r)
rusty1s's avatar
rusty1s committed
99
100
        col = [torch.tensor(c, dtype=torch.long) for c in col]
        col = [sample(c, max_num_neighbors) for c in col]
rusty1s's avatar
rusty1s committed
101
102
103
104
        row = [torch.full_like(c, i) for i, c in enumerate(col)]
        row, col = torch.cat(row, dim=0), torch.cat(col, dim=0)
        mask = col < int(tree.n)
        return torch.stack([row[mask], col[mask]], dim=0)
Alexander Liao's avatar
Alexander Liao committed
105
        """
rusty1s's avatar
rusty1s committed
106
107
108
109
110

def radius_graph(x: torch.Tensor, r: float,
                 batch: Optional[torch.Tensor] = None, loop: bool = False,
                 max_num_neighbors: int = 32,
                 flow: str = 'source_to_target') -> torch.Tensor:
rusty1s's avatar
rusty1s committed
111
    r"""Computes graph edges to all points within a given distance.
rusty1s's avatar
docs  
rusty1s committed
112
113

    Args:
rusty1s's avatar
rusty1s committed
114
115
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
rusty1s's avatar
docs  
rusty1s committed
116
        r (float): The radius.
rusty1s's avatar
rusty1s committed
117
118
119
        batch (LongTensor, optional): Batch vector
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
            node to a specific example. (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
120
121
        loop (bool, optional): If :obj:`True`, the graph will contain
            self-loops. (default: :obj:`False`)
rusty1s's avatar
docs  
rusty1s committed
122
        max_num_neighbors (int, optional): The maximum number of neighbors to
rusty1s's avatar
rusty1s committed
123
            return for each element in :obj:`y`. (default: :obj:`32`)
rusty1s's avatar
rusty1s committed
124
125
126
        flow (string, optional): The flow direction when using in combination
            with message passing (:obj:`"source_to_target"` or
            :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
rusty1s's avatar
docs  
rusty1s committed
127
128
129

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
130
    .. code-block:: python
rusty1s's avatar
rusty1s committed
131
132
133
134

        import torch
        from torch_cluster import radius_graph

rusty1s's avatar
rusty1s committed
135
136
137
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch = torch.tensor([0, 0, 0, 0])
        edge_index = radius_graph(x, r=1.5, batch=batch, loop=False)
rusty1s's avatar
docs  
rusty1s committed
138
139
    """

rusty1s's avatar
rusty1s committed
140
    assert flow in ['source_to_target', 'target_to_source']
141
142
    row, col = radius(x, x, r, batch, batch,
                      max_num_neighbors if loop else max_num_neighbors + 1)
Alexander Liao's avatar
Alexander Liao committed
143
144
145
146
147
    if x.is_cuda:
        row, col = (col, row) if flow == 'source_to_target' else (row, col)
    else:
        row, col = (col, row) if flow == 'target_to_source' else (row, col)
        
rusty1s's avatar
rusty1s committed
148
149
150
    if not loop:
        mask = row != col
        row, col = row[mask], col[mask]
rusty1s's avatar
rusty1s committed
151
    return torch.stack([row, col], dim=0)