radius.py 5.59 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
from typing import Optional
rusty1s's avatar
rusty1s committed
2

rusty1s's avatar
rusty1s committed
3
4
import torch

5

6
7
8
9
10
11
12
13
14
15
def radius(
    x: torch.Tensor,
    y: torch.Tensor,
    r: float,
    batch_x: Optional[torch.Tensor] = None,
    batch_y: Optional[torch.Tensor] = None,
    max_num_neighbors: int = 32,
    num_workers: int = 1,
    batch_size: Optional[int] = None,
) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
16
17
    r"""Finds for each element in :obj:`y` all points in :obj:`x` within
    distance :obj:`r`.
rusty1s's avatar
docs  
rusty1s committed
18
19

    Args:
rusty1s's avatar
rusty1s committed
20
21
22
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
        y (Tensor): Node feature matrix
Vadim Bereznyuk's avatar
typos  
Vadim Bereznyuk committed
23
            :math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`.
rusty1s's avatar
docs  
rusty1s committed
24
        r (float): The radius.
rusty1s's avatar
rusty1s committed
25
        batch_x (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
26
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
27
28
29
            node to a specific example. :obj:`batch_x` needs to be sorted.
            (default: :obj:`None`)
        batch_y (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
30
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each
rusty1s's avatar
rusty1s committed
31
32
            node to a specific example. :obj:`batch_y` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
docs  
rusty1s committed
33
        max_num_neighbors (int, optional): The maximum number of neighbors to
rusty1s's avatar
rusty1s committed
34
35
36
37
            return for each element in :obj:`y`.
            If the number of actual neighbors is greater than
            :obj:`max_num_neighbors`, returned neighbors are picked randomly.
            (default: :obj:`32`)
rusty1s's avatar
rusty1s committed
38
39
40
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch_x` or :obj:`batch_y` is not
            :obj:`None`, or the input lies on the GPU. (default: :obj:`1`)
41
42
        batch_size (int, optional): The number of examples :math:`B`.
            Automatically calculated if not given. (default: :obj:`None`)
rusty1s's avatar
docs  
rusty1s committed
43

rusty1s's avatar
rusty1s committed
44
    .. code-block:: python
rusty1s's avatar
rusty1s committed
45
46
47
48

        import torch
        from torch_cluster import radius

rusty1s's avatar
rusty1s committed
49
50
51
52
53
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch_x = torch.tensor([0, 0, 0, 0])
        y = torch.Tensor([[-1, 0], [1, 0]])
        batch_y = torch.tensor([0, 0])
        assign_index = radius(x, y, 1.5, batch_x, batch_y)
rusty1s's avatar
docs  
rusty1s committed
54
    """
rusty1s's avatar
rusty1s committed
55
56
    if x.numel() == 0 or y.numel() == 0:
        return torch.empty(2, 0, dtype=torch.long, device=x.device)
rusty1s's avatar
rusty1s committed
57
58
59

    x = x.view(-1, 1) if x.dim() == 1 else x
    y = y.view(-1, 1) if y.dim() == 1 else y
rusty1s's avatar
rusty1s committed
60
    x, y = x.contiguous(), y.contiguous()
rusty1s's avatar
rusty1s committed
61

62
63
64
65
66
67
68
69
70
    if batch_size is None:
        batch_size = 1
        if batch_x is not None:
            assert x.size(0) == batch_x.numel()
            batch_size = int(batch_x.max()) + 1
        if batch_y is not None:
            assert y.size(0) == batch_y.numel()
            batch_size = max(batch_size, int(batch_y.max()) + 1)
    assert batch_size > 0
rusty1s's avatar
rusty1s committed
71

72
73
    ptr_x: Optional[torch.Tensor] = None
    ptr_y: Optional[torch.Tensor] = None
74

75
76
77
78
79
80
    if batch_size > 1:
        assert batch_x is not None
        assert batch_y is not None
        arange = torch.arange(batch_size + 1, device=x.device)
        ptr_x = torch.bucketize(arange, batch_x)
        ptr_y = torch.bucketize(arange, batch_y)
rusty1s's avatar
rusty1s committed
81

rusty1s's avatar
rusty1s committed
82
83
    return torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r,
                                          max_num_neighbors, num_workers)
rusty1s's avatar
rusty1s committed
84

Alexander Liao's avatar
Alexander Liao committed
85

86
87
88
89
90
91
92
93
94
95
def radius_graph(
    x: torch.Tensor,
    r: float,
    batch: Optional[torch.Tensor] = None,
    loop: bool = False,
    max_num_neighbors: int = 32,
    flow: str = 'source_to_target',
    num_workers: int = 1,
    batch_size: Optional[int] = None,
) -> torch.Tensor:
rusty1s's avatar
rusty1s committed
96
    r"""Computes graph edges to all points within a given distance.
rusty1s's avatar
docs  
rusty1s committed
97
98

    Args:
rusty1s's avatar
rusty1s committed
99
100
        x (Tensor): Node feature matrix
            :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`.
rusty1s's avatar
docs  
rusty1s committed
101
        r (float): The radius.
rusty1s's avatar
rusty1s committed
102
        batch (LongTensor, optional): Batch vector
rusty1s's avatar
rusty1s committed
103
            :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each
rusty1s's avatar
rusty1s committed
104
105
            node to a specific example. :obj:`batch` needs to be sorted.
            (default: :obj:`None`)
rusty1s's avatar
rusty1s committed
106
107
        loop (bool, optional): If :obj:`True`, the graph will contain
            self-loops. (default: :obj:`False`)
rusty1s's avatar
docs  
rusty1s committed
108
        max_num_neighbors (int, optional): The maximum number of neighbors to
rusty1s's avatar
rusty1s committed
109
110
111
112
            return for each element.
            If the number of actual neighbors is greater than
            :obj:`max_num_neighbors`, returned neighbors are picked randomly.
            (default: :obj:`32`)
113
        flow (string, optional): The flow direction when used in combination
rusty1s's avatar
rusty1s committed
114
115
            with message passing (:obj:`"source_to_target"` or
            :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`)
rusty1s's avatar
rusty1s committed
116
117
118
        num_workers (int): Number of workers to use for computation. Has no
            effect in case :obj:`batch` is not :obj:`None`, or the input lies
            on the GPU. (default: :obj:`1`)
119
120
        batch_size (int, optional): The number of examples :math:`B`.
            Automatically calculated if not given. (default: :obj:`None`)
rusty1s's avatar
docs  
rusty1s committed
121
122
123

    :rtype: :class:`LongTensor`

rusty1s's avatar
rusty1s committed
124
    .. code-block:: python
rusty1s's avatar
rusty1s committed
125
126
127
128

        import torch
        from torch_cluster import radius_graph

rusty1s's avatar
rusty1s committed
129
130
131
        x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]])
        batch = torch.tensor([0, 0, 0, 0])
        edge_index = radius_graph(x, r=1.5, batch=batch, loop=False)
rusty1s's avatar
docs  
rusty1s committed
132
133
    """

rusty1s's avatar
rusty1s committed
134
    assert flow in ['source_to_target', 'target_to_source']
rusty1s's avatar
rusty1s committed
135
136
    edge_index = radius(x, x, r, batch, batch,
                        max_num_neighbors if loop else max_num_neighbors + 1,
137
                        num_workers, batch_size)
rusty1s's avatar
rusty1s committed
138
139
140
141
142
    if flow == 'source_to_target':
        row, col = edge_index[1], edge_index[0]
    else:
        row, col = edge_index[0], edge_index[1]

rusty1s's avatar
rusty1s committed
143
144
145
    if not loop:
        mask = row != col
        row, col = row[mask], col[mask]
rusty1s's avatar
rusty1s committed
146

rusty1s's avatar
rusty1s committed
147
    return torch.stack([row, col], dim=0)