from typing import Optional import torch def radius( x: torch.Tensor, y: torch.Tensor, r: float, batch_x: Optional[torch.Tensor] = None, batch_y: Optional[torch.Tensor] = None, max_num_neighbors: int = 32, num_workers: int = 1, batch_size: Optional[int] = None, ) -> torch.Tensor: r"""Finds for each element in :obj:`y` all points in :obj:`x` within distance :obj:`r`. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. y (Tensor): Node feature matrix :math:`\mathbf{Y} \in \mathbb{R}^{M \times F}`. r (float): The radius. batch_x (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. :obj:`batch_x` needs to be sorted. (default: :obj:`None`) batch_y (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^M`, which assigns each node to a specific example. :obj:`batch_y` needs to be sorted. (default: :obj:`None`) max_num_neighbors (int, optional): The maximum number of neighbors to return for each element in :obj:`y`. If the number of actual neighbors is greater than :obj:`max_num_neighbors`, returned neighbors are picked randomly. (default: :obj:`32`) num_workers (int): Number of workers to use for computation. Has no effect in case :obj:`batch_x` or :obj:`batch_y` is not :obj:`None`, or the input lies on the GPU. (default: :obj:`1`) batch_size (int, optional): The number of examples :math:`B`. Automatically calculated if not given. (default: :obj:`None`) .. code-block:: python import torch from torch_cluster import radius x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch_x = torch.tensor([0, 0, 0, 0]) y = torch.Tensor([[-1, 0], [1, 0]]) batch_y = torch.tensor([0, 0]) assign_index = radius(x, y, 1.5, batch_x, batch_y) """ if x.numel() == 0 or y.numel() == 0: return torch.empty(2, 0, dtype=torch.long, device=x.device) x = x.view(-1, 1) if x.dim() == 1 else x y = y.view(-1, 1) if y.dim() == 1 else y x, y = x.contiguous(), y.contiguous() if batch_size is None: batch_size = 1 if batch_x is not None: assert x.size(0) == batch_x.numel() batch_size = int(batch_x.max()) + 1 if batch_y is not None: assert y.size(0) == batch_y.numel() batch_size = max(batch_size, int(batch_y.max()) + 1) assert batch_size > 0 ptr_x: Optional[torch.Tensor] = None ptr_y: Optional[torch.Tensor] = None if batch_size > 1: assert batch_x is not None assert batch_y is not None arange = torch.arange(batch_size + 1, device=x.device) ptr_x = torch.bucketize(arange, batch_x) ptr_y = torch.bucketize(arange, batch_y) return torch.ops.torch_cluster.radius(x, y, ptr_x, ptr_y, r, max_num_neighbors, num_workers) def radius_graph( x: torch.Tensor, r: float, batch: Optional[torch.Tensor] = None, loop: bool = False, max_num_neighbors: int = 32, flow: str = 'source_to_target', num_workers: int = 1, batch_size: Optional[int] = None, ) -> torch.Tensor: r"""Computes graph edges to all points within a given distance. Args: x (Tensor): Node feature matrix :math:`\mathbf{X} \in \mathbb{R}^{N \times F}`. r (float): The radius. batch (LongTensor, optional): Batch vector :math:`\mathbf{b} \in {\{ 0, \ldots, B-1\}}^N`, which assigns each node to a specific example. :obj:`batch` needs to be sorted. (default: :obj:`None`) loop (bool, optional): If :obj:`True`, the graph will contain self-loops. (default: :obj:`False`) max_num_neighbors (int, optional): The maximum number of neighbors to return for each element. If the number of actual neighbors is greater than :obj:`max_num_neighbors`, returned neighbors are picked randomly. (default: :obj:`32`) flow (string, optional): The flow direction when used in combination with message passing (:obj:`"source_to_target"` or :obj:`"target_to_source"`). (default: :obj:`"source_to_target"`) num_workers (int): Number of workers to use for computation. Has no effect in case :obj:`batch` is not :obj:`None`, or the input lies on the GPU. (default: :obj:`1`) batch_size (int, optional): The number of examples :math:`B`. Automatically calculated if not given. (default: :obj:`None`) :rtype: :class:`LongTensor` .. code-block:: python import torch from torch_cluster import radius_graph x = torch.Tensor([[-1, -1], [-1, 1], [1, -1], [1, 1]]) batch = torch.tensor([0, 0, 0, 0]) edge_index = radius_graph(x, r=1.5, batch=batch, loop=False) """ assert flow in ['source_to_target', 'target_to_source'] edge_index = radius(x, x, r, batch, batch, max_num_neighbors if loop else max_num_neighbors + 1, num_workers, batch_size) if flow == 'source_to_target': row, col = edge_index[1], edge_index[0] else: row, col = edge_index[0], edge_index[1] if not loop: mask = row != col row, col = row[mask], col[mask] return torch.stack([row, col], dim=0)