codegen_cuda.cc 132 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file target/codegen.cc
 */

#include "codegen_cuda.h"
#include <tvm/arith/analyzer.h>
7
#include <tvm/ffi/function.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
16
#include <tvm/tir/op.h>

#include <cmath>
#include <string>
#include <utility>
#include <vector>

#include "../op/builtin.h"
17
#include "./ptx.h"
18
#include "arith/pattern_match.h"
19
20
21

namespace tvm {
namespace codegen {
22
using namespace tvm::tl::codegen;
23
using namespace ffi;
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
struct CUDAMath {
  std::string operator()(DataType t, std::string name) const {
    if (t.is_float()) {
      switch (t.bits()) {
      case 64:
        return name;
      case 32:
        return name + 'f';
      case 16: {
        if (name == "fabs") {
          return "__habs";
        } else if (name == "round") {
          return "hrint";
        } else {
          return "h" + name;
        }
      }
      default:
        return "";
      }
    } else if (t.is_bfloat16()) {
      if (name == "fabs") {
        return "__habs";
      } else if (name == "round") {
        return "hrint";
      } else {
        return "h" + name;
      }
    } else if (t.is_int() || t.is_uint()) {
      switch (t.bits()) {
      case 32:
        return "__" + name;
      case 64:
        return "__" + name + "ll";
      default:
        return "";
      }
    }
    return "";
  }
};

struct CUDAFastMath : public CUDAMath {
  std::string operator()(DataType t, std::string name) const {
    if (t.is_float() && t.bits() == 32) {
      return "__" + name + 'f';
    } else {
      return CUDAMath::operator()(t, name);
    }
    return "";
  }
};

struct CUDAFastMathTan : public CUDAMath {
  std::string operator()(DataType t, std::string name) const {
    if (t.is_float()) {
      switch (t.bits()) {
      case 64:
        return name;
      // `__tanf` seems to produce some values too deviant from numpy tan
      // version. So, let's use just `tanf` instead.
      case 32:
        return name + 'f';
      case 16:
        return 'h' + name;
      default:
        return "";
      }
    }
    return "";
  }
};

98
99
100
101
102
103
104
105
106
107
108
109
struct CUDAIEEEMath {
  std::string operator()(DataType t, std::string name,
                         std::string rounding_mode) const {
    if (t.is_float() && t.bits() == 32) {
      return "__" + name + "_" + rounding_mode;
    } else if (t.is_float() && t.bits() == 64) {
      return "__d" + name + "_" + rounding_mode;
    }
    return "";
  }
};

110
static std::string GetTileLangFP8Type(DataType type) {
111
112
113
114
115
116
117
118
119
120
121
122
123
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "_2";
  } else if (lanes == 4) {
    vec = "_4";
  } else if (lanes == 8) {
    vec = "_8";
  } else if (lanes == 16) {
    vec = "_16";
124
125
  } else if (lanes == 32) {
    vec = "_32";
126
  } else {
127
128
129
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4, 8, 16, 32) "
           "for FP8";
130
  }
131
132
  if (type.is_float8_e4m3fn() || type.is_float8_e4m3fnuz() ||
      type.is_float8_e4m3()) {
133
    stream << "fp8_e4" << vec << "_t";
134
135
  } else if (type.is_float8_e5m2() || type.is_float8_e5m2fnuz() ||
             type.is_float8_e5m2()) {
136
    stream << "fp8_e5" << vec << "_t";
137
138
  } else if (type.is_float8_e8m0fnu()) {
    stream << "fp8_e8" << vec << "_t";
139
  } else {
140
    LOG(FATAL) << "Unsupported FP8 type in CUDA codegen but got " << type;
141
142
143
144
  }
  return stream.str();
}

145
std::string GetTileLangFP6Type(DataType type) {
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "x2";
  } else if (lanes == 4) {
    vec = "x4";
  } else if (lanes == 8) {
    vec = "x8";
  } else if (lanes == 16) {
    vec = "x16";
  } else {
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4) for FP6";
  }
  stream << "__nv_fp6";
  std::string suffix;
  if (type.code() == DataType::kFloat6_e2m3fn) {
    suffix = "_e2m3";
  } else if (type.code() == DataType::kFloat6_e3m2fn) {
    suffix = "_e3m2";
  } else {
    LOG(FATAL) << "Unsupported FP6 type in CUDA codegen";
  }
  stream << vec << suffix;
  return stream.str();
}

176
std::string GetTileLangFP4Type(DataType type) {
177
178
179
180
181
182
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
183
    vec = "_2";
184
  } else if (lanes == 4) {
185
    vec = "_4";
186
  } else if (lanes == 8) {
187
    vec = "_8";
188
  } else if (lanes == 16) {
189
190
191
192
193
    vec = "_16";
  } else if (lanes == 32) {
    vec = "_32";
  } else if (lanes == 64) {
    vec = "_64";
194
  } else {
195
196
    LOG(FATAL) << "Only support scalar and vector types of width (2, 4, 8, 16, "
                  "32, 64) for FP4";
197
  }
198

199
200
  std::string suffix;
  if (type.code() == DataType::kFloat4_e2m1fn) {
201
    suffix = "_e2";
202
203
204
  } else {
    LOG(FATAL) << "Unsupported FP4 type in CUDA codegen";
  }
205
206

  stream << "fp4" << suffix << vec << "_t";
207
208
209
  return stream.str();
}

210
211
CodeGenTileLangCUDA::CodeGenTileLangCUDA() {
  restrict_keyword_ = "__restrict__";
212
213
214
215
216
  vid_global_barrier_state_ =
      name_supply_->FreshName(runtime::symbol::tvm_global_barrier_state);
  vid_global_barrier_expect_ = name_supply_->FreshName("__barrier_expect");
  ICHECK_EQ(vid_global_barrier_state_,
            runtime::symbol::tvm_global_barrier_state);
217
}
218

219
220
221
void CodeGenTileLangCUDA::PrintFuncPrefix(std::ostream &os) {
  os << "extern \"C\" __global__ ";
}
222
223

class LaunchConfigExtractor : public tir::StmtVisitor {
224
225
private:
  void VisitStmt_(const AttrStmtNode *op) final {
226
227
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
228
229
      if (iv->var->name_hint == "threadIdx.x" ||
          iv->thread_tag == "threadIdx.x") {
230
        threadIdx_x_ext = op->value;
231
232
      } else if (iv->var->name_hint == "threadIdx.y" ||
                 iv->thread_tag == "threadIdx.y") {
233
        threadIdx_y_ext = op->value;
234
235
      } else if (iv->var->name_hint == "threadIdx.z" ||
                 iv->thread_tag == "threadIdx.z") {
236
237
238
239
240
241
        threadIdx_z_ext = op->value;
      }
    }
    StmtVisitor::VisitStmt_(op);
  }

242
public:
243
244
245
246
247
  PrimExpr threadIdx_x_ext = Integer(1);
  PrimExpr threadIdx_y_ext = Integer(1);
  PrimExpr threadIdx_z_ext = Integer(1);
};

248
void CodeGenTileLangCUDA::PrintExtraAttrs(const PrimFunc &f) {
249
250
251
  LaunchConfigExtractor extractor;
  extractor(f->body);
  arith::Analyzer analyzer;
252
253
254
255
256
  PrimExpr threadIdx_ext =
      analyzer.Simplify(extractor.threadIdx_x_ext * extractor.threadIdx_y_ext *
                        extractor.threadIdx_z_ext);
  if (const IntImmNode *const threadIdx_ext_int =
          threadIdx_ext.as<IntImmNode>()) {
257
    if (threadIdx_ext_int->value == 1) {
258
259
      // unable to extract the number of threads per block, hence directly
      // return
260
261
      return;
    }
262
    stream << " __launch_bounds__(" << threadIdx_ext_int->value << ", 1)";
263
264
265
266
267
268
269
  }
}

std::string CodeGenTileLangCUDA::Finish() {
  if (need_mma_h_) {
    decl_stream << "#include <mma.h>\n";
  }
270
271
272
273
274
275
276
277
278
  if (need_mma_instruction_h_) {
    decl_stream << "#include <tl_templates/cuda/instruction/mma.h>\n";
  }
  if (need_wgmma_instruction_h_) {
    decl_stream << "#include <tl_templates/cuda/instruction/wgmma.h>\n";
  }
  if (need_tcgen05mma_instruction_h_) {
    decl_stream << "#include <tl_templates/cuda/instruction/tcgen05mma.h>\n";
  }
279
280
281
  if (need_mma_sm70_instruction_h_) {
    decl_stream << "#include <tl_templates/cuda/instruction/mma_sm70.h>\n";
  }
282
283
284
  if (need_tcgen05_common_h_) {
    decl_stream << "#include <tl_templates/cuda/tcgen_05.h>\n";
  }
285
286
287
  if (enable_fp8_) {
    decl_stream << "#include <tl_templates/cuda/cuda_fp8.h>\n";
  }
288
289
290
  if (enable_fp4_) {
    decl_stream << "#include <tl_templates/cuda/cuda_fp4.h>\n";
  }
291
292
293
294
295

  if (need_math_constants_h_) {
    decl_stream << "#include <math_constants.h>\n";
  }

296
297
298
299
  if (need_cooperative_groups_) {
    decl_stream << "#include <cooperative_groups.h>\n";
  }

300
  decl_stream << "#include <tl_templates/cuda/gemm.h>\n";
301
302
303
  if (enable_sparse_gemm_) {
    decl_stream << "#include <tl_templates/cuda/gemm_sp.h>\n";
  }
304
305
306
307
  decl_stream << "#include <tl_templates/cuda/copy.h>\n";
  decl_stream << "#include <tl_templates/cuda/reduce.h>\n";
  decl_stream << "#include <tl_templates/cuda/ldsm.h>\n";
  decl_stream << "#include <tl_templates/cuda/threadblock_swizzle.h>\n";
308
  decl_stream << "#include <tl_templates/cuda/debug.h>\n";
309
310
311
  decl_stream << "#ifdef ENABLE_BF16\n";
  decl_stream << "#include <tl_templates/cuda/cuda_bf16_fallbacks.cuh>\n";
  decl_stream << "#endif\n";
312
313

  if (need_global_barrier_) {
314
315
    decl_stream << "__device__ unsigned " << vid_global_barrier_state_
                << " = 0;\n";
316
  }
317
  decl_stream << "\n";
318

319
320
321
  return CodeGenC::Finish();
}

322
void CodeGenTileLangCUDA::VisitStmt_(const tir::ForNode *op) {
323
324
  if (op->kind == tir::ForKind::kUnrolled) {
    PrintIndent();
325
326
327
328
329
330
    if (unroll_factor.count(op->loop_var.get())) {
      stream << "#pragma unroll "
             << PrintExpr(unroll_factor[op->loop_var.get()]) << "\n";
    } else {
      stream << "#pragma unroll\n";
    }
331
  }
332
333
  std::string extent =
      PrintExpr(arith::Analyzer().Simplify(op->extent + op->min));
334
335
336
337
338
  PrintIndent();
  std::string vid = AllocVarID(op->loop_var.get());
  std::string start = PrintExpr(op->min);
  stream << "for (";
  PrintType(op->loop_var.dtype(), stream);
339
340
  stream << ' ' << vid << " = " << start << "; " << vid << " < " << extent
         << "; ++" << vid << ") {\n";
341
342
343
344
345
346
347
  int for_scope = BeginScope();
  PrintStmt(op->body);
  this->EndScope(for_scope);
  PrintIndent();
  stream << "}\n";
}

348
void CodeGenTileLangCUDA::BindThreadIndex(const IterVar &iv) {
349
  ICHECK(!var_idmap_.count(iv->var.get()));
350
351
  var_idmap_[iv->var.get()] =
      CastFromTo(iv->thread_tag, DataType::UInt(32), iv->var.dtype());
352
353
}

354
void CodeGenTileLangCUDA::PrintType(DataType t, std::ostream &os) { // NOLINT(*)
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
  int lanes = t.lanes();
  if (t.is_handle()) {
    ICHECK(t.is_scalar()) << "do not yet support vector types";
    os << "void*";
    return;
  }

  if (t.is_void()) {
    os << "void";
    return;
  }

  if (t == tl::cuTensorMapType()) {
    os << "CUtensorMap";
    return;
  }

  bool fail = false;
  if (t.is_float()) {
    switch (t.bits()) {
375
    case 16:
376
      enable_fp16_ = true;
377
378
379
380
381
382
383
384
385
386
387
388
389
390
      if (t.is_scalar()) {
        os << "half_t";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp16 vector elements.
        //
        // half4 is stored as uint2
        //
        // h4.x is emitted as *(half2*)(&(u2.x)).x
        // h4.y is emitted as *(half2*)(&(u2.x)).y
        // h4.z is emitted as *(half2*)(&(u2.y)).x
        // h4.w is emitted as *(half2*)(&(u2.y)).y
        //
        ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
        os << "uint" << lanes / 2;
391
392
393
394
      } else if (lanes <= 16) {
        ICHECK_EQ(lanes % 4, 0) << "only support (mod 4 = 0) lanes for half "
                                   "type of more than 8 lanes";
        os << "ulonglong" << lanes / 4;
395
      } else {
396
        fail = true;
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
      }
      break;
    case 32:
      if (lanes <= 4) {
        os << "float";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp32 vector elements for 4 < lanes <= 8.
        //
        // float8 is stored as ulonglong4
        //
        // f8.v1 is emitted as *(float2*)(&(ul4.x)).x
        // f8.v2 is emitted as *(float2*)(&(ul4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for float type with lanes > 4";
        os << "ulonglong" << lanes / 2;
      } else {
        fail = true;
      }
      break;
    case 64:
      os << "double";
      break;
    default:
      fail = true;
      break;
423
    }
424
425
426
427
    if (!fail && (t.is_scalar() || t.bits() == 16))
      return;
    if (!fail && (lanes > 4 && lanes <= 8 && t.bits() == 32))
      return;
428
429
430
431
432
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  } else if (t.is_bfloat16()) {
433
    enable_bf16_ = true;
434
435
436
437
438
    if (t.is_scalar()) {
      os << "bfloat16_t";
    } else if (lanes <= 8) {
      ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
      os << "uint" << lanes / 2;
439
440
441
442
    } else if (lanes <= 16) {
      ICHECK_EQ(lanes % 4, 0) << "only support (mod 4 = 0) lanes for half type "
                                 "of more than 8 lanes";
      os << "ulonglong" << lanes / 4;
443
444
445
    } else {
      fail = true;
    }
446
447
    if (!fail)
      return;
448
  } else if (t.is_float8()) {
449
    enable_fp8_ = true;
450
    os << GetTileLangFP8Type(t);
451
    return;
452
453
454
  } else if (t.is_float6()) {
    enable_fp6_ = true;
    if (t.lanes() <= 4) {
455
      os << GetTileLangFP6Type(t);
456
457
458
459
    }
    return;
  } else if (t.is_float4()) {
    enable_fp4_ = true;
460
461
462
463
    if (t.lanes() <= 64) {
      os << GetTileLangFP4Type(t);
    } else {
      fail = true;
464
465
    }
    return;
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
  } else if (t == DataType::Bool()) {
    os << "bool";
    return;
  } else if (t.is_vector_bool()) {
    // CUDA does not support bool vectors.
    // Use ushort vectors to represent instead.
    int n = t.lanes();
    if (n <= 4) {
      os << "ushort" << n;
      return;
    }
  } else if (t.is_uint() || t.is_int()) {
    if (t.is_uint()) {
      os << "u";
    }
    switch (t.bits()) {
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    case 1: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int8_t";
        return;
      } else if (t.lanes() == 16) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 32) {
        os << "int";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
497
      }
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    }
    case 4: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 4) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 8) {
        // directly 8 4-bit int in integer.
        os << "int";
        return;
      } else if (t.lanes() == 16) {
        os << "int2";
        return;
      } else if (t.lanes() == 32) {
        os << "int4";
        return;
      } else if (t.lanes() == 64) {
        os << "int8";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
521
      }
522
523
524
525
    }
    case 8: {
      if (t.lanes() == 4) {
        // directly 4 8 bit int in integer.
526
        enable_int8_ = true;
527
528
529
530
531
532
533

        // We use int for int8x4 instead of char4 because using char4 is
        // likely to produce extra instructions to pack four int8 elements
        // into 32-bit data.
        os << "int";
        return;
      } else if (t.lanes() == 8) {
534
        enable_int8_ = true;
535
536
537
        os << "int2";
        return;
      } else if (t.lanes() == 16) {
538
        enable_int8_ = true;
539
540
        os << "int4";
        return;
541
542
543
544
      } else if (t.lanes() == 32) {
        enable_int8_ = true;
        os << "longlong4";
        return;
545
546
      } else if (!t.is_uint() && t.is_scalar()) {
        os << "signed char";
547
        break;
548
549
      } else {
        os << "char";
550
551
        break;
      }
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    }
    case 16: {
      if (t.is_scalar()) {
        os << "short";
      } else if (t.lanes() <= 4) {
        os << "short" << lanes;
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int16 vector elements.
        //
        // short4 is stored as int2
        //
        // s4.x is emitted as *(short2*)(&(i2.x)).x
        // s4.y is emitted as *(short2*)(&(i2.x)).y
        // s4.z is emitted as *(short2*)(&(i2.y)).x
        // s4.w is emitted as *(short2*)(&(i2.y)).y
        //
        ICHECK_EQ(t.lanes() % 2, 0)
            << "only support even lane for shorT type with lanes > 4";
        os << "int" << t.lanes() / 2;
      } else {
        fail = true;
      }
      if (!fail) {
575
576
        return;
      }
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
      break;
    }
    case 32: {
      if (t.is_scalar()) {
        os << "int";
      } else if (t.lanes() <= 4) {
        os << "int" << t.lanes();
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int32 vector elements for 4 < lanes <= 8.
        //
        // int8 is stored as longlong4
        //
        // i8.v1 is emitted as *(int2*)(&(l4.x)).x
        // i8.v2 is emitted as *(int2*)(&(l4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for int32 type with lanes > 4";
        os << "longlong" << lanes / 2;
      } else {
596
        fail = true;
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
      }
      if (!fail) {
        return;
      }
      break;
    }
    case 64: {
      if (t.is_scalar()) {
        os << "int64_t";
      } else if (t.lanes() == 2) {
        os << "longlong2";
      } else if (t.lanes() == 3) {
        os << "longlong3";
      } else if (t.lanes() == 4) {
        os << "longlong4";
612
613
      } else {
        fail = true;
614
      }
615
616
617
618
      if (!fail) {
        return;
      }
      break;
619
620
621
622
    }
    default:
      fail = true;
      break;
623
624
625
626
627
628
629
630
631
632
633
634
    }
    if (!fail && lanes == 1) {
      return;
    }
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  }
  LOG(FATAL) << "Cannot convert type " << t << " to CUDA type";
}

635
636
637
void CodeGenTileLangCUDA::PrintVecBinaryOp(const std::string &op, DataType t,
                                           PrimExpr lhs, PrimExpr rhs,
                                           std::ostream &os) { // NOLINT(*)
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
  // Declare the result.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(t, stream);
  stream << ' ' << sret << ";\n";
  int ssa_scope = BeginScope();
  {
    // Unpack into individual ops.
    std::string vlhs = SSAGetID(PrintExpr(lhs), lhs.dtype());
    std::string vrhs = SSAGetID(PrintExpr(rhs), rhs.dtype());

    for (int i = 0, lanes = t.lanes(); i < lanes; ++i) {
      std::ostringstream value_temp;
      if (isalpha(op[0])) {
        value_temp << op << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << ", ";
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      } else {
        value_temp << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << op;
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      }
      PrintVecElemStore(sret, t, i, value_temp.str());
    }
  }
  EndScope(ssa_scope);
  os << sret;
}

671
672
673
void CodeGenTileLangCUDA::PrintVecElemLoad(const std::string &vec, DataType t,
                                           int i,
                                           std::ostream &os) { // NOLINT(*)
674
675
676
677
678
679
  if (t.is_scalar()) {
    os << vec;
    return;
  }

  static const char access[] = {'x', 'y', 'z', 'w'};
680
681
682
  ICHECK(i >= 0 && i < 256 / t.bits())
      << "i: " << i << " t: " << t << " t.bits(): " << t.bits()
      << " t.lanes(): " << t.lanes();
683
684
685
686
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    std::string type_name = t.is_int() ? "char" : "unsigned char";
    if (t.lanes() == 2 || t.lanes() == 3) {
      os << vec << "." << access[i % t.lanes()];
687
    } else if (t.lanes() <= 16) {
688
689
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      os << "((" << type_name << ")(" << ac << " >> " << i % 4 * 8 << "))";
690
691
692
693
    } else {
      ICHECK(t.lanes() == 32);
      std::string ac = vec + "." + access[i / 8];
      os << "((" << type_name << ")(" << ac << " >> " << i % 8 * 8 << "))";
694
695
    }
  } else if (t.is_float16()) {
696
697
698
699
700
701
702
    if (t.lanes() <= 8) {
      os << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
         << access[i % 2];
    } else {
      os << "(((half2*)(&(" << vec << "." << access[i / 4] << "))) + "
         << (i / 2 % 2) << ")->" << access[i % 2];
    }
703
  } else if (t.is_bfloat16()) {
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
    if (t.lanes() <= 8) {
      os << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
         << access[i % 2];
    } else {
      os << "(((nv_bfloat162*)(&(" << vec << "." << access[i / 4] << "))) + "
         << (i / 2 % 2) << ")->" << access[i % 2];
    }
  } else if (t.is_float8()) {
    os << vec;
    // fp8_e5_32_t
    if (t.lanes() >= 32)
      os << "." << access[i / 16];
    // fp8_e5_16_t
    if (t.lanes() >= 16)
      os << "." << access[(i % 16) / 8];
    // fp8_e5_8_t
    if (t.lanes() >= 8)
      os << "." << access[(i % 8) / 4];
    // fp8_e5_4_t or fp8_e5_2_t
    os << "." << access[i % 4];
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
  } else if (t.is_float4_e2m1fn()) {
    os << vec;
    // fp4_e2_64_t
    if (t.lanes() >= 64)
      os << "." << access[i / 32];
    // fp4_e2_32_t
    if (t.lanes() >= 32)
      os << "." << access[(i % 32) / 16];
    // fp4_e2_16_t
    if (t.lanes() >= 16)
      os << "." << access[(i % 16) / 8];
    // fp4_e2_8_t
    if (t.lanes() >= 8)
      os << "." << access[(i % 8) / 4];
    // fp4_e2_4_t or fp4_e2_2_t
    os << "." << access[i % 4];
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
758
759
    os << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
       << ")))->" << access[i % 2];
760
761
762
763
764
  } else {
    os << vec << "." << access[i];
  }
}

765
766
void CodeGenTileLangCUDA::PrintVecElemStore(const std::string &vec, DataType t,
                                            int i, const std::string &value) {
767
768
  this->PrintIndent();
  static const char access[] = {'x', 'y', 'z', 'w'};
769
  ICHECK(i >= 0 && i < 256 / t.bits());
770
771
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (t.lanes() == 2 || t.lanes() == 3) {
772
773
      stream << vec << '.' << access[i % t.lanes()] << "="
             << "(" << value << ");\n";
774
    } else if (t.lanes() <= 16) {
775
776
777
778
779
780
781
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 4 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 4 * 8 << ");\n";
782
783
784
785
786
787
788
789
790
    } else {
      ICHECK(t.lanes() == 32);
      std::string ac = vec + "." + access[i / 8];
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 8 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 8 * 8 << ");\n";
791
792
    }
  } else if (t.is_float16()) {
793
794
795
796
797
798
799
800
    if (t.lanes() <= 8) {
      stream << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
             << access[i % 2] << " = " << value << ";\n";
    } else {
      stream << "(((half2*)(&(" << vec << "." << access[i / 4] << "))) + "
             << (i / 2 % 2) << ")->" << access[i % 2] << " = " << value
             << ";\n";
    }
801
  } else if (t.is_bfloat16()) {
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    if (t.lanes() <= 8) {
      stream << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
             << access[i % 2] << " = " << value << ";\n";
    } else {
      stream << "(((nv_bfloat162*)(&(" << vec << "." << access[i / 4]
             << "))) + " << (i / 2 % 2) << ")->" << access[i % 2] << " = "
             << value << ";\n";
    }
  } else if (t.is_float8()) {
    stream << vec;
    // fp8_e5_32_t
    if (t.lanes() >= 32)
      stream << "." << access[i / 16];
    // fp8_e5_16_t
    if (t.lanes() >= 16)
      stream << "." << access[(i % 16) / 8];
    // fp8_e5_8_t
    if (t.lanes() >= 8)
      stream << "." << access[(i % 8) / 4];
    // fp8_e5_4_t or fp8_e5_2_t
    stream << "." << access[i % 4] << " = " << value << ";\n";
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
841
842
    stream << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << " = " << value << ";\n";
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
  } else if (t.is_float4_e2m1fn()) {
    stream << vec;
    // fp4_e2_64_t
    if (t.lanes() >= 64)
      stream << "." << access[i / 32];
    // fp4_e2_32_t
    if (t.lanes() >= 32)
      stream << "." << access[(i % 32) / 16];
    // fp4_e2_16_t
    if (t.lanes() >= 16)
      stream << "." << access[(i % 16) / 8];
    // fp4_e2_8_t
    if (t.lanes() >= 8)
      stream << "." << access[(i % 8) / 4];
    // fp4_e2_4_t or fp4_e2_2_t
    stream << "." << access[i % 4] << " = " << value << ";\n";
859
860
861
862
863
  } else {
    stream << vec << "." << access[i] << " = " << value << ";\n";
  }
}

864
void CodeGenTileLangCUDA::PrintStorageSync(const CallNode *op) {
865
866
  auto args = op->args;
  const std::string &sync = args[0].as<StringImmNode>()->value;
867
868
869
870
  if (sync == "warp") {
    // DO nothing.
  } else if (sync == "shared" || sync == "shared.dyn") {
    this->PrintIndent();
871
872
873
874
875
876
877
878
879
880
881
882
883
884
    if (args.size() == 1) {
      this->stream << "__syncthreads();\n";
    } else if (args.size() == 2) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ">();\n";
    } else if (args.size() == 3) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      auto thread_count = args[2].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ", "
                   << thread_count << ">();\n";
    } else {
      LOG(FATAL) << "Invalid number of arguments for storage sync: "
                 << args.size();
    }
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
  } else if (sync == "global") {
    if (!need_global_barrier_) {
      need_global_barrier_ = true;
    }
    // global synchronizer
    std::string is_load = PrintExpr(op->args[1]);
    std::string num_blocks = PrintExpr(op->args[2]);
    this->PrintIndent();
    // In theory only threadfence is needed
    // but we observed problems with only threadfence
    this->stream << "__threadfence_system();\n";
    this->PrintIndent();
    this->stream << "if (" << is_load << ") {\n";
    int wb = this->BeginScope();
    this->PrintIndent();
    this->stream << "atomicAdd(&" << vid_global_barrier_state_ << ", 1);\n";
    this->PrintIndent();
    std::string ptr = name_supply_->FreshName("pf");
    this->stream << "volatile unsigned* " << ptr << " = &"
                 << vid_global_barrier_state_ << ";\n";
    this->PrintIndent();
    this->stream << vid_global_barrier_expect_ << " += " << num_blocks << ";\n";
    this->PrintIndent();
    this->stream << "while (" << ptr << "[0] < " << vid_global_barrier_expect_
                 << ");\n";
    this->EndScope(wb);
    this->PrintIndent();
    this->stream << "}\n";
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
915
916
917
  }
}

918
919
920
921
922
void CodeGenTileLangCUDA::PrintStorageScope(const std::string &scope,
                                            std::ostream &os) { // NOLINT(*)
  ICHECK_NE(scope, "global")
      << "Cannot allocate global memory when targeting CUDA. You must pass "
         "all global arrays as input instead";
923
  if (scope == "shared" || scope == "shared.barrier") {
924
925
926
927
928
929
    os << "__shared__ ";
  } else if (scope == "shared.dyn") {
    os << "extern __shared__ __align__(1024) ";
  }
}

930
931
932
933
std::string CodeGenTileLangCUDA::CastFromTo(std::string value, DataType from,
                                            DataType target) {
  if (from == target)
    return value;
934
935
936
937
  std::ostringstream os;
  os << "((";
  this->PrintType(target, os);
  os << ")";
938
939
  if (from.is_float16() && (target.is_int() || target.is_uint()) &&
      target.bits() == 8) {
940
941
942
943
944
945
    os << "(";
    if (target.is_uint()) {
      os << "u";
    }
    os << "int)";
  }
946
947
948
  if ((from.is_float16() || from.is_bfloat16()) && target.is_float8()) {
    os << "(float)";
  }
949
950
951
952
  os << value << ")";
  return os.str();
}

953
void CodeGenTileLangCUDA::VisitExpr_(const CastNode *op, std::ostream &os) {
954
955
956
957
958
  DataType from_ty = op->value.dtype();
  DataType target_ty = op->dtype;
  ICHECK_EQ(target_ty.lanes(), from_ty.lanes());

  // Emit simple C-style type conversion.
959
960
  if (from_ty.is_scalar())
    return CodeGenC::VisitExpr_(op, os);
961
962
963
964
965
966
967

  // We could emit make_float4 like calls, but the emitted code looks
  // too compact to read. Emit this as vectorized unary ops.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(target_ty, stream);
  stream << ' ' << sret << ";\n";
968
969
  std::string src = SSAGetID(PrintExpr(op->value), from_ty);

970
971
972
973
974
  // Handle conversion between float16 and float32
  if (from_ty.is_float16() && target_ty.is_float()) {
    // Use __half22float2 for vectorized conversion (half2 -> float2)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // half2 -> float2
975
      PrintIndent();
976
977
978
979
980
981
982
983
984
985
986
987
988
      stream << sret << " = __half22float2(*(half2*)(&(" << src << ")));\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // half4 -> float4
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[0] = "
             << "__half22float2(*(half2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[1] = "
             << "__half22float2(*((half2*)(&(" << src << "))+1));\n";
      os << sret;
      return;
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // half8 -> float8
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[0] = "
             << "__half22float2(*(half2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[1] = "
             << "__half22float2(*((half2*)(&(" << src << "))+1));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[2] = "
             << "__half22float2(*((half2*)(&(" << src << "))+2));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[3] = "
             << "__half22float2(*((half2*)(&(" << src << "))+3));\n";
      os << sret;
      return;
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    }
  } else if (from_ty.is_float() && target_ty.is_float16()) {
    // Use __float22half2_rn for vectorized conversion (float2 -> half2)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // float2 -> half2
      PrintIndent();
      stream << "*(half2*)(&(" << sret << ")) = __float22half2_rn(*(float2*)(&("
             << src << ")));\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // float4 -> half4
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[0] = "
             << "__float22half2_rn(*(float2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[1] = "
             << "__float22half2_rn(*((float2*)(&(" << src << "))+1));\n";
      os << sret;
      return;
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // float8 -> half8
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[0] = "
             << "__float22half2_rn(*(float2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[1] = "
             << "__float22half2_rn(*((float2*)(&(" << src << "))+1));\n";
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[2] = "
             << "__float22half2_rn(*((float2*)(&(" << src << "))+2));\n";
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[3] = "
             << "__float22half2_rn(*((float2*)(&(" << src << "))+3));\n";
      os << sret;
      return;
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
    }
  }

  // Handle conversion between bfloat16 and float32
  if (from_ty.is_bfloat16() && target_ty.is_float()) {
    // Use __bfloat1622float2 for vectorized conversion (bfloat162 -> float2)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // bfloat162 -> float2
      PrintIndent();
      stream << sret
             << " = __bfloat1622float2(*reinterpret_cast<__nv_bfloat162*>(&("
             << src << ")));\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // bfloat162x2 -> float4
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[0] = "
             << "__bfloat1622float2(*reinterpret_cast<__nv_bfloat162*>(&("
             << src << ")));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[1] = "
             << "__bfloat1622float2(*(reinterpret_cast<__nv_bfloat162*>(&("
             << src << "))+1));\n";
      os << sret;
      return;
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // bfloat162x4 -> float8
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[0] = "
             << "__bfloat1622float2(*reinterpret_cast<__nv_bfloat162*>(&("
             << src << ")));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[1] = "
             << "__bfloat1622float2(*(reinterpret_cast<__nv_bfloat162*>(&("
             << src << "))+1));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[2] = "
             << "__bfloat1622float2(*(reinterpret_cast<__nv_bfloat162*>(&("
             << src << "))+2));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[3] = "
             << "__bfloat1622float2(*(reinterpret_cast<__nv_bfloat162*>(&("
             << src << "))+3));\n";
      os << sret;
      return;
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    }
  } else if (from_ty.is_float() && target_ty.is_bfloat16()) {
    // Use __float22bfloat162_rn for vectorized conversion (float2 -> bfloat162)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // float2 -> bfloat162
      PrintIndent();
      stream << "*reinterpret_cast<__nv_bfloat162*>(&(" << sret
             << ")) = __float22bfloat162_rn(*(float2*)(&(" << src << ")));\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // float4 -> bfloat162x2
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[0] = "
             << "__float22bfloat162_rn(*(float2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[1] = "
             << "__float22bfloat162_rn(*((float2*)(&(" << src << "))+1));\n";
      os << sret;
      return;
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // float8 -> bfloat162x4
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[0] = "
             << "__float22bfloat162_rn(*(float2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[1] = "
             << "__float22bfloat162_rn(*((float2*)(&(" << src << "))+1));\n";
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[2] = "
             << "__float22bfloat162_rn(*((float2*)(&(" << src << "))+2));\n";
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[3] = "
             << "__float22bfloat162_rn(*((float2*)(&(" << src << "))+3));\n";
      os << sret;
      return;
1123
1124
1125
1126
    }
  }

  // Handle conversion from float32 to float8 (E4M3/E5M2)
1127
1128
1129
1130
  if (from_ty.is_float() && (target_ty.is_float8())) {
    bool target_type_is_e4m3 = target_ty.is_float8_e4m3() ||
                               target_ty.is_float8_e4m3fn() ||
                               target_ty.is_float8_e4m3fnuz();
1131
1132
1133
1134
1135
1136
1137
1138
    // FP32 -> FP8: Use __nv_cvt_float2_to_fp8x2 for vectorized conversion
    // (float2 -> fp8x2)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // float2 -> fp8x2
      PrintIndent();
      stream << "*reinterpret_cast<__nv_fp8x2_storage_t*>(&(" << sret
             << ")) = __nv_cvt_float2_to_fp8x2(*reinterpret_cast<float2*>(&("
             << src << ")), __NV_SATFINITE, "
1139
             << (target_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2") << ");\n";
1140
1141
1142
1143
1144
1145
1146
1147
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // float4 -> fp8x4
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[0] = "
             << "__nv_cvt_float2_to_fp8x2(*(float2*)(&(" << src
             << ")), __NV_SATFINITE, "
1148
             << (target_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2") << ");\n";
1149
1150
1151
1152
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[1] = "
             << "__nv_cvt_float2_to_fp8x2(*((float2*)(&(" << src
             << "))+1), __NV_SATFINITE, "
1153
             << (target_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2") << ");\n";
1154
1155
      os << sret;
      return;
1156
1157
1158
1159
1160
1161
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // float8 -> fp8x8
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[0] = "
             << "__nv_cvt_float2_to_fp8x2(*(float2*)(&(" << src
             << ")), __NV_SATFINITE, "
1162
             << (target_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2") << ");\n";
1163
1164
1165
1166
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[1] = "
             << "__nv_cvt_float2_to_fp8x2(*((float2*)(&(" << src
             << "))+1), __NV_SATFINITE, "
1167
             << (target_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2") << ");\n";
1168
1169
1170
1171
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[2] = "
             << "__nv_cvt_float2_to_fp8x2(*((float2*)(&(" << src
             << "))+2), __NV_SATFINITE, "
1172
             << (target_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2") << ");\n";
1173
1174
1175
1176
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[3] = "
             << "__nv_cvt_float2_to_fp8x2(*((float2*)(&(" << src
             << "))+3), __NV_SATFINITE, "
1177
             << (target_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2") << ");\n";
1178
1179
      os << sret;
      return;
1180
1181
    }
  }
1182

1183
1184
1185
1186
  if (from_ty.is_float8() && target_ty.is_float()) {
    bool from_type_is_e4m3 = from_ty.is_float8_e4m3() ||
                             from_ty.is_float8_e4m3fn() ||
                             from_ty.is_float8_e4m3fnuz();
1187
1188
1189
1190
1191
1192
1193
1194
1195
    // FP8 -> FP32: Use __tl_cvt_fp8x2_to_float2 for vectorized conversion
    // (fp8x2 -> float2)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // fp8x2 -> float2
      PrintIndent();
      stream << "*reinterpret_cast<float2*>(&(" << sret
             << ")) = "
                "__tl_cvt_fp8x2_to_float2(*reinterpret_cast<__nv_fp8x2_storage_"
                "t*>(&("
1196
             << src << ")), " << (from_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2")
1197
1198
1199
1200
1201
1202
1203
1204
             << ");\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // fp8x4 -> float4
      PrintIndent();
      stream << "*(float2*)(&" << sret << ") = "
             << "__tl_cvt_fp8x2_to_float2(((__nv_fp8x2_storage_t*)(&" << src
1205
             << "))[0], " << (from_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2")
1206
1207
1208
1209
             << ");\n";
      PrintIndent();
      stream << "*((float2*)(&" << sret << ")+1) = "
             << "__tl_cvt_fp8x2_to_float2(((__nv_fp8x2_storage_t*)(&" << src
1210
             << "))[1], " << (from_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2")
1211
1212
1213
1214
1215
1216
1217
1218
             << ");\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // fp8x8 -> float8
      PrintIndent();
      stream << "*(float2*)(&" << sret << ") = "
             << "__tl_cvt_fp8x2_to_float2(((__nv_fp8x2_storage_t*)(&" << src
1219
             << "))[0], " << (from_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2")
1220
1221
1222
1223
             << ");\n";
      PrintIndent();
      stream << "*((float2*)(&" << sret << ")+1) = "
             << "__tl_cvt_fp8x2_to_float2(((__nv_fp8x2_storage_t*)(&" << src
1224
             << "))[1], " << (from_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2")
1225
1226
1227
1228
             << ");\n";
      PrintIndent();
      stream << "*((float2*)(&" << sret << ")+2) = "
             << "__tl_cvt_fp8x2_to_float2(((__nv_fp8x2_storage_t*)(&" << src
1229
             << "))[2], " << (from_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2")
1230
1231
1232
1233
             << ");\n";
      PrintIndent();
      stream << "*((float2*)(&" << sret << ")+3) = "
             << "__tl_cvt_fp8x2_to_float2(((__nv_fp8x2_storage_t*)(&" << src
1234
             << "))[3], " << (from_type_is_e4m3 ? "__NV_E4M3" : "__NV_E5M2")
1235
1236
1237
1238
1239
1240
             << ");\n";
      os << sret;
      return;
    }
  }

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
  // Fallback: elementwise cast
  for (int i = 0, lanes = from_ty.lanes(); i < lanes; ++i) {
    std::ostringstream val;
    val << "(";
    PrintType(target_ty.element_of(), val);
    val << ")(";
    PrintVecElemLoad(src, from_ty, i, val);
    val << ")";
    PrintVecElemStore(sret, target_ty, i, val.str());
  }

1252
1253
1254
  os << sret;
}

1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
void CodeGenTileLangCUDA::VisitExpr_(const MinNode *op, std::ostream &os) {
  // TODO(wt): Consider vectorized reduction and impl for other dtypes
  DataType t = op->dtype;

  // Standard min/max functions don't support bfloat16 or float16
  if ((t.is_bfloat16() || t.is_float16()) && t.is_scalar()) {
    os << "cutlass::fast_min(" << PrintExpr(op->a) << ", " << PrintExpr(op->b)
       << ")";
    return;
  }

  // For float32 and float64 scalar, use standard min functions
  if (t.is_float() && t.is_scalar()) {
    if (t.bits() == 32 || t.bits() == 64) {
      os << "min(" << PrintExpr(op->a) << ", " << PrintExpr(op->b) << ")";
      return;
    }
  }

  // For all other scalar types (int, uint), use default implementation
  CodeGenC::VisitExpr_(op, os);
}

void CodeGenTileLangCUDA::VisitExpr_(const MaxNode *op, std::ostream &os) {
  // TODO(wt): Consider vectorized reduction and impl for other dtypes
  DataType t = op->dtype;

  // Standard min/max functions don't support bfloat16 or float16
  if ((t.is_bfloat16() || t.is_float16()) && t.is_scalar()) {
    os << "cutlass::fast_max(" << PrintExpr(op->a) << ", " << PrintExpr(op->b)
       << ")";
    return;
  }

  // For float32 and float64 scalar, use standard max functions
  if (t.is_float() && t.is_scalar()) {
    if (t.bits() == 32 || t.bits() == 64) {
      os << "max(" << PrintExpr(op->a) << ", " << PrintExpr(op->b) << ")";
      return;
    }
  }

  // For all other scalar types (int, uint), use default implementation
  CodeGenC::VisitExpr_(op, os);
}

1301
1302
1303
1304
void CodeGenTileLangCUDA::PrintCallExtern(Type ret_type, String global_symbol,
                                          const Array<PrimExpr> &args,
                                          bool skip_first_arg,
                                          std::ostream &os) { // NOLINT(*)
1305
  DataType ret_dtype = GetRuntimeDataType(ret_type);
1306
  if (ret_dtype.is_fixed_length_vector()) {
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
    //
    // Emit an unsupported vector call
    //
    // v = intrin_f((float4*)A[0], (float4*)B[0])
    //
    // as
    //
    // float4 __ret;
    // {
    //   float4 __arg0 = ((float4*)A)[0];
    //   float4 __arg1 = ((float4*)B)[0];
    //   __ret.x = intrin_f(__arg0.x, __arg1.x);
    //   __ret.y = intrin_f(__arg0.y, __arg1.y);
    //   __ret.z = intrin_f(__arg0.z, __arg1.z);
    //   __ret.w = intrin_f(__arg0.w, __arg1.w);
    // }
    // v = __ret;
    //
    // Declare the result vector.
    std::string sret = name_supply_->FreshName("_");
    this->PrintIndent();
    this->PrintType(ret_dtype, stream);
    stream << ' ' << sret << ";\n";
    {
      // Load arguments.
      std::vector<std::string> sargs;
      size_t arg_begin = static_cast<size_t>(skip_first_arg);
      for (size_t i = arg_begin; i < args.size(); ++i) {
        std::string val = SSAGetID(PrintExpr(args[i]), args[i].dtype());
        sargs.push_back(std::move(val));
      }

      // Emit a scalar call for each lane.
      for (int i = 0; i < ret_dtype.lanes(); ++i) {
        std::ostringstream scall;
        scall << global_symbol << "(";
        for (size_t j = 0; j < sargs.size(); ++j) {
1344
1345
          if (j > 0)
            scall << ", ";
1346
1347
1348
1349
1350
1351
1352
1353
          PrintVecElemLoad(sargs[j], args[arg_begin + j].dtype(), i, scall);
        }
        scall << ")";
        PrintVecElemStore(sret, ret_dtype, i, scall.str());
      }
    }
    os << sret;
  } else {
1354
1355
    CodeGenC::PrintCallExtern(ret_type, global_symbol, args, skip_first_arg,
                              os);
1356
1357
1358
1359
  }
}

// Print a reference expression to a buffer.
1360
1361
1362
1363
std::string CodeGenTileLangCUDA::GetBufferRef(DataType t,
                                              const BufferNode *buffer,
                                              PrimExpr index) {
  const VarNode *buffer_var = buffer->data.get();
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
  std::ostringstream os;
  std::string vid = GetVarID(buffer_var);
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  // bool is_vol = IsVolatile(buffer_var);
  // always false for tl cutlass backend.
  bool is_vol = false;

  auto ptr_cast = [this, is_vol, scope](DataType pointed_to) {
    std::ostringstream ptr_os;
    ptr_os << "(";
    if (is_vol) {
      ptr_os << "volatile ";
    }
    if (!scope.empty() && IsScopePartOfType()) {
      PrintStorageScope(scope, ptr_os);
    }
    PrintType(pointed_to, ptr_os);
    ptr_os << "*)";
    return ptr_os.str();
  };

  DataType buffer_element_dtype = buffer->dtype;

  std::string buffer_str = vid;
  if (!HandleTypeMatch(buffer_var, buffer_element_dtype) || is_vol) {
    std::stringstream temp;
    temp << "(" << ptr_cast(buffer_element_dtype) << vid << ")";
    buffer_str = temp.str();
  }
1396
1397
1398
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }
1399
  if (scope == "local.var" || scope.find("local.descriptor") == 0) {
1400
1401
1402
    os << vid;
    return os.str();
  }
1403
  std::string index_str = PrintExpr(index);
1404
  if ((t.bits() == 4 && !t.is_float4()) || (t.bits() == 1 && t.is_int())) {
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
    // This is a special case, because CodegenCUDA::PrintType()
    // returns "int" for bool and for 4-bit integers. In most cases,
    // we divide by the number of lanes to determine the index.
    // However, the backing type for scalar int4 and scalar bool is
    // int32.  Therefore, we need to divide by the ratio of their
    // sizes in that case.
    int div_factor = (t.lanes() == 1) ? (32 / t.bits()) : t.lanes();

    os << "*("
       << "(" << ptr_cast(t) << vid << ")"
       << " + " << index_str << " / " << div_factor << ")";
  } else if (t == buffer_element_dtype) {
    os << buffer_str << "[" << index_str << "]";
  } else {
    os << "*" << ptr_cast(t) << "(" << buffer_str << " + " << index_str << ")";
  }

  return os.str();
}

1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
std::string CodeGenTileLangCUDA::GetVecLoad(DataType t,
                                            const BufferNode *buffer,
                                            PrimExpr base) {
  const VarNode *buffer_var = buffer->data.get();
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }

  if (scope != "global" || t.bits() * t.lanes() <= 128) {
    return this->CodeGenC::GetVecLoad(t, buffer, base);
  }
  ICHECK_EQ(t.bits() * t.lanes(), 256)
      << "Unsupported vector load size: " << t.bits() * t.lanes();
  auto buffer_ref = this->GetBufferRef(t, buffer, base);
  std::ostringstream os;
  os << "tl::ld_global_256(&(" << buffer_ref << "))";
  return os.str();
}

void CodeGenTileLangCUDA::PrintVecStore(const BufferNode *buffer, DataType t,
                                        PrimExpr base,
                                        const std::string &value) {
  const VarNode *buffer_var = buffer->data.get();
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }

  if (scope != "global" || t.bits() * t.lanes() <= 128) {
    this->CodeGenC::PrintVecStore(buffer, t, base, value);
    return;
  }
  ICHECK_EQ(t.bits() * t.lanes(), 256)
      << "Unsupported vector load size: " << t.bits() * t.lanes();
  auto buffer_ref = this->GetBufferRef(t, buffer, base);
  this->PrintIndent();
  this->stream << "tl::st_global_256(&(" << buffer_ref << "), " << value
               << ");\n";
}

1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
/**
 * @brief Emit CUDA/TensorLib-specific code for a call expression.
 *
 * This visitor handles CallNode intrinsics and builtins that require emitting
 * CUDA/TL-specific code (inline PTX/ASM sequences, TensorLanguage runtime
 * calls, WMMA/TMA helpers, barriers, cp.async primitives, index-map based
 * stores, reinterpret/packing helpers, and various mma/ldmatrix patterns). The
 * function writes the generated code to the provided output stream and falls
 * back to the C codegen for unrecognized calls.
 *
 * The method recognizes and emits code for (non-exhaustive): cp.async and its
 * commit/wait variants, tma_load/store and im2col variants, ptX
 * ldmatrix/stmatrix helpers, mbarrier APIs, cooperative grid sync, WMMA/legacy
 * MMA intrinsics (fill/load/store/mma/bmma/ptx_mma/ptx_mma_sp), low-level PTX
 * asm helpers (ldg32, cp_async bulk/init/arrive/wait barriers), reinterpret
 * paths for special small-float encodings (e.g., float4 e2m1fn), tl::tl_gemm
 * and related external calls, and other TL runtime calls.
 *
 * Side effects:
 * - Emits to `os` and the internal codegen output stream.
 * - May set internal feature flags (e.g., need_cooperative_groups_,
 * need_mma_h_, need_cast_smem_ptr_to_int_, enable_sparse_gemm_).
 * - May open/close SSA scopes and mutate internal variable mappings.
 * - May call LOG(FATAL) / CHECK / ICHECK on invalid or unsupported argument
 *   patterns.
 *
 * @param op The call node to generate code for; the function inspects op->op
 *           and op->args to determine the appropriate emission.
 * @param os  Output stream to receive expression-level output when the caller
 *            expects an expression result (some paths write directly to the
 *            member stream instead).
 */
1504
void CodeGenTileLangCUDA::VisitExpr_(const CallNode *op, std::ostream &os) {
1505
1506
  auto print_extern_call_stmt = [&](std::string name, size_t start = 0,
                                    size_t end = 0) {
1507
1508
1509
1510
    // Cache context into a private ss, otherwise the let node may generate
    // within the function call arguments.
    std::ostringstream ss;

1511
1512
    for (size_t i = start; i < op->args.size() - end; i++) {
      if (i > start)
1513
1514
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
1515
    }
1516
1517
1518
1519

    this->PrintIndent();
    this->stream << name << "(";
    this->stream << ss.str();
1520
1521
    this->stream << ");\n";
  };
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
  auto print_mbarrier_obj = [&](PrimExpr barrier_id) {
    std::ostringstream ss;
    if (barrier_id.as<IntImmNode>()) {
      // incase the barrier_id is an integer, we need to print the barrier_id as
      // an integer
      ss << mbarrier_name_ << "[" << barrier_id << "]";
    } else {
      // otherwise may be a T.get_mbarrier() call or BufferLoad Node
      // we need to print the barrier_id as a string
      ss << this->PrintExpr(barrier_id);
    }
    return ss.str();
  };
1535
1536
1537
1538
1539
1540
  if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
1541
1542
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
1543
1544
    if (op->args.size() == 5) {
      this->PrintIndent();
1545
1546
      this->stream << "tl::cp_async_gs<" << size << ">(" << dst << "+"
                   << dst_offset << ", " << src << "+" << src_offset << ");\n";
1547
1548
1549
    } else {
      std::string condition = this->PrintExpr(op->args[5]);
      this->PrintIndent();
1550
1551
1552
      this->stream << "tl::cp_async_gs_conditional<" << size << ">(" << dst
                   << "+" << dst_offset << ", " << src << "+" << src_offset
                   << ", " << condition << ");\n";
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
    }
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    print_extern_call_stmt("tl::cp_async_commit");
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
    std::string func_name = "tl::cp_async_wait<" + std::to_string(n) + ">";
    print_extern_call_stmt(func_name, 1);
  } else if (op->op.same_as(builtin::create_barriers())) {
    this->PrintIndent();
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
1563
1564
    auto mbarrier_storage_name = mbarrier_name_ + "_mem";
    this->stream << "__shared__ uint64_t " << mbarrier_storage_name << "["
1565
                 << barrier_count << "];\n";
1566
1567
1568
    this->PrintIndent();
    this->stream << "auto " << mbarrier_name_ << " = reinterpret_cast<"
                 << mbarrier_dtype_ << "*>(" << mbarrier_storage_name << ");\n";
1569
  } else if (op->op.same_as(tl::get_mbarrier())) {
1570
    ICHECK_EQ(op->args.size(), 1);
1571
    std::string barrier_id = this->PrintExpr(op->args[0]);
1572
    os << mbarrier_name_ + "[" + barrier_id + "]";
1573
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    if (op->args.size() == 1) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      this->stream << mbarrier_obj << ".arrive();\n";
    } else if (op->args.size() == 3) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto cta_id = this->PrintExpr(op->args[1]);
      auto pred = this->PrintExpr(op->args[2]);
      this->stream << mbarrier_obj << ".arrive(" << cta_id << ", " << pred
                   << ");\n";
    } else {
      LOG(FATAL) << "Invalid parameter  for tl::arrive_barrier "
                 << op->args.size();
    }
1589
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
1590
1591
1592
1593
1594
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto arrive_count = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".init(" << arrive_count << ");\n";
1595
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
    if (op->args.size() == 2) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto transaction_bytes = this->PrintExpr(op->args[1]);
      this->stream << mbarrier_obj << ".arrive_and_expect_tx("
                   << transaction_bytes << ");\n";
    } else if (op->args.size() == 4) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto transaction_bytes = this->PrintExpr(op->args[1]);
      auto cta_id = this->PrintExpr(op->args[2]);
      auto pred = this->PrintExpr(op->args[3]);
      this->stream << mbarrier_obj << ".arrive_and_expect_tx("
                   << transaction_bytes << ", " << cta_id << ", " << pred
                   << ");\n";
    } else {
      LOG(FATAL) << "Invalid parameter  for tl::arrive_barrier_expect_tx "
                 << op->args.size();
    }
1615
1616
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive");
1617
1618
  } else if (op->op.same_as(tl::ptx_fence_barrier_init())) {
    print_extern_call_stmt("tl::fence_barrier_init");
1619
1620
  } else if (op->op.same_as(tl::ptx_cp_async_barrier_noinc())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive_noinc");
1621
  } else if (op->op.same_as(tl::mbarrier_expect_tx())) {
1622
1623
1624
1625
1626
1627
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto transaction_bytes = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".expect_transaction(" << transaction_bytes
                 << ");\n";
1628
  } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
1629
1630
1631
1632
1633
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto phase = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".wait(" << phase << ");\n";
1634
1635
1636
1637
  } else if (op->op.same_as(tl::ptx_init_tensor_memory())) {
    print_extern_call_stmt("tl::tmem_allocate");
  } else if (op->op.same_as(tl::ptx_deallocate_tensor_memory())) {
    print_extern_call_stmt("tl::tmem_deallocate");
1638
1639
  } else if (op->op.same_as(tl::no_set_max_nreg())) {
    return;
1640
  } else if (op->op.same_as(tl::tma_load())) {
1641
    std::ostringstream ss;
1642
    ICHECK_GE(op->args.size(), 2);
1643
1644
1645
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
1646
1647
1648
1649
1650
1651
    // Simplify the code by using the default eviction policy
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_load<tl::CacheHintSm90::" << eviction_policy << ">(";
    } else {
      ss << "tl::tma_load(";
    }
1652
    auto desc = op->args[0];
1653
    ss << this->PrintExpr(desc) << ", ";
1654
    ss << print_mbarrier_obj(op->args[1]) << ", ";
1655
    for (size_t i = 2; i < op->args.size() - 1; i++) {
1656
      if (i > 2)
1657
1658
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
1659
    }
1660
1661
1662
    ss << ");\n";
    this->PrintIndent();
    this->stream << ss.str();
1663
  } else if (op->op.same_as(tl::tma_load_im2col())) {
1664
    std::stringstream ss;
1665
1666
1667
1668
1669
1670
1671
1672
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_load_im2col<tl::CacheHintSm90::" << eviction_policy << ">";
    } else {
      ss << "tl::tma_load_im2col";
    }
1673
    print_extern_call_stmt(ss.str(), 0, 1);
1674
  } else if (op->op.same_as(tl::tma_store())) {
1675
    std::stringstream ss;
1676
1677
1678
1679
1680
    auto need_reduce = op->args[op->args.size() - 2].as<IntImmNode>()->value;
    if (need_reduce) {
      print_extern_call_stmt("tl::tma_store_add", 0, 2);
      return;
    }
1681
1682
1683
1684
1685
1686
1687
1688
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_store<tl::CacheHintSm90::" << eviction_policy << ">";
    } else {
      ss << "tl::tma_store";
    }
1689
    print_extern_call_stmt(ss.str(), 0, 2);
1690
  } else if (op->op.same_as(tl::ptx_ldmatrix())) {
1691
1692
1693
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
1694
1695
    if (trans == 1)
      func_name += "_trans";
1696
    print_extern_call_stmt(func_name, 2);
1697
  } else if (op->op.same_as(tl::ptx_stmatrix())) {
1698
1699
1700
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_stmatrix_x" + std::to_string(num);
1701
1702
    if (trans == 1)
      func_name += "_trans";
1703
    print_extern_call_stmt(func_name, 2);
1704
  } else if (op->op.same_as(tl::fence_proxy_async())) {
1705
    print_extern_call_stmt("tl::fence_proxy_async");
1706
  } else if (op->op.same_as(tl::tma_store_arrive())) {
1707
    print_extern_call_stmt("tl::tma_store_arrive");
1708
  } else if (op->op.same_as(tl::tma_store_wait())) {
1709
    print_extern_call_stmt("tl::tma_store_wait<0>");
1710
1711
1712
1713
1714
1715
1716
1717
1718
  } else if (op->op.same_as(tl::warpgroup_arrive())) {
    print_extern_call_stmt("tl::warpgroup_arrive");
  } else if (op->op.same_as(tl::warpgroup_commit_batch())) {
    print_extern_call_stmt("tl::warpgroup_commit_batch");
  } else if (op->op.same_as(tl::warpgroup_wait())) {
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::warpgroup_wait<" << std::to_string(num_mma)
                 << ">();\n";
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
  } else if (op->op.same_as(tl::warpgroup_fence_operand())) {
    ICHECK_EQ(op->args.size(), 4U);
    std::string dtype = Downcast<StringImm>(op->args[0])->value;
    std::string data_ptr = this->PrintExpr(op->args[1]);
    std::string offset = this->PrintExpr(op->args[2]);
    std::string num_regs = this->PrintExpr(op->args[3]);
    auto dtype_enum = tl::codegen::ptx::DTypeFromString(dtype);
    std::string cast_type = "uint32_t";
    if (dtype_enum == tl::codegen::ptx::DataType::kFloat32 ||
        dtype_enum == tl::codegen::ptx::DataType::kTensorFloat32) {
      cast_type = "float";
    }
    this->PrintIndent();
    this->stream << "tl::warpgroup_fence_operand(reinterpret_cast<" << cast_type
                 << "*>(" << data_ptr << " + " << offset << "), " << num_regs
                 << ");\n";
1735
  } else if (op->op.same_as(tl::set_max_nreg())) {
1736
1737
1738
    this->PrintIndent();
    int nreg = Downcast<IntImm>(op->args[0])->value;
    int is_inc = Downcast<IntImm>(op->args[1])->value;
1739
1740
    std::string func_name =
        is_inc ? "tl::warpgroup_reg_alloc" : "tl::warpgroup_reg_dealloc";
1741
    this->stream << func_name << "<" << std::to_string(nreg) << ">();\n";
1742
  } else if (op->op.same_as(tl::wait_wgmma())) {
1743
1744
1745
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::wait_wgmma<" << std::to_string(num_mma) << ">();\n";
1746
  } else if (op->op.same_as(tl::pack_b16())) {
1747
1748
    os << "__pack_half2(" << this->PrintExpr(op->args[0]) << ", "
       << this->PrintExpr(op->args[1]) << ")";
1749
1750
1751
  } else if (op->op.same_as(tl::sync_grid())) {
    this->need_cooperative_groups_ = true;
    this->PrintIndent();
1752
    this->stream << "cooperative_groups::this_grid().sync();\n";
1753
1754
1755
  } else if (op->op.same_as(tl::loop_break())) {
    this->PrintIndent();
    this->stream << "break;\n";
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
  } else if (op->op.same_as(builtin::tvm_fill_fragment())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 6U);
    os << "nvcuda::wmma::fill_fragment(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_load_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::load_matrix_sync(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[6], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_store_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::store_matrix_sync(";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[6], os);
1789
    if (const StringImmNode *str = op->args[7].as<StringImmNode>()) {
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
      os << ", nvcuda::wmma::mem_" << str->value;
    } else {
      LOG(FATAL) << "Invalid parameters";
    }
    os << ")";
  } else if (op->op.same_as(builtin::tvm_mma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::mma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::tvm_bmma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::bmma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::ptx_mma())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp64, ...
    // arg 4: B precision: fp16, fp64, ...
    // arg 5: C precision: fp32, fp64, ...
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index
    // arg 12: saturate
    // arg 13: (optional) 1-bit operator (xor or and)
    ICHECK(op->args.size() == 13U || op->args.size() == 14U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
1843
1844
1845
1846
1847
1848
    auto dtype_a_enum = tl::codegen::ptx::DTypeFromString(A_dtype);
    auto dtype_b_enum = tl::codegen::ptx::DTypeFromString(B_dtype);
    auto dtype_c_enum = tl::codegen::ptx::DTypeFromString(C_dtype);
    auto [m, n, k] = tl::codegen::ptx::ParseMMAShape(shape);

    need_mma_instruction_h_ = true;
1849
    this->PrintIndent();
1850
1851
1852
1853
1854
1855
    std::string mma_call =
        "tl::mma_sync<(AType), (BType), (CType), (M), (N), (K), (TransA), "
        "(TransB)>(reinterpret_cast<(CRegType)*>((C_ptr) + (C_offset)), "
        "reinterpret_cast<const (ARegType)*>((A_ptr) + (A_offset)), "
        "reinterpret_cast<const (BRegType)*>((B_ptr) + (B_offset)));\n";
    tl::codegen::Replacer replacer;
1856
1857
1858

    // TODO(lei): Type Workaround for TF32, should be removed when
    // we introduced tfloat32_t in the frontend.
1859
1860
1861
1862
1863
1864
1865
1866
    std::string AType = tl::codegen::ptx::DTypeEnumToString(dtype_a_enum);
    if (AType == "tl::DataType::kFloat32") {
      AType = "tl::DataType::kTensorFloat32";
    }
    std::string BType = tl::codegen::ptx::DTypeEnumToString(dtype_b_enum);
    if (BType == "tl::DataType::kFloat32") {
      BType = "tl::DataType::kTensorFloat32";
    }
1867
1868
1869
1870
1871
1872
1873
1874
    std::string ARegType = tl::codegen::GetMMARegisterType(dtype_a_enum);
    if (ARegType == "float") {
      ARegType = "uint32_t";
    }
    std::string BRegType = tl::codegen::GetMMARegisterType(dtype_b_enum);
    if (BRegType == "float") {
      BRegType = "uint32_t";
    }
1875

1876
1877
    replacer.register_rule("(AType)", AType);
    replacer.register_rule("(BType)", BType);
1878
1879
1880
1881
1882
1883
1884
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_c_enum));
    replacer.register_rule("(M)", std::to_string(m));
    replacer.register_rule("(N)", std::to_string(n));
    replacer.register_rule("(K)", std::to_string(k));
    replacer.register_rule("(TransA)", A_layout == "row" ? "false" : "true");
    replacer.register_rule("(TransB)", B_layout == "row" ? "false" : "true");
1885
1886
    replacer.register_rule("(ARegType)", ARegType);
    replacer.register_rule("(BRegType)", BRegType);
1887
1888
1889
1890
1891
1892
1893
1894
1895
    replacer.register_rule("(CRegType)",
                           tl::codegen::GetMMARegisterType(dtype_c_enum));
    replacer.register_rule("(A_ptr)", a_ref);
    replacer.register_rule("(A_offset)", a_bias);
    replacer.register_rule("(B_ptr)", b_ref);
    replacer.register_rule("(B_offset)", b_bias);
    replacer.register_rule("(C_ptr)", c_ref);
    replacer.register_rule("(C_offset)", c_bias);
    this->stream << replacer.rewrite(mma_call);
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
  } else if (op->op.same_as(tl::ptx_mma_sm70())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16
    // arg 4: B precision: fp16
    // arg 5: C precision: fp16, fp32
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index
    // arg 12: saturate
    ICHECK_EQ(op->args.size(), 12U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
    auto dtype_a_enum = tl::codegen::ptx::DTypeFromString(A_dtype);
    auto dtype_b_enum = tl::codegen::ptx::DTypeFromString(B_dtype);
    auto dtype_c_enum = tl::codegen::ptx::DTypeFromString(C_dtype);
    auto [m, n, k] = tl::codegen::ptx::ParseMMAShape(shape);

    need_mma_sm70_instruction_h_ = true;
    this->PrintIndent();
    std::string mma_call =
        "tl::mma_sync_sm70<(AType), (BType), (CType), (M), (N), (K), (TransA), "
        "(TransB)>(reinterpret_cast<(CRegType)*>((C_ptr) + (C_offset)), "
        "reinterpret_cast<const (ARegType)*>((A_ptr) + (A_offset)), "
        "reinterpret_cast<const (BRegType)*>((B_ptr) + (B_offset)));\n";
    tl::codegen::Replacer replacer;

    replacer.register_rule("(AType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_a_enum));
    replacer.register_rule("(BType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_b_enum));
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_c_enum));
    replacer.register_rule("(M)", std::to_string(m));
    replacer.register_rule("(N)", std::to_string(n));
    replacer.register_rule("(K)", std::to_string(k));
    replacer.register_rule("(TransA)", A_layout == "row" ? "false" : "true");
    replacer.register_rule("(TransB)", B_layout == "row" ? "false" : "true");
    replacer.register_rule("(ARegType)",
                           tl::codegen::GetMMARegisterType(dtype_a_enum));
    replacer.register_rule("(BRegType)",
                           tl::codegen::GetMMARegisterType(dtype_b_enum));
    replacer.register_rule("(CRegType)",
                           tl::codegen::GetMMARegisterType(dtype_c_enum));
    replacer.register_rule("(A_ptr)", a_ref);
    replacer.register_rule("(A_offset)", a_bias);
    replacer.register_rule("(B_ptr)", b_ref);
    replacer.register_rule("(B_offset)", b_bias);
    replacer.register_rule("(C_ptr)", c_ref);
    replacer.register_rule("(C_offset)", c_bias);
    this->stream << replacer.rewrite(mma_call);
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
  } else if (op->op.same_as(builtin::ptx_mma_sp())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp32, ...
    // arg 4: B precision: fp16, fp32, ...
    // arg 5: C precision: fp16, fp32, ...
    // arg 6: A multiplicand pointer
    // arg 7: A multiplicand index
    // arg 8: B multiplicand pointer
    // arg 9: B multiplicand index
    // arg 10: C accumulator pointer
    // arg 11: C accumulator index
    // arg 12: metadata
    // arg 13: metadata index
    // arg 14: sparse_selector
    // arg 15: saturate
    ICHECK_EQ(op->args.size(), 16U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_offset = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_offset = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_offset = this->PrintExpr(op->args[11]);
    std::string metadata = this->PrintExpr(op->args[12]);
    std::string metadata_offset = this->PrintExpr(op->args[13]);
    std::string sparse_selector = this->PrintExpr(op->args[14]);
    bool saturate = Downcast<Bool>(op->args[15])->value;
1995
    this->PrintIndent();
1996
    std::string asm_code = PrintMMAAssembly(
1997
1998
1999
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_offset,
        b_ref, b_offset, c_ref, c_offset, metadata, metadata_offset,
        sparse_selector, "", true, saturate);
2000
    this->stream << asm_code;
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
  } else if (op->op.same_as(tl::ptx_wgmma_ss())) {
    // arg 0: dtype
    // arg 1: shape
    // arg 2: A_layout
    // arg 3: B_layout
    // arg 4: A_dtype
    // arg 5: B_dtype
    // arg 6: C_dtype
    // arg 7: multiplicand_a
    // arg 8: multiplicand_b
    // arg 9: accumulator
    // arg 10: saturate
    ICHECK_EQ(op->args.size(), 15U) << "ptx_wgmma_ss args is " << op->args;
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    bool a_is_k_major = Downcast<Bool>(op->args[1])->value;
    bool b_is_k_major = Downcast<Bool>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_desc = this->PrintExpr(op->args[6]);
    std::string A_offset = this->PrintExpr(op->args[7]);
    std::string b_desc = this->PrintExpr(op->args[8]);
    std::string B_offset = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_offset = this->PrintExpr(op->args[11]);
2026
    std::string scale_out = this->PrintExpr(op->args[12]);
2027
2028
2029
2030
2031
2032
    bool scale_in_a = Downcast<Bool>(op->args[13])->value;
    bool scale_in_b = Downcast<Bool>(op->args[14])->value;

    const bool a_is_shared = true;
    this->PrintIndent();
    auto [m, n, k] = tl::codegen::ptx::ParseMMAShape(shape);
2033
    need_wgmma_instruction_h_ = true;
2034
2035
2036
2037
2038
2039
    std::string wgmma_asm_code =
        "tl::wgmma_ss<(AType), (BType), (CType), (M), (N), (K), (tnspA), "
        "(tnspB), (scaleA), (scaleB)>(uint64_t((desc_a) + (A_offset)), "
        "uint64_t((desc_b) + (B_offset)), ((uint32_t*)((C))), (scale_out));\n";
    // replace patterns
    tl::codegen::Replacer replacer;
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

    std::string AType = tl::codegen::ptx::DTypeEnumToString(A_dtype);
    if (AType == "tl::DataType::kFloat32") {
      AType = "tl::DataType::kTensorFloat32";
    }
    std::string BType = tl::codegen::ptx::DTypeEnumToString(B_dtype);
    if (BType == "tl::DataType::kFloat32") {
      BType = "tl::DataType::kTensorFloat32";
    }

    replacer.register_rule("(AType)", AType);
    replacer.register_rule("(BType)", BType);
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(C_dtype));
    replacer.register_rule("(M)", std::to_string(m));
    replacer.register_rule("(N)", std::to_string(n));
    replacer.register_rule("(K)", std::to_string(k));
    replacer.register_rule("(tnspA)", a_is_k_major ? "false" : "true");
    replacer.register_rule("(tnspB)", b_is_k_major ? "false" : "true");
    replacer.register_rule("(scaleA)", scale_in_a ? "1" : "-1");
    replacer.register_rule("(scaleB)", scale_in_b ? "1" : "-1");
    replacer.register_rule("(desc_a)", a_desc);
    replacer.register_rule("(A_offset)", A_offset);
    replacer.register_rule("(desc_b)", b_desc);
    replacer.register_rule("(B_offset)", B_offset);
    replacer.register_rule("(C)", c_ref + " + " + c_offset);
2066
    replacer.register_rule("(scale_out)", scale_out);
2067
2068
2069
    wgmma_asm_code = replacer.rewrite(wgmma_asm_code);
    this->stream << wgmma_asm_code;
  } else if (op->op.same_as(tl::ptx_wgmma_rs())) {
2070
2071
2072
2073
2074
2075
2076
2077
2078
    // arg 0: shape
    // arg 1: B_layout
    // arg 2: A_dtype
    // arg 3: B_dtype
    // arg 4: C_dtype
    // arg 5: multiplicand_a
    // arg 6: multiplicand_a offset
    // arg 7: multiplicand_b descriptor
    // arg 8: multiplicand_b offset
2079
    // arg 9: accumulator
2080
2081
2082
2083
2084
    // arg 10: accumulator offset
    // arg 11: scale_out
    // arg 12: scale_in_a
    // arg 13: scale_in_b
    ICHECK_EQ(op->args.size(), 14U) << "ptx_wgmma_rs args is " << op->args;
2085
    std::string shape = Downcast<StringImm>(op->args[0])->value;
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
    bool b_is_k_major = Downcast<Bool>(op->args[1])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[2])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string a_ref = this->PrintExpr(op->args[5]);
    std::string A_offset = this->PrintExpr(op->args[6]);
    std::string b_desc = this->PrintExpr(op->args[7]);
    std::string B_offset = this->PrintExpr(op->args[8]);
    std::string c_ref = this->PrintExpr(op->args[9]);
    std::string c_offset = this->PrintExpr(op->args[10]);
2096
    std::string scale_out = this->PrintExpr(op->args[11]);
2097
2098
2099
2100
2101
2102
2103
    bool scale_in_a = Downcast<Bool>(op->args[12])->value;
    bool scale_in_b = Downcast<Bool>(op->args[13])->value;

    auto dtype_a_enum = tl::codegen::ptx::DTypeFromString(A_dtype);
    auto dtype_b_enum = tl::codegen::ptx::DTypeFromString(B_dtype);
    auto dtype_c_enum = tl::codegen::ptx::DTypeFromString(C_dtype);
    auto [m, n, k] = tl::codegen::ptx::ParseMMAShape(shape);
2104

2105
    need_wgmma_instruction_h_ = true;
2106
    this->PrintIndent();
2107
2108
2109
2110
2111
2112
2113
2114
2115
    std::string wgmma_call =
        "tl::wgmma_rs<(AType), (BType), (CType), (M), (N), (K), (tnspA), "
        "(tnspB), (scaleA), (scaleB)>(reinterpret_cast<const "
        "uint32_t*>((A_ptr) + (A_offset)), "
        "uint64_t((desc_b) + (B_offset)), "
        "reinterpret_cast<uint32_t*>((C_ptr) + (C_offset)), "
        "(scale_out));\n";

    tl::codegen::Replacer replacer;
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
    std::string AType = tl::codegen::ptx::DTypeEnumToString(A_dtype);
    if (AType == "tl::DataType::kFloat32") {
      AType = "tl::DataType::kTensorFloat32";
    }
    std::string BType = tl::codegen::ptx::DTypeEnumToString(B_dtype);
    if (BType == "tl::DataType::kFloat32") {
      BType = "tl::DataType::kTensorFloat32";
    }

    replacer.register_rule("(AType)", AType);
    replacer.register_rule("(BType)", BType);
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_c_enum));
    replacer.register_rule("(M)", std::to_string(m));
    replacer.register_rule("(N)", std::to_string(n));
    replacer.register_rule("(K)", std::to_string(k));
    replacer.register_rule("(tnspA)", "false");
    replacer.register_rule("(tnspB)", b_is_k_major ? "false" : "true");
    replacer.register_rule("(scaleA)", scale_in_a ? "1" : "-1");
    replacer.register_rule("(scaleB)", scale_in_b ? "1" : "-1");
    replacer.register_rule("(A_ptr)", a_ref);
    replacer.register_rule("(A_offset)", A_offset);
    replacer.register_rule("(desc_b)", b_desc);
    replacer.register_rule("(B_offset)", B_offset);
    replacer.register_rule("(C_ptr)", c_ref);
    replacer.register_rule("(C_offset)", c_offset);
2142
    replacer.register_rule("(scale_out)", scale_out);
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
    wgmma_call = replacer.rewrite(wgmma_call);
    this->stream << wgmma_call;
  } else if (op->op.same_as(tl::ptx_tcgen05_mma_ss())) {
    ICHECK_EQ(op->args.size(), 14U)
        << "ptx_tcgen05_mma_ss args is " << op->args;
    std::string C_dtype = Downcast<StringImm>(op->args[0])->value;
    std::string a_desc = this->PrintExpr(op->args[1]);
    std::string A_offset = this->PrintExpr(op->args[2]);
    std::string b_desc = this->PrintExpr(op->args[3]);
    std::string B_offset = this->PrintExpr(op->args[4]);
    std::string c_ref = this->PrintExpr(op->args[5]);
    std::string c_offset = this->PrintExpr(op->args[6]);
    PrimExpr desc_expr = op->args[7];
    std::string scale_out = this->PrintExpr(op->args[8]);
    std::string mask0 = this->PrintExpr(op->args[9]);
    std::string mask1 = this->PrintExpr(op->args[10]);
    std::string mask2 = this->PrintExpr(op->args[11]);
    std::string mask3 = this->PrintExpr(op->args[12]);
    bool enable_ws = Downcast<Bool>(op->args[13])->value;

    auto dtype_c_enum = tl::codegen::ptx::DTypeFromString(C_dtype);

    need_tcgen05mma_instruction_h_ = true;
    this->PrintIndent();
    std::string tcgen05_call =
        "tl::(tcgen05_name)<(CType)>(uint64_t((desc_a) + (A_offset)), "
        "uint64_t((desc_b) + (B_offset)), (*reinterpret_cast<uint32_t*>((C))) "
        "+ (C_offset), "
        "(scale_out), static_cast<uint32_t>((desc_val)), (mask0), (mask1), "
        "(mask2), (mask3));\n";
    tl::codegen::Replacer replacer;
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_c_enum));
    replacer.register_rule("(desc_a)", a_desc);
    replacer.register_rule("(A_offset)", A_offset);
    replacer.register_rule("(desc_b)", b_desc);
    replacer.register_rule("(B_offset)", B_offset);
    replacer.register_rule("(C)", c_ref);
    replacer.register_rule("(C_offset)", c_offset);
    replacer.register_rule("(tcgen05_name)",
                           enable_ws ? "tcgen05mma_ws_ss" : "tcgen05mma_ss");
    replacer.register_rule("(scale_out)", scale_out);
    replacer.register_rule("(desc_val)", this->PrintExpr(desc_expr));
    replacer.register_rule("(mask0)", mask0);
    replacer.register_rule("(mask1)", mask1);
    replacer.register_rule("(mask2)", mask2);
    replacer.register_rule("(mask3)", mask3);
    tcgen05_call = replacer.rewrite(tcgen05_call);
    this->stream << tcgen05_call;
  } else if (op->op.same_as(tl::ptx_tcgen05_mma_ts())) {
    // TS: A from TMEM, B from SMEM (desc)
    ICHECK_EQ(op->args.size(), 13U)
        << "ptx_tcgen05_mma_ts args is " << op->args;
    std::string kind_dtype = Downcast<StringImm>(op->args[0])->value;
    std::string a_ref = this->PrintExpr(op->args[1]);
    std::string A_offset = this->PrintExpr(op->args[2]);
    std::string b_desc = this->PrintExpr(op->args[3]);
    std::string B_offset = this->PrintExpr(op->args[4]);
    std::string c_ref = this->PrintExpr(op->args[5]);
    std::string c_offset = this->PrintExpr(op->args[6]);
    PrimExpr desc_expr = op->args[7];
    std::string scale_out = this->PrintExpr(op->args[8]);
    std::string mask0 = this->PrintExpr(op->args[9]);
    std::string mask1 = this->PrintExpr(op->args[10]);
    std::string mask2 = this->PrintExpr(op->args[11]);
    std::string mask3 = this->PrintExpr(op->args[12]);

    auto dtype_enum = tl::codegen::ptx::DTypeFromString(kind_dtype);

    need_tcgen05mma_instruction_h_ = true;
    this->PrintIndent();
    std::string tcgen05_call =
        "tl::tcgen05mma_ts<(CType)>( (*reinterpret_cast<uint32_t*>((A))) + "
        "(A_offset), "
        "uint64_t((desc_b) + (B_offset)), (*reinterpret_cast<uint32_t*>((C))) "
        "+ (C_offset), "
        "(scale_out), static_cast<uint32_t>((desc_val)), (mask0), (mask1), "
        "(mask2), (mask3));\n";
    tl::codegen::Replacer replacer;
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_enum));
    replacer.register_rule("(A)", a_ref);
    replacer.register_rule("(A_offset)", A_offset);
    replacer.register_rule("(desc_b)", b_desc);
    replacer.register_rule("(B_offset)", B_offset);
    replacer.register_rule("(C)", c_ref);
    replacer.register_rule("(C_offset)", c_offset);
    replacer.register_rule("(scale_out)", scale_out);
    replacer.register_rule("(desc_val)", this->PrintExpr(desc_expr));
    replacer.register_rule("(mask0)", mask0);
    replacer.register_rule("(mask1)", mask1);
    replacer.register_rule("(mask2)", mask2);
    replacer.register_rule("(mask3)", mask3);
    tcgen05_call = replacer.rewrite(tcgen05_call);
    this->stream << tcgen05_call;
  } else if (op->op.same_as(tl::tcgen05_mma_arrive())) {
    ICHECK_EQ(op->args.size(), 1U) << "tcgen05_mma_arrive expects 1 argument";
    need_tcgen05_common_h_ = true;
    this->PrintIndent();
    this->stream << "tl::tcgen05_mma_arrive(" << this->PrintExpr(op->args[0])
                 << ");\n";
2244
2245
2246
2247
2248
2249
2250
  } else if (op->op.same_as(builtin::ptx_ldmatrix())) {
    // arg 0: whether the matrix is loaded in column major format or not.
    // arg 1: number of matrices to load.
    // arg 2: The data type in the matrix, .b16 is the only accepted data type.
    // arg 3: pointer to local buffer.
    // arg 4: The offset of the element to store in the local buffer.
    // arg 5: pointer to the shared memory buffer to load.
2251
2252
    // arg 6: The offset of the start element of the row to load in shared
    // memory.
2253
2254
2255
2256
2257
2258
2259
2260
    ICHECK_EQ(op->args.size(), 7U);
    bool trans = Downcast<Bool>(op->args[0])->value;
    int num = Downcast<Integer>(op->args[1])->value;
    std::string type = Downcast<StringImm>(op->args[2])->value;
    std::string local_ptr = this->PrintExpr(op->args[3]);
    std::string local_elem_offset = this->PrintExpr(op->args[4]);
    std::string smem_ptr = this->PrintExpr(op->args[5]);
    if (trans && op->dtype.bits() == 8) {
2261
2262
      // Since ldmatrix assumes that a matrix element is 16 bit, it cannot
      // properly transpose an int8 matrix.
2263
2264
2265
2266
      std::string smem_stride = this->PrintExpr(op->args[6]);
      ICHECK(num == 4);
      os << "for (int i = 0; i < 16; ++i) {\n";
      os << local_ptr << "[" + local_elem_offset + " + i] = " << smem_ptr
2267
2268
2269
2270
         << "[(i % 8) / 4 * " + smem_stride +
                " * 16 + (threadIdx.x % 4) * 4 * " + smem_stride +
                "+ (i % 4) * " + smem_stride +
                " + threadIdx.x / 4 +  (i / 8) * 8];\n";
2271
2272
2273
      os << "}\n";
    } else {
      std::string smem_elem_offset = this->PrintExpr(op->args[6]);
2274
2275
2276
2277
2278
2279
      std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
      if (trans == 1)
        func_name += "_trans";
      this->PrintIndent();
      this->stream << func_name << "(" << smem_ptr << " + " << smem_elem_offset
                   << ", " << local_ptr << " + " << local_elem_offset << ");\n";
2280
2281
2282
2283
2284
2285
2286
2287
2288
    }
  } else if (op->op.same_as(builtin::mma_store())) {
    int m = Downcast<Integer>(op->args[0])->value;
    int n = Downcast<Integer>(op->args[1])->value;
    std::string dst = this->PrintExpr(op->args[2]);
    std::string src = this->PrintExpr(op->args[3]);
    std::string src_offset = this->PrintExpr(op->args[4]);
    PrimExpr stride = op->args[5];

2289
2290
    ICHECK(m == 16 && n == 16)
        << "Only m == 16 && n == 16 case supported for now";
2291

2292
2293
2294
2295
2296
    // Each thread in a warp holds a certain number of elements of an MMA
    // output. For example, if we compute a 16x16 tile using MMA, each thread
    // holds 8 elements in its registers. So conceptually, a warp memory is
    // organized as a 32x8 block. A map from a 16x16 tile to a 32x8 block of
    // memory is specified by the index map below.
2297

2298
2299
    // To store the 32x8 output back to a 16x16 tile in shared or global memory,
    // we invert this map to determine the output location for each 8 element.
2300

2301
2302
    const auto index_map_func = ffi::Function::GetGlobal(
        "tir.index_map.shared_16x16_to_mma_32x8_layout");
2303

2304
2305
2306
    IndexMap index_map;
    if (!index_map_func) {
      Var i, j;
2307

2308
      // The index map is defined as follows:
2309
2310
2311
2312
2313
      index_map = IndexMap(
          {i, j}, {4 * FloorMod(i, 8) + FloorDiv(FloorMod(j, 8), 2),
                   4 * FloorDiv(j, 8) + FloorDiv(i, 8) * 2 + FloorMod(j, 2)});
    } else {
      index_map = IndexMap::FromFunc(2, *index_map_func);
2314
2315
2316
2317
2318
2319
2320
    }

    arith::Analyzer analyzer;
    auto inverse_index_map =
        index_map.Inverse({Range(0, m), Range(0, n)}, &analyzer);
    auto indices_16x16 = inverse_index_map->final_indices;

2321
2322
2323
    // "//" and "%" in the index map are translated to FloorDiv/Mod, but the
    // plain Div/Mod are fine. FloorDiv/Mod are supposed to be lowered before
    // they reach codegen, so manually replace them to the plain ones here.
2324
    class LowerFloorDivMod : public ExprMutator {
2325
2326
    public:
      PrimExpr VisitExpr_(const FloorDivNode *op) {
2327
2328
        return tir::Div(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
2329
      PrimExpr VisitExpr_(const FloorModNode *op) {
2330
2331
2332
2333
        return tir::Mod(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
    };

2334
2335
    auto dst_ind =
        LowerFloorDivMod()(indices_16x16[0] * stride + indices_16x16[1]);
2336
2337
2338
2339
2340
2341
2342
2343
2344

    var_idmap_[inverse_index_map->initial_indices[0].get()] = "threadIdx.x";
    var_idmap_[inverse_index_map->initial_indices[1].get()] = "local_id";
    if (op->dtype.bits() == 16) {
      os << "for (int local_id = 0; local_id < 8; local_id+=2) {\n";
      os << "*((uint *)&" << dst << "[" + this->PrintExpr(dst_ind) + "])"
         << " = "
         << "*((uint *)&" << src << "[" << src_offset << " + local_id]);\n";
      os << "}\n";
2345
    } else {
2346
      os << "for (int local_id = 0; local_id < 8; ++local_id) {\n";
2347
2348
      os << dst << "[" + this->PrintExpr(dst_ind) + "]" << " = " << src << "["
         << src_offset << " + local_id];\n";
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
      os << "}\n";
    }

  } else if (op->op.same_as(builtin::mma_fill())) {
    std::string num_elem = this->PrintExpr(op->args[0]);
    std::string dst = this->PrintExpr(op->args[1]);
    std::string dst_offset = this->PrintExpr(op->args[2]);

    os << "for (int i = 0; i < " << num_elem << "; ++i) {\n";
    os << dst << "[" << dst_offset << " + i] = 0.0;";
    os << "}\n";
  } else if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    need_cast_smem_ptr_to_int_ = true;
2367
2368
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
2369
    if (op->args.size() == 5) {
2370
2371
      this->stream << PrintCpAsyncAssembly(dst, dst_offset, src, src_offset,
                                           size);
2372
    } else {
2373
2374
      this->stream << PrintPredicatedCpAsyncAssembly(
          dst, dst_offset, src, src_offset, size, this->PrintExpr(op->args[5]));
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
    }
  } else if (op->op.same_as(builtin::ptx_cp_async_bulk())) {
    need_cast_smem_ptr_to_int_ = true;
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    int barrier_id = Downcast<IntImm>(op->args[5])->value;
    CHECK(barrier_id < barrier_count_);
2385
2386
2387
2388
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
    this->stream << PrintCpAsyncBulkAsm(dst, dst_offset, src, src_offset, size,
                                        barrier);
2389
2390
2391
2392
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    this->stream << "__asm__ __volatile__(\"cp.async.commit_group;\");\n\n";
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
2393
2394
    this->stream << "__asm__ __volatile__(\"cp.async.wait_group " << n
                 << ";\");\n\n";
2395
2396
2397
2398
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
2399
2400
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
2401
2402
2403
2404
2405
2406
    std::string thread_count = this->PrintExpr(op->args[1]);
    this->stream << PrintInitBarrierThreadCountAsm(barrier, thread_count);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
2407
2408
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
2409
2410
2411
2412
2413
    this->stream << PrintArriveBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
2414
2415
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
2416
2417
2418
2419
2420
2421
    std::string byte_count = this->PrintExpr(op->args[1]);
    this->stream << PrintArriveBarrierExpectTxAsm(barrier, byte_count);
  } else if (op->op.same_as(builtin::ptx_wait_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
2422
2423
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
    this->stream << PrintWaitBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_ldg32())) {
    /*
    asm volatile (
        "{.reg .pred p;\n"
        " setp.ne.b32 p, %2, 0;\n"
        // " @p ld.global.nc.f32 %0, [%1];}\n"t
        " @p ld.global.nc.L2::128B.f32 %0, [%1];}\n"
        : "=f"(reg)
        : "l"(addr), "r"((int)guard)
    );
    */

    // get local
    std::string reg = this->PrintExpr(op->args[0]);
    // get guard
    std::string guard = this->PrintExpr(op->args[1]);
2441
    const BufferLoadNode *addr_buffer = op->args[2].as<BufferLoadNode>();
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
    std::string global_addr = this->PrintExpr(addr_buffer->indices[0]);
    std::string global_buffer = this->PrintExpr(addr_buffer->buffer->data);
    std::string local_addr = this->PrintExpr(op->args[3]);
    this->stream << "asm volatile (\n";
    this->stream << "\"{.reg .pred p;\\n\"\n";
    this->stream << "\" setp.ne.b32 p, %2, 0;\\n\"\n";
    this->stream << "\" @!p mov.b32 %0, 0;\\n\"\n";
    this->stream << "\" @p ld.global.nc.f32 %0, [%1];}\\n\"\n";
    // stream << "\" @p ld.global.nc.L2::128B.f32 %0, [%1];}\\n\"\n" ;
    stream << ": \"=f\"(" << reg << "[" << local_addr << "]"
           << ")\n";
2453
2454
    stream << ": \"l\"((void*)(" << global_buffer << "+" << global_addr
           << ")), \"r\"((int)" << guard << ")\n";
2455
    stream << ");\n";
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
  } else if (op->op.same_as(tl::__ldg())) {
    // Explicit read-only cached load. Preferred form: __ldg(BufferLoad(...)).
    // Fallback form: __ldg(buffer, index)
    const BufferLoadNode *bl = nullptr;
    if (!op->args.empty()) {
      bl = op->args[0].as<BufferLoadNode>();
    }
    if (bl == nullptr) {
      LOG(FATAL) << "T.__ldg expects a BufferLoad as the first argument.";
    }
    const BufferNode *buffer = bl->buffer.get();
    ICHECK_EQ(bl->indices.size(), 1)
        << "T.__ldg currently supports flattened 1D buffer accesses.";
    PrimExpr base = bl->indices[0];
    // Emit __ldg(&buffer_ref)
    auto buffer_ref = this->GetBufferRef(op->dtype, buffer, base);
    os << "__ldg(&(" << buffer_ref << "))";
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
  } else if (op->op.same_as(builtin::reinterpret())) {
    DataType tgt_dtype = op->dtype;
    DataType src_dtype = op->args[0]->dtype;
    PrimExpr value = op->args[0];

    // Handle float4_e2m1fn reinterpret
    if (!src_dtype.is_float4_e2m1fn() && !tgt_dtype.is_float4_e2m1fn()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    if (src_dtype == tgt_dtype || tgt_dtype.lanes() * tgt_dtype.bits() ==
                                      src_dtype.lanes() * src_dtype.bits()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    CHECK_EQ(tgt_dtype.lanes(), src_dtype.lanes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of lanes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;
    CHECK_EQ(tgt_dtype.bytes(), src_dtype.bytes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of bytes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;

    int lanes = tgt_dtype.lanes();

    int ssa_scope = BeginScope();
    if (lanes == 1) {
      // The case of lane=1 is same as the normal reinterpret,
      // except that we allow the src and dst dtype to have different number of
      // bits.
      std::string rhs = SSAGetID(PrintExpr(value), src_dtype);
      os << "(*(";
      this->PrintType(tgt_dtype, os);
      os << " *)(&(" << rhs << ")))";
    } else if (lanes == 2) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint16, and then extract bits of two fp4
        // numbers, and finally reinterpret the result as fp4x2.
        value =
            tir::Call(DataType::UInt(16), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     tir::Cast(DataType::UInt(8),
                               (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                                   ((temp_var >> 4) &
                                    IntImm(DataType::UInt(16), 0xF0))));
      } else {
        value = tir::Cast(
            DataType::UInt(16),
            tir::Call(DataType::UInt(8), tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                         ((temp_var & IntImm(DataType::UInt(16), 0xF0)) << 4));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else if (lanes == 4) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint32, and then extract bits of four fp4
        // numbers, and finally reinterpret the result as fp4x4.
        value =
            tir::Call(DataType::UInt(32), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            tir::Cast(
                DataType::UInt(16),
                (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                    ((temp_var >> 4) & IntImm(DataType::UInt(32), 0xF0)) |
                    ((temp_var >> 8) & IntImm(DataType::UInt(32), 0xF00)) |
                    ((temp_var >> 12) & IntImm(DataType::UInt(32), 0xF000))));
      } else {
        value = tir::Cast(DataType::UInt(32),
                          tir::Call(DataType::UInt(16),
                                    tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF0)) << 4) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF00)) << 8) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF000)) << 12));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else {
      LOG(FATAL) << "Invalid number of lanes for float4_e2m1fn reinterpret: "
                 << lanes;
    }
    EndScope(ssa_scope);
  } else if (op->op.same_as(builtin::thread_return())) {
    os << "return";
2567
2568
2569
2570
2571
  } else if (op->op.same_as(tl::tl_gemm())) {
    ICHECK(op->args.size() == 4) << "tl_gemm expects 4 arguments <op_instance, "
                                    "A_ptr, B_ptr, C_ptr>, but got "
                                 << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
2572
2573
    this->PrintCallExtern(GetType(tvm::ffi::GetRef<PrimExpr>(op)),
                          op_instance->value, op->args, true, os);
2574
2575
2576
2577
2578
2579
2580
  } else if (op->op.same_as(tl::tl_gemm_sp())) {
    ICHECK(op->args.size() == 5)
        << "tl_gemm_sp expects 5 arguments <op_instance, A_ptr, B_ptr, C_ptr, "
           "E_ptr>, but got "
        << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
    enable_sparse_gemm_ = true;
2581
2582
    this->PrintCallExtern(GetType(tvm::ffi::GetRef<PrimExpr>(op)),
                          op_instance->value, op->args, true, os);
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
  } else if (op->op.same_as(tl::get_lane_idx())) {
    ICHECK_LE(op->args.size(), 1)
        << "tl.get_lane_idx expects at most one argument <warp_size>.";
    os << "tl::get_lane_idx(";
    if (!op->args.empty()) {
      os << PrintExpr(op->args[0]);
    }
    os << ")";
  } else if (op->op.same_as(tl::get_warp_idx_sync())) {
    ICHECK_LE(op->args.size(), 1)
        << "tl.get_warp_idx_sync expects at most one argument <warp_size>.";
    os << "tl::get_warp_idx_sync(";
    if (!op->args.empty()) {
      os << PrintExpr(op->args[0]);
    }
    os << ")";
  } else if (op->op.same_as(tl::get_warp_idx())) {
    ICHECK_LE(op->args.size(), 1)
        << "tl.get_warp_idx expects at most one argument <warp_size>.";
    os << "tl::get_warp_idx(";
    if (!op->args.empty()) {
      os << PrintExpr(op->args[0]);
    }
    os << ")";
  } else if (op->op.same_as(tl::get_warp_group_idx())) {
    ICHECK_LE(op->args.size(), 2)
        << "tl.get_warp_group_idx expects <warp_size, warps_per_group>.";
    os << "tl::get_warp_group_idx(";
    for (size_t i = 0; i < op->args.size(); ++i) {
      if (i != 0) {
        os << ", ";
      }
      os << PrintExpr(op->args[i]);
    }
    os << ")";
2618
2619
  } else if (op->op.same_as(tl::tl_shuffle_elect())) {
    os << "tl::tl_shuffle_elect<" << PrintExpr(op->args[0]) << ">()";
2620
  } else if (op->op.same_as(tl::initialize_wgmma_descriptor())) {
2621
    ICHECK(op->args.size() == 5)
2622
        << "tl_initialize_wgmma_descriptor expects 5 arguments but got "
2623
2624
2625
2626
2627
2628
        << op->args.size();
    auto descriptor = op->args[0];
    auto start_address = op->args[1];
    auto layout_type = op->args[2];
    auto leading_byte_offset = op->args[3];
    auto stride_byte_offset = op->args[4];
2629
    os << "tl::initialize_wgmma_descriptor<" << PrintExpr(layout_type) << ", "
2630
2631
2632
       << PrintExpr(leading_byte_offset) << ", "
       << PrintExpr(stride_byte_offset) << ">(" << PrintExpr(descriptor) << ", "
       << PrintExpr(start_address) << ")";
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
  } else if (op->op.same_as(tl::initialize_tcgen05_descriptor())) {
    ICHECK(op->args.size() == 7)
        << "tl_initialize_tcgen05_descriptor expects 7 arguments but got "
        << op->args.size();
    auto descriptor = op->args[0];
    auto start_address = op->args[1];
    auto leading_byte_offset = op->args[2];
    auto stride_byte_offset = op->args[3];
    auto base_offset = op->args[4];
    auto leading_abs = op->args[5];
    auto swizzle_mode = op->args[6];
    os << "tl::initialize_tcgen05_descriptor(" << PrintExpr(descriptor) << ", "
       << PrintExpr(start_address) << ", " << PrintExpr(leading_byte_offset)
       << ", " << PrintExpr(stride_byte_offset) << ", "
       << PrintExpr(base_offset) << ", " << PrintExpr(leading_abs) << ", "
       << PrintExpr(swizzle_mode) << ")";
2649
2650
2651
2652
2653
2654
2655
2656
  } else if (op->op.same_as(tl::increase_descriptor_offset())) {
    ICHECK(op->args.size() == 2)
        << "tl_increase_descriptor_offset expects 2 arguments but got "
        << op->args.size();
    auto descriptor = op->args[0];
    auto offset = op->args[1];
    os << "tl::increase_descriptor_offset<int>(" << PrintExpr(descriptor)
       << ", " << PrintExpr(offset) << ")";
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
  } else if (op->op.same_as(tl::__exp())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "exp");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__exp10())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "exp10");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__log())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "log");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__log2())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "log2");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__log10())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "log10");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__tan())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "tan");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__cos())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "cos");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__sin())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "sin");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
  } else if (op->op.same_as(tl::ieee_add())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fadd", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
  } else if (op->op.same_as(tl::ieee_sub())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fsub", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
  } else if (op->op.same_as(tl::ieee_mul())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fmul", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
  } else if (op->op.same_as(tl::ieee_fmaf())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[3])->value;
    std::string func_name = math_func(op->dtype, "fmaf", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ", " << PrintExpr(op->args[2]) << ")";
  } else if (op->op.same_as(tl::ieee_frcp())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[1])->value;
    std::string func_name = math_func(op->dtype, "frcp", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::ieee_fsqrt())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[1])->value;
    std::string func_name = math_func(op->dtype, "fsqrt", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::ieee_frsqrt())) {
    CUDAIEEEMath math_func;
    std::string func_name = math_func(op->dtype, "frsqrt", "rn");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::ieee_fdiv())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fdiv", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
Tong WU's avatar
Tong WU committed
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
  } else if (op->op.same_as(tl::warp_reduce_sum())) {
    os << "tl::warp_reduce_sum(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::warp_reduce_max())) {
    os << "tl::warp_reduce_max(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::warp_reduce_min())) {
    os << "tl::warp_reduce_min(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::warp_reduce_bitand())) {
    os << "tl::warp_reduce_bitand(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::warp_reduce_bitor())) {
    os << "tl::warp_reduce_bitor(" << PrintExpr(op->args[0]) << ")";
2743
2744
2745
2746
2747
  } else {
    CodeGenC::VisitExpr_(op, os);
  }
}

2748
void CodeGenTileLangCUDA::VisitStmt_(const AttrStmtNode *op) {
2749
  if (op->attr_key == tir::attr::fragment_shape) {
2750
2751
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *shape_str = op->value.as<StringImmNode>();
2752
2753
    fragment_shapes[buffer] = shape_str->value;
  } else if (op->attr_key == tir::attr::fragment_layout) {
2754
2755
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *layout_str = op->value.as<StringImmNode>();
2756
2757
    fragment_layouts[buffer] = layout_str->value;
  } else if (op->attr_key == tir::attr::async_commit_queue_scope) {
2758
2759
2760
    const IntImmNode *queue_id = op->value.as<IntImmNode>();
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
2761
2762
2763
2764
2765
2766
2767
    this->VisitStmt(op->body);
    auto commit_group = Call(DataType::Void(), builtin::ptx_commit_group(), {});
    this->VisitExpr(commit_group, this->stream);
    return;
  } else if (op->attr_key == tir::attr::async_wait_queue_scope) {
    auto wait_attrs = GetAsyncWaitAttributes(op);
    auto queue_id = wait_attrs.first.as<IntImmNode>();
2768
2769
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
2770
    auto wait_cnt = wait_attrs.second;
2771
2772
    auto wait_group =
        Call(DataType::Void(), builtin::ptx_wait_group(), {wait_cnt});
2773
2774
2775
2776
2777
2778
2779
    this->VisitExpr(wait_group, this->stream);
    auto inner = op->body.as<AttrStmtNode>();
    ICHECK(inner);
    this->VisitStmt(inner->body);
    return;
  } else if (op->attr_key == "threadblock_swizzle_pattern") {
    this->PrintIndent();
2780
    const StringImmNode *pattern = op->value.as<StringImmNode>();
2781
2782
2783
2784
    ICHECK(pattern);
    this->stream << "const dim3 blockIdx = " << pattern->value << "();\n";
    this->VisitStmt(op->body);
    return;
2785
2786
2787
2788
  } else if (op->attr_key == "pragma_unroll_factor") {
    const IntImmNode *factor = op->value.as<IntImmNode>();
    ICHECK(factor);
    unroll_factor[op->node.as<VarNode>()] = Downcast<IntImm>(factor);
2789
  }
2790

2791
2792
2793
  CodeGenC::VisitStmt_(op);
}

2794
void CodeGenTileLangCUDA::VisitStmt_(const AllocateNode *op) {
2795
2796
2797
2798
  ICHECK(!is_zero(op->condition));
  std::string vid = AllocVarID(op->buffer_var.get());
  this->PrintIndent();
  std::string scope = GetPtrStorageScope(op->buffer_var);
2799
  const VarNode *buffer = op->buffer_var.as<VarNode>();
2800
2801
  if (scope.find("wmma.") == 0) {
    if (scope == "wmma.matrix_a" || scope == "wmma.matrix_b") {
2802
2803
2804
2805
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Int(8) || op->dtype == DataType::UInt(8) ||
             op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
             op->dtype == DataType::Int(1) || op->dtype == DataType::BFloat(16))
2806
2807
2808
          << "Matrix_a and matrix_b only support half or char or unsigned char "
          << "or uint4 or int4 or int1 type for now";
    } else {
2809
2810
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Float(32) || op->dtype == DataType::Int(32))
2811
2812
2813
          << "Accumulator only support half, float and int type for now";
    }
    PrintWmmaScope(scope, op->dtype, buffer, stream);
2814
  } else if (scope == "local.descriptor.wgmma") {
2815
    stream << "tl::GmmaDescriptor " << vid << ";\n";
2816
2817
2818
2819
  } else if (scope == "local.descriptor.tcgen05_smem") {
    stream << "tl::Tcgen05SMemDescriptor " << vid << ";\n";
  } else if (scope == "local.descriptor.tcgen05_instr") {
    stream << "tl::Tcgen05InstrDescriptor " << vid << ";\n";
2820
  } else {
2821
2822
2823
2824
2825
2826
2827
2828
    PrintStorageScope(scope, stream);
    PrintType(op->dtype, stream);
  }

  if (scope == "shared.dyn") {
    stream << ' ' << vid << "[];\n";
  } else {
    size_t constant_size = op->ConstantAllocationSize();
2829
    ICHECK_GT(constant_size, 0)
2830
2831
        << "Can only handle constant size stack allocation for now, but get "
        << constant_size << " for " << op->buffer_var->name_hint;
2832
2833
2834
2835
2836
2837
2838
2839
    if (scope.find("wmma.") == 0) {
      constant_size = GetWmmaFragmentSize(scope, buffer, constant_size);
    }
    if ((op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
         op->dtype == DataType::Int(1)) &&
        scope == "shared") {
      constant_size = constant_size / (32 / op->dtype.bits());
    }
2840
2841
    if (scope == "shared") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
2842
2843
2844
2845
2846
2847
    } else if (scope == "shared.barrier") {
      auto v_id_mem = vid + "_mem";
      stream << ' ' << v_id_mem << "[" << constant_size << "];\n";
      PrintIndent();
      stream << "auto " << vid << " = reinterpret_cast<" << mbarrier_dtype_
             << "*>(" << v_id_mem << ");\n";
2848
2849
2850
    } else if (scope == "local") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
    } else if (scope == "local.var") {
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
      PrimExpr init = tir::make_const(op->dtype, 0);
      auto init_it = op->annotations.find(tl::attr::kLocalVarInit);
      if (init_it != op->annotations.end()) {
        PrimExpr user_init = Downcast<PrimExpr>((*init_it).second);
        if (!user_init.dtype().is_void() && user_init.dtype() != op->dtype) {
          user_init = tir::Cast(op->dtype, user_init);
        }
        init = user_init;
      }
      stream << ' ' << vid << " = " << PrintExpr(init) << ";\n";
2861
    } else if (scope.find("local.descriptor") != 0) {
2862
2863
      ICHECK(false) << "Unsupported scope: " << scope;
    }
2864
2865
2866
2867
2868
2869
  }

  RegisterHandleType(op->buffer_var.get(), op->dtype);
  this->PrintStmt(op->body);
}

2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
void CodeGenTileLangCUDA::VisitStmt_(const EvaluateNode *op) {
  if (is_const_int(op->value))
    return;
  const CallNode *call = op->value.as<CallNode>();
  if (call && call->op.same_as(builtin::tvm_global_barrier_kinit())) {
    PrintIndent();
    stream << "__shared__ unsigned " << vid_global_barrier_expect_ << ";\n";
    PrintIndent();
    stream << "if (threadIdx.x == 0) {\n";
    PrintIndent();
    stream << "  " << vid_global_barrier_expect_ << " = 0;\n";
    PrintIndent();
    stream << "}\n";
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
  }
  if (call && (call->op.same_as(tvm::tl::device_assert()))) {
    std::string cond = PrintExpr(call->args[0]);
    this->PrintIndent();
    stream << "device_assert(" << cond << ");\n";
  } else if (call && call->op.same_as(tvm::tl::device_assert_with_msg())) {
    std::string cond = PrintExpr(call->args[0]);
    std::string msg_expr = PrintExpr(call->args[1]);
    this->PrintIndent();
    stream << "device_assert_with_msg(" << cond << ", " << msg_expr << ");\n";
2893
2894
2895
2896
2897
  } else {
    CodeGenC::VisitStmt_(op);
  }
}

2898
void CodeGenTileLangCUDA::VisitExpr_(const RampNode *op, std::ostream &os) {
2899
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
2900
2901
  CHECK_LE(lanes, 4) << "Translate Ramp Node " << tvm::ffi::GetRef<Ramp>(op)
                     << " with " << lanes << " lanes is not allowed.";
2902
2903
2904
2905
2906
2907
  os << "(make_";
  PrintType(op->dtype, os);
  os << "(";
  for (int i = 0; i < lanes; i++) {
    os << "(" << PrintExpr(op->base) << ")"
       << "+(" << PrintExpr(op->stride) << "*" << i << ")";
2908
2909
    if (i != lanes - 1)
      os << ", ";
2910
2911
2912
2913
  }
  os << "))";
}

2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
void CodeGenTileLangCUDA::VisitExpr_(const BufferLoadNode *op,
                                     std::ostream &os) { // NOLINT(*)
  ICHECK_EQ(op->indices.size(), 1)
      << "Load from non-flat memory not supported.";
  ICHECK(!op->predicate.defined())
      << "Predicated buffer load is not supported.";

  DataType value_dtype = op->dtype;
  PrimExpr index = op->indices[0];
  Var buffer_var = op->buffer->data;
  DataType element_dtype = op->buffer->dtype;

  int lanes = op->dtype.lanes();
2927
  // declare type.
2928
2929
2930
2931
2932
2933
  if (value_dtype.lanes() == element_dtype.lanes()) {
    std::string ref = GetBufferRef(op->dtype, op->buffer.get(), index);
    HandleVolatileLoads(ref, op, os);
  } else {
    bool can_vector_load = false;
    arith::PVar<PrimExpr> base;
2934
2935
2936
2937
2938
2939
    // For sub-byte types with lanes > 1 in element_dtype, adjust the ramp
    // pattern
    int ramp_lanes = (element_dtype.lanes() > 1 && element_dtype.bits() < 8)
                         ? value_dtype.lanes() / element_dtype.lanes()
                         : value_dtype.lanes();
    if (arith::ramp(base, 1, ramp_lanes).Match(index)) {
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
      const RampNode *ramp = index.as<RampNode>();
      ICHECK(ramp);
      can_vector_load = true;
      // arith::ModularSet me = arith::Analyzer().modular_set(ramp->base);
      // The condition: {k * coeff + base} divisible by the alignment for any k
      // if (me->coeff % op->dtype.lanes() == 0 && me->base % op->dtype.lanes()
      // == 0) {
      //   can_vector_load = true;
      // }
    }

    if (can_vector_load) {
      std::string ref = GetVecLoad(op->dtype, op->buffer.get(), base.Eval());
      HandleVolatileLoads(ref, op, os);
    } else {
      std::ostringstream svalue_expr;
      std::string sindex = SSAGetID(PrintExpr(index), index.dtype());
      std::string vid = GetVarID(buffer_var.get());
      DataType elem_type = op->dtype.element_of();
      for (int i = 0; i < lanes; ++i) {
        std::ostringstream value_temp;
        if (!HandleTypeMatch(buffer_var.get(), elem_type)) {
          value_temp << "((";
          if (buffer_var.get()->dtype.is_handle()) {
            auto it = alloc_storage_scope_.find(buffer_var.get());
            if (it != alloc_storage_scope_.end()) {
              PrintStorageScope(it->second, value_temp);
            }
          }
          PrintType(elem_type, value_temp);
          value_temp << "*)" << vid << ')';
        } else {
          value_temp << vid;
        }
        value_temp << '[';
        PrintVecElemLoad(sindex, index.dtype(), i, value_temp);
        value_temp << ']';
        PrintVecElemLoadExpr(op->dtype, i, value_temp.str(), svalue_expr);
      }
      os << svalue_expr.str();
    }
  }
}

2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
void CodeGenTileLangCUDA::VisitStmt_(const BufferStoreNode *op) {
  ICHECK_EQ(op->indices.size(), 1) << "Store to non-flat memory not supported.";
  ICHECK(!op->predicate.defined())
      << "Predicated buffer store is not supported.";

  DataType value_dtype = op->value.dtype();
  DataType element_dtype = op->buffer->dtype;
  PrimExpr index_expr = op->indices[0];
  Var buffer_var = op->buffer->data;

  if (value_dtype.lanes() == element_dtype.lanes()) {
    std::string value = this->PrintExpr(op->value);
    std::string ref =
        this->GetBufferRef(value_dtype, op->buffer.get(), index_expr);
    this->PrintIndent();
    stream << ref << " = " << value << ";\n";
  } else {
    arith::PVar<PrimExpr> base;
    // For sub-byte types with lanes > 1 in element_dtype, adjust the ramp
    // pattern
    int ramp_lanes = (element_dtype.lanes() > 1 && element_dtype.bits() < 8)
                         ? value_dtype.lanes() / element_dtype.lanes()
                         : value_dtype.lanes();

    if (arith::ramp(base, 1, ramp_lanes).Match(index_expr)) {
      std::string value = this->PrintExpr(op->value);
      this->PrintVecStore(op->buffer.get(), value_dtype, base.Eval(), value);
    } else {
      // The assignment below introduces side-effect, and the resulting value
      // cannot be reused across multiple expression, thus a new scope is needed
      int vec_scope = BeginScope();

      // store elements separately
      std::string index = SSAGetID(PrintExpr(index_expr), index_expr.dtype());
      std::string value = SSAGetID(PrintExpr(op->value), op->value.dtype());
      std::string vid = GetVarID(buffer_var.get());
      for (int i = 0; i < value_dtype.lanes(); ++i) {
        this->PrintIndent();
        DataType elem_type = value_dtype.element_of();
        if (!HandleTypeMatch(buffer_var.get(), elem_type)) {
          stream << "((";
          if (buffer_var.get()->dtype.is_handle()) {
            auto it = alloc_storage_scope_.find(buffer_var.get());
            if (it != alloc_storage_scope_.end()) {
              PrintStorageScope(it->second, stream);
            }
          }
          PrintType(elem_type, stream);
          stream << "*)" << vid << ')';
        } else {
          stream << vid;
        }
        stream << '[';
        PrintVecElemLoad(index, index_expr.dtype(), i, stream);
        stream << "] = ";
        PrintVecElemLoad(value, op->value.dtype(), i, stream);
        stream << ";\n";
      }
      EndScope(vec_scope);
    }
  }
}

3047
3048
void CodeGenTileLangCUDA::VisitExpr_(const BroadcastNode *op,
                                     std::ostream &os) { // NOLINT(*)
3049
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 8) {
    if (lanes == 4) {
      // make_int8x4
      const int64_t *p = as_const_int(op->value);
      ICHECK(p);
      int64_t v = *p & 0xFF;
      v = (v << 24) | (v << 16) | (v << 8) | v;
      if (op->dtype.is_uint()) {
        os << "(uint)" << v;
      } else {
        os << "(int)" << v;
      }
      return;
    } else if (lanes == 32) {
      // make_int8x32
      const int64_t *p = as_const_int(op->value);
      ICHECK(p);
      int64_t v = *p & 0xFF;
      v = (v << 24) | (v << 16) | (v << 8) | v;
      if (op->dtype.is_uint()) {
        os << "make_ulonglong4(" << v << ", " << v << ", " << v << ", " << v
           << ")";
      } else {
        os << "make_longlong4(" << v << ", " << v << ", " << v << ", " << v
           << ")";
      }
      return;
3077
3078
3079
3080
3081
3082
3083
3084
    }
  }

  if (op->dtype.is_float16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
    if (lanes <= 8) {
      for (int i = 0; i < lanes / 2; ++i) {
        if (i != 0)
          os << ", ";
        os << "__pack_half2(" << v << ", " << v << ")";
      }
    } else {
      for (int i = 0; i < lanes / 4; ++i) {
        if (i != 0)
          os << ", ";
        os << "tl::pack_float16x4(" << v << ", " << v << ", " << v << ", " << v
           << ")";
      }
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
    }
    os << ')';
    return;
  }

  if (op->dtype.is_bfloat16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
    if (lanes <= 8) {
      for (int i = 0; i < lanes / 2; ++i) {
        if (i != 0)
          os << ", ";
        os << "__pack_nv_bfloat162(" << v << ", " << v << ")";
      }
    } else {
      for (int i = 0; i < lanes / 4; ++i) {
        if (i != 0)
          os << ", ";
        os << "tl::pack_bfloat16x4(" << v << ", " << v << ", " << v << ", " << v
           << ")";
      }
3121
3122
3123
3124
3125
    }
    os << ')';
    return;
  }

3126
3127
  if (op->dtype.is_float() && op->dtype.bits() == 32 &&
      op->dtype.lanes() == 8) {
3128
3129
3130
    std::string v = PrintExpr(op->value);
    os << "make_ulonglong4(";
    for (int i = 0; i < 4; ++i) {
3131
3132
      if (i != 0)
        os << ", ";
3133
3134
3135
3136
3137
3138
3139
3140
      os << "*(unsigned long long*)&make_float2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 4) {
    bool fail = false;
3141
    const int64_t *p = as_const_int(op->value);
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
    ICHECK(p);
    int64_t v = *p & 0xF;

    if (lanes == 4) {
      v = (v << 12) | (v << 8) | (v << 4) | v;
      if (op->dtype.is_uint()) {
        os << "(uint16_t)" << v;
      } else {
        os << "(int16_t)" << v;
      }
    } else {
3153
3154
      v = (v << 28) | (v << 24) | (v << 20) | (v << 16) | (v << 12) | (v << 8) |
          (v << 4) | v;
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
      if (lanes == 8) {
        if (op->dtype.is_uint()) {
          os << "(uint)" << v;
        } else {
          os << "(int)" << v;
        }
      } else if (lanes == 16 || lanes == 32) {
        os << "make_";
        PrintType(op->dtype, os);
        os << '(';
        for (int i = 0; i < lanes / 8; ++i) {
3166
3167
          if (i != 0)
            os << ", ";
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
          if (op->dtype.is_uint()) {
            os << "(uint)" << v;
          } else {
            os << "(int)" << v;
          }
        }
        os << ')';
      } else {
        fail = true;
      }
    }

    if (!fail) {
      return;
    }
  }

  std::string v = PrintExpr(op->value);
  os << "make_";
  PrintType(op->dtype, os);
  os << '(';
  for (int i = 0; i < lanes; ++i) {
3190
3191
    if (i != 0)
      os << ", ";
3192
3193
3194
3195
3196
    os << v;
  }
  os << ')';
}

3197
3198
inline void PrintConst(const FloatImmNode *op, std::ostream &os,
                       CodeGenTileLangCUDA *p) { // NOLINT(*)
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
  // Type code is kBFloat/kFloat16
  // which is indeed CUTLASS supported types currently
  if (op->dtype.is_bfloat16() || op->dtype.is_float16()) {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
      }
      temp << "std::numeric_limits<";
      p->PrintType(op->dtype, temp);
      temp << ">::infinity()";
    } else if (std::isnan(op->value)) {
      temp << "std::numeric_limits<";
      p->PrintType(op->dtype, temp);
      temp << ">::quiet_NaN()";
    } else {
      p->PrintType(op->dtype, temp);
      temp << '(' << std::hexfloat << op->value << 'f';
      temp << "/*" << std::scientific << op->value << "*/";
      temp << ')';
    }
    p->MarkConst(temp.str());
    os << temp.str();
3222
3223
    return;
  }
3224
3225
3226
  // Type code is kFloat8_e5m2 or kE4M4Float
  if (op->dtype.is_float8() || op->dtype.is_float4()) {
    p->PrintType(op->dtype, os);
3227
3228
3229
    os << '(' << std::hexfloat << op->value << 'f';
    os << "/*" << std::scientific << op->value << "*/";
    os << ')';
3230
3231
    return;
  }
3232
  // Type code is kFloat64/kFloat32 (kFloat16 is handled above)
3233
  switch (op->dtype.bits()) {
3234
3235
3236
3237
3238
3239
  case 64:
  case 32: {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
3240
      }
3241
      temp << ((op->dtype.bits() == 32) ? "CUDART_INF_F" : "CUDART_INF");
3242
      p->need_math_constants_h_ = true;
3243
3244
    } else if (std::isnan(op->value)) {
      temp << ((op->dtype.bits() == 32) ? "CUDART_NAN_F" : "CUDART_NAN");
3245
      p->need_math_constants_h_ = true;
3246
    } else {
3247
      temp << std::hexfloat << op->value;
3248
3249
      if (op->dtype.bits() == 32)
        temp << 'f';
3250
      temp << "/*" << std::scientific << op->value << "*/";
3251
    }
3252
3253
3254
3255
3256
3257
    p->MarkConst(temp.str());
    os << temp.str();
    break;
  }
  default:
    LOG(FATAL) << "Bad bit-width for float: " << op->dtype << "\n";
3258
3259
3260
  }
}

3261
3262
void CodeGenTileLangCUDA::VisitExpr_(const FloatImmNode *op,
                                     std::ostream &os) { // NOLINT(*)
3263
3264
3265
  PrintConst(op, os, this);
}

3266
3267
3268
void CodeGenTileLangCUDA::PrintWmmaScope(const std::string &scope, DataType t,
                                         const VarNode *variable,
                                         std::ostream &os) {
3269
3270
  std::stringstream type;
  PrintType(t, type);
3271
3272
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
  std::string shape_str = fragment_shapes.at(variable);
  if ((t.is_int() || t.is_uint()) && t.bits() < 8 && t.lanes() == 1) {
    type.str(std::string());
    if (t.is_int()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::s4";
      } else if (t.bits() == 1) {
        type << "nvcuda::wmma::experimental::precision::b1";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    } else if (t.is_uint()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::u4";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    }
  }
  if (scope == "wmma.matrix_a") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_a";
3295
3296
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
3297
3298
3299
  } else if (scope == "wmma.matrix_b") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_b";
3300
3301
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
3302
  } else if (scope == "wmma.accumulator") {
3303
3304
    os << "nvcuda::wmma::fragment<nvcuda::wmma::accumulator, " << shape_str
       << ", " << type.str() << ">";
3305
3306
3307
  }
}

3308
3309
int32_t CodeGenTileLangCUDA::GetWmmaFragmentSize(const std::string &scope,
                                                 const VarNode *variable,
3310
                                                 int32_t size) {
3311
3312
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
3313
3314
3315
3316
3317
3318
3319
3320
  std::string shape_str = fragment_shapes.at(variable);
  std::pair<int32_t, int32_t> dim = GetWmmaFragmentDimSize(shape_str, scope);
  if (dim.first * dim.second != 0)
    return size / dim.first / dim.second;
  else
    return 0;
}

3321
3322
3323
void CodeGenTileLangCUDA::HandleVolatileLoads(const std::string &value,
                                              const BufferLoadNode *op,
                                              std::ostream &os) {
3324
3325
3326
  // Cast away volatile qualifier for fp16 types. That is, only loads and
  // stores are volatile. The loaded objects are not marked as volatile.
  //
3327
3328
  if ((op->dtype.is_float16() || op->dtype.is_bfloat16()) &&
      IsVolatile(op->buffer->data.get())) {
3329
3330
3331
3332
3333
3334
3335
3336
    os << "(";
    PrintType(op->dtype, os);
    os << ")(" << value << ")";
  } else {
    os << value;
  }
}

3337
3338
3339
void CodeGenTileLangCUDA::PrintVecElemLoadExpr(DataType t, int i,
                                               const std::string &value,
                                               std::ostream &os) {
3340
3341
3342
3343
3344
3345
  ICHECK_GT(t.lanes(), 1);
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (!(t.lanes() == 2 || t.lanes() == 3)) {
      if (i != 0) {
        os << "|";
      }
3346
3347
      os << "((0x000000ff << " << i * 8 << ") & (" << value << " << " << i * 8
         << "))";
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
      return;
    }
  }

  if (t.is_float16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_half2(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (t.is_bfloat16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_bfloat162(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (i == 0) {
    os << "make_";
    PrintType(t, os);
    os << "(";
  }
  os << value;
  if (i != t.lanes() - 1) {
    os << ",";
  } else {
    os << ")";
  }
  return;
}

3404
3405
3406
3407
3408
3409
3410
void CodeGenTileLangCUDA::PrintFunctionSignature(const String &function_name,
                                                 const PrimFunc &func,
                                                 std::ostream &os) {
  PrintFuncPrefix(os);
  CodeGenC::PrintType(func->ret_type, os);
  CodeGenC::PrintExtraAttrs(func, os);
  bool no_alias = func->HasNonzeroAttr(tir::attr::kNoAlias);
3411
3412
3413
3414
3415
3416
  std::unordered_set<const VarNode *> non_restrict;
  if (auto opt =
          func->GetAttr<ffi::Array<tir::Var>>(tl::attr::kNonRestrictParams)) {
    for (const tir::Var &v : opt.value())
      non_restrict.insert(v.get());
  }
3417
3418
3419
3420
3421
3422
3423
3424
  // Read-only param indices attribute, if present.
  std::unordered_set<int> ro_param_indices;
  if (auto opt =
          func->GetAttr<ffi::Array<Integer>>("tl.readonly_param_indices")) {
    for (const auto &idx : opt.value()) {
      ro_param_indices.insert(static_cast<int>(Downcast<Integer>(idx)->value));
    }
  }
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
  os << " " << function_name << "(";
  for (size_t i = 0; i < func->params.size(); ++i) {
    tir::Var v = func->params[i];
    std::string vid = AllocVarID(v.get());

    if (i > 0) {
      os << ", ";
    }

    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (ptr->storage_scope == "grid_constant") {
          os << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, os);
          os << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, os);
      }
3449
3450
3451
3452
      // If marked read-only, emit const qualifier before type.
      if (ro_param_indices.count(static_cast<int>(i))) {
        os << "const ";
      }
3453
3454
3455
3456
3457
3458
3459
      CodeGenC::PrintType(GetType(v), os);
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

3460
      if (no_alias && !non_restrict.count(v.get())) {
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
        PrintRestrict(v, os);
      }
    } else {
      CodeGenC::PrintType(GetType(v), os);
    }
    os << ' ' << vid;
  }
  os << ")";

  // Register handle data type
  // TODO(tvm-team): consider simply keep type info in the
  // type annotation(via a normalizing rewriting).
  for (const auto &param : func->params) {
    if (auto *ptr = param->type_annotation.as<PointerTypeNode>()) {
      if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
        RegisterHandleType(param.get(), prim->dtype);
      }
    }
  }
}

void CodeGenTileLangCUDA::AddFunction(const GlobalVar &gvar,
                                      const PrimFunc &f) {
  // If the function has already been forward-declared, this is a
  // no-op.
  CodeGenC::DeclareFunction(gvar, f);
3487
3488
3489
3490
3491
3492
  // clear previous generated state.
  this->InitFuncState(f);
  // reserve keywords
  ReserveKeywordsAsUnique();

  auto global_symbol = f->GetAttr<String>(tvm::attr::kGlobalSymbol);
3493
  ICHECK(global_symbol)
3494
3495
      << "CodeGenC: Expect PrimFunc to have the global_symbol attribute";
  bool no_alias = f->HasNonzeroAttr(tir::attr::kNoAlias);
3496
3497
3498
3499
3500
3501
  std::unordered_set<const VarNode *> non_restrict;
  if (auto opt =
          f->GetAttr<ffi::Array<tir::Var>>(tl::attr::kNonRestrictParams)) {
    for (const tir::Var &v : opt.value())
      non_restrict.insert(v.get());
  }
3502
3503
3504
3505
3506
3507
3508
  // Read-only param indices attribute, if present.
  std::unordered_set<int> ro_param_indices;
  if (auto opt = f->GetAttr<ffi::Array<Integer>>("tl.readonly_param_indices")) {
    for (const auto &idx : opt.value()) {
      ro_param_indices.insert(static_cast<int>(Downcast<Integer>(idx)->value));
    }
  }
3509
3510
3511

  this->PrintFuncPrefix(stream);
  CodeGenC::PrintType(f->ret_type, stream);
3512
3513
  this->PrintExtraAttrs(f);

3514
3515
3516
3517
3518
  this->stream << " " << static_cast<std::string>(global_symbol.value()) << "(";

  for (size_t i = 0; i < f->params.size(); ++i) {
    tir::Var v = f->params[i];
    std::string vid = AllocVarID(v.get());
3519
3520
    if (i != 0)
      stream << ", ";
3521
3522
    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
3523
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
        if (ptr->storage_scope == "grid_constant") {
          stream << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, stream);
          stream << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, stream);
      }
3536
3537
3538
3539
      // If marked read-only, emit const qualifier before type.
      if (ro_param_indices.count(static_cast<int>(i))) {
        stream << "const ";
      }
3540
      CodeGenC::PrintType(GetType(v), stream);
3541
3542
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
3543
3544
3545
3546
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

3547
      if (no_alias && !non_restrict.count(v.get())) {
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
        PrintRestrict(v, stream);
      }
    } else {
      CodeGenC::PrintType(GetType(v), stream);
    }
    stream << ' ' << vid;
  }
  stream << ") {\n";
  this->PreFunctionBody(f);
  int func_scope = this->BeginScope();
  this->PrintStmt(f->body);
  this->EndScope(func_scope);
  this->PrintIndent();
  this->stream << "}\n\n";
}

3564
3565
} // namespace codegen
} // namespace tvm