codegen_cuda.cc 70.2 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file target/codegen.cc
 */

#include "codegen_cuda.h"
#include <tvm/arith/analyzer.h>
7
#include <tvm/ffi/function.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
16
17
#include <tvm/tir/op.h>

#include <cmath>
#include <string>
#include <utility>
#include <vector>

#include "../op/builtin.h"
#include "../op/bulk_copy.h"
18
#include "arith/pattern_match.h"
19
20
21
22
23
#include "target/source/ptx.h"

namespace tvm {
namespace codegen {

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
static std::string GetFP8Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "_2";
  } else if (lanes == 4) {
    vec = "_4";
  } else if (lanes == 8) {
    vec = "_8";
  } else if (lanes == 16) {
    vec = "_16";
  } else {
    LOG(FATAL) << "Only support scalar and vector types of width (2, 4, 8, 16) "
                  "for FP8";
  }
42
43
  if (type.is_float8_e4m3fn() || type.is_float8_e4m3fnuz() ||
      type.is_float8_e4m3()) {
44
    stream << "fp8_e4" << vec << "_t";
45
46
  } else if (type.is_float8_e5m2() || type.is_float8_e5m2fnuz() ||
             type.is_float8_e5m2()) {
47
48
    stream << "fp8_e5" << vec << "_t";
  } else {
49
    LOG(FATAL) << "Unsupported FP8 type in CUDA codegen but got " << type;
50
51
52
53
  }
  return stream.str();
}

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
std::string GetFP6Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "x2";
  } else if (lanes == 4) {
    vec = "x4";
  } else if (lanes == 8) {
    vec = "x8";
  } else if (lanes == 16) {
    vec = "x16";
  } else {
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4) for FP6";
  }
  stream << "__nv_fp6";
  std::string suffix;
  if (type.code() == DataType::kFloat6_e2m3fn) {
    suffix = "_e2m3";
  } else if (type.code() == DataType::kFloat6_e3m2fn) {
    suffix = "_e3m2";
  } else {
    LOG(FATAL) << "Unsupported FP6 type in CUDA codegen";
  }
  stream << vec << suffix;
  return stream.str();
}

std::string GetFP4Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "x2";
  } else if (lanes == 4) {
    vec = "x4";
  } else if (lanes == 8) {
    vec = "x8";
  } else if (lanes == 16) {
    vec = "x16";
  } else {
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4) for FP4";
  }
  stream << "__nv_fp4";
  std::string suffix;
  if (type.code() == DataType::kFloat4_e2m1fn) {
    suffix = "_e2m1";
  } else {
    LOG(FATAL) << "Unsupported FP4 type in CUDA codegen";
  }
  stream << vec << suffix;
  return stream.str();
}

114
115
CodeGenTileLangCUDA::CodeGenTileLangCUDA() {
  restrict_keyword_ = "__restrict__";
116
117
118
119
120
  vid_global_barrier_state_ =
      name_supply_->FreshName(runtime::symbol::tvm_global_barrier_state);
  vid_global_barrier_expect_ = name_supply_->FreshName("__barrier_expect");
  ICHECK_EQ(vid_global_barrier_state_,
            runtime::symbol::tvm_global_barrier_state);
121
}
122

123
124
125
void CodeGenTileLangCUDA::PrintFuncPrefix(std::ostream &os) {
  os << "extern \"C\" __global__ ";
}
126
127

class LaunchConfigExtractor : public tir::StmtVisitor {
128
129
private:
  void VisitStmt_(const AttrStmtNode *op) final {
130
131
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
132
133
      if (iv->var->name_hint == "threadIdx.x" ||
          iv->thread_tag == "threadIdx.x") {
134
        threadIdx_x_ext = op->value;
135
136
      } else if (iv->var->name_hint == "threadIdx.y" ||
                 iv->thread_tag == "threadIdx.y") {
137
        threadIdx_y_ext = op->value;
138
139
      } else if (iv->var->name_hint == "threadIdx.z" ||
                 iv->thread_tag == "threadIdx.z") {
140
141
142
143
144
145
        threadIdx_z_ext = op->value;
      }
    }
    StmtVisitor::VisitStmt_(op);
  }

146
public:
147
148
149
150
151
  PrimExpr threadIdx_x_ext = Integer(1);
  PrimExpr threadIdx_y_ext = Integer(1);
  PrimExpr threadIdx_z_ext = Integer(1);
};

152
void CodeGenTileLangCUDA::PrintExtraAttrs(const PrimFunc &f) {
153
154
155
  LaunchConfigExtractor extractor;
  extractor(f->body);
  arith::Analyzer analyzer;
156
157
158
159
160
  PrimExpr threadIdx_ext =
      analyzer.Simplify(extractor.threadIdx_x_ext * extractor.threadIdx_y_ext *
                        extractor.threadIdx_z_ext);
  if (const IntImmNode *const threadIdx_ext_int =
          threadIdx_ext.as<IntImmNode>()) {
161
    if (threadIdx_ext_int->value == 1) {
162
163
      // unable to extract the number of threads per block, hence directly
      // return
164
165
      return;
    }
166
    stream << " __launch_bounds__(" << threadIdx_ext_int->value << ", 1)";
167
168
169
170
171
172
173
  }
}

std::string CodeGenTileLangCUDA::Finish() {
  if (need_mma_h_) {
    decl_stream << "#include <mma.h>\n";
  }
174
175
176
177
178
179
180
181
  if (enable_fp8_) {
    decl_stream << "#include <tl_templates/cuda/cuda_fp8.h>\n";
  }

  if (need_math_constants_h_) {
    decl_stream << "#include <math_constants.h>\n";
  }

182
183
184
185
  if (need_cooperative_groups_) {
    decl_stream << "#include <cooperative_groups.h>\n";
  }

186
  decl_stream << "#include <tl_templates/cuda/gemm.h>\n";
187
188
189
  if (enable_sparse_gemm_) {
    decl_stream << "#include <tl_templates/cuda/gemm_sp.h>\n";
  }
190
191
192
193
  decl_stream << "#include <tl_templates/cuda/copy.h>\n";
  decl_stream << "#include <tl_templates/cuda/reduce.h>\n";
  decl_stream << "#include <tl_templates/cuda/ldsm.h>\n";
  decl_stream << "#include <tl_templates/cuda/threadblock_swizzle.h>\n";
194
  decl_stream << "#include <tl_templates/cuda/debug.h>\n";
195
196

  if (need_global_barrier_) {
197
198
    decl_stream << "__device__ unsigned " << vid_global_barrier_state_
                << " = 0;\n";
199
  }
200
  decl_stream << "\n";
201

202
203
204
  return CodeGenC::Finish();
}

205
void CodeGenTileLangCUDA::VisitStmt_(const tir::ForNode *op) {
206
207
208
209
  if (op->kind == tir::ForKind::kUnrolled) {
    PrintIndent();
    stream << "#pragma unroll\n";
  }
210
211
  std::string extent =
      PrintExpr(arith::Analyzer().Simplify(op->extent + op->min));
212
213
214
215
216
  PrintIndent();
  std::string vid = AllocVarID(op->loop_var.get());
  std::string start = PrintExpr(op->min);
  stream << "for (";
  PrintType(op->loop_var.dtype(), stream);
217
218
  stream << ' ' << vid << " = " << start << "; " << vid << " < " << extent
         << "; ++" << vid << ") {\n";
219
220
221
222
223
224
225
  int for_scope = BeginScope();
  PrintStmt(op->body);
  this->EndScope(for_scope);
  PrintIndent();
  stream << "}\n";
}

226
void CodeGenTileLangCUDA::BindThreadIndex(const IterVar &iv) {
227
  ICHECK(!var_idmap_.count(iv->var.get()));
228
229
  var_idmap_[iv->var.get()] =
      CastFromTo(iv->thread_tag, DataType::UInt(32), iv->var.dtype());
230
231
}

232
void CodeGenTileLangCUDA::PrintType(DataType t, std::ostream &os) { // NOLINT(*)
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
  int lanes = t.lanes();
  if (t.is_handle()) {
    ICHECK(t.is_scalar()) << "do not yet support vector types";
    os << "void*";
    return;
  }

  if (t.is_void()) {
    os << "void";
    return;
  }

  if (t == tl::cuTensorMapType()) {
    os << "CUtensorMap";
    return;
  }

  bool fail = false;
  if (t.is_float()) {
    switch (t.bits()) {
253
    case 16:
254
      enable_fp16_ = true;
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
      if (t.is_scalar()) {
        os << "half_t";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp16 vector elements.
        //
        // half4 is stored as uint2
        //
        // h4.x is emitted as *(half2*)(&(u2.x)).x
        // h4.y is emitted as *(half2*)(&(u2.x)).y
        // h4.z is emitted as *(half2*)(&(u2.y)).x
        // h4.w is emitted as *(half2*)(&(u2.y)).y
        //
        ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
        os << "uint" << lanes / 2;
      } else {
270
        fail = true;
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
      }
      break;
    case 32:
      if (lanes <= 4) {
        os << "float";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp32 vector elements for 4 < lanes <= 8.
        //
        // float8 is stored as ulonglong4
        //
        // f8.v1 is emitted as *(float2*)(&(ul4.x)).x
        // f8.v2 is emitted as *(float2*)(&(ul4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for float type with lanes > 4";
        os << "ulonglong" << lanes / 2;
      } else {
        fail = true;
      }
      break;
    case 64:
      os << "double";
      break;
    default:
      fail = true;
      break;
297
    }
298
299
300
301
    if (!fail && (t.is_scalar() || t.bits() == 16))
      return;
    if (!fail && (lanes > 4 && lanes <= 8 && t.bits() == 32))
      return;
302
303
304
305
306
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  } else if (t.is_bfloat16()) {
307
    enable_bf16_ = true;
308
309
310
311
312
313
314
315
    if (t.is_scalar()) {
      os << "bfloat16_t";
    } else if (lanes <= 8) {
      ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
      os << "uint" << lanes / 2;
    } else {
      fail = true;
    }
316
317
    if (!fail)
      return;
318
  } else if (t.is_float8()) {
319
320
321
    enable_fp8_ = true;
    os << GetFP8Type(t);
    return;
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
  } else if (t.is_float6()) {
    enable_fp6_ = true;
    if (t.lanes() <= 4) {
      os << GetFP6Type(t);
    } else {
      fail = true;
    }
    return;
  } else if (t.is_float4()) {
    enable_fp4_ = true;
    if (t.lanes() <= 4) {
      os << GetFP4Type(t);
    } else {
      fail = true;
    }
    return;
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
  } else if (t == DataType::Bool()) {
    os << "bool";
    return;
  } else if (t.is_vector_bool()) {
    // CUDA does not support bool vectors.
    // Use ushort vectors to represent instead.
    int n = t.lanes();
    if (n <= 4) {
      os << "ushort" << n;
      return;
    }
  } else if (t.is_uint() || t.is_int()) {
    if (t.is_uint()) {
      os << "u";
    }
    switch (t.bits()) {
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    case 1: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int8_t";
        return;
      } else if (t.lanes() == 16) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 32) {
        os << "int";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
369
      }
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
    }
    case 4: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 4) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 8) {
        // directly 8 4-bit int in integer.
        os << "int";
        return;
      } else if (t.lanes() == 16) {
        os << "int2";
        return;
      } else if (t.lanes() == 32) {
        os << "int4";
        return;
      } else if (t.lanes() == 64) {
        os << "int8";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
393
      }
394
395
396
397
    }
    case 8: {
      if (t.lanes() == 4) {
        // directly 4 8 bit int in integer.
398
        enable_int8_ = true;
399
400
401
402
403
404
405

        // We use int for int8x4 instead of char4 because using char4 is
        // likely to produce extra instructions to pack four int8 elements
        // into 32-bit data.
        os << "int";
        return;
      } else if (t.lanes() == 8) {
406
        enable_int8_ = true;
407
408
409
        os << "int2";
        return;
      } else if (t.lanes() == 16) {
410
        enable_int8_ = true;
411
412
413
414
        os << "int4";
        return;
      } else if (!t.is_uint() && t.is_scalar()) {
        os << "signed char";
415
        break;
416
417
      } else {
        os << "char";
418
419
        break;
      }
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
    }
    case 16: {
      if (t.is_scalar()) {
        os << "short";
      } else if (t.lanes() <= 4) {
        os << "short" << lanes;
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int16 vector elements.
        //
        // short4 is stored as int2
        //
        // s4.x is emitted as *(short2*)(&(i2.x)).x
        // s4.y is emitted as *(short2*)(&(i2.x)).y
        // s4.z is emitted as *(short2*)(&(i2.y)).x
        // s4.w is emitted as *(short2*)(&(i2.y)).y
        //
        ICHECK_EQ(t.lanes() % 2, 0)
            << "only support even lane for shorT type with lanes > 4";
        os << "int" << t.lanes() / 2;
      } else {
        fail = true;
      }
      if (!fail) {
443
444
        return;
      }
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
      break;
    }
    case 32: {
      if (t.is_scalar()) {
        os << "int";
      } else if (t.lanes() <= 4) {
        os << "int" << t.lanes();
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int32 vector elements for 4 < lanes <= 8.
        //
        // int8 is stored as longlong4
        //
        // i8.v1 is emitted as *(int2*)(&(l4.x)).x
        // i8.v2 is emitted as *(int2*)(&(l4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for int32 type with lanes > 4";
        os << "longlong" << lanes / 2;
      } else {
464
        fail = true;
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
      }
      if (!fail) {
        return;
      }
      break;
    }
    case 64: {
      if (t.is_scalar()) {
        os << "int64_t";
      } else if (t.lanes() == 2) {
        os << "longlong2";
      } else if (t.lanes() == 3) {
        os << "longlong3";
      } else if (t.lanes() == 4) {
        os << "longlong4";
      }
      return;
    }
    default:
      fail = true;
      break;
486
487
488
489
490
491
492
493
494
495
496
497
    }
    if (!fail && lanes == 1) {
      return;
    }
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  }
  LOG(FATAL) << "Cannot convert type " << t << " to CUDA type";
}

498
499
500
void CodeGenTileLangCUDA::PrintVecBinaryOp(const std::string &op, DataType t,
                                           PrimExpr lhs, PrimExpr rhs,
                                           std::ostream &os) { // NOLINT(*)
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
  // Declare the result.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(t, stream);
  stream << ' ' << sret << ";\n";
  int ssa_scope = BeginScope();
  {
    // Unpack into individual ops.
    std::string vlhs = SSAGetID(PrintExpr(lhs), lhs.dtype());
    std::string vrhs = SSAGetID(PrintExpr(rhs), rhs.dtype());

    for (int i = 0, lanes = t.lanes(); i < lanes; ++i) {
      std::ostringstream value_temp;
      if (isalpha(op[0])) {
        value_temp << op << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << ", ";
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      } else {
        value_temp << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << op;
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      }
      PrintVecElemStore(sret, t, i, value_temp.str());
    }
  }
  EndScope(ssa_scope);
  os << sret;
}

534
535
536
void CodeGenTileLangCUDA::PrintVecElemLoad(const std::string &vec, DataType t,
                                           int i,
                                           std::ostream &os) { // NOLINT(*)
537
538
539
540
541
542
  if (t.is_scalar()) {
    os << vec;
    return;
  }

  static const char access[] = {'x', 'y', 'z', 'w'};
543
544
545
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
546
547
548
549
550
551
552
553
554
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    std::string type_name = t.is_int() ? "char" : "unsigned char";
    if (t.lanes() == 2 || t.lanes() == 3) {
      os << vec << "." << access[i % t.lanes()];
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      os << "((" << type_name << ")(" << ac << " >> " << i % 4 * 8 << "))";
    }
  } else if (t.is_float16()) {
555
556
    os << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
557
  } else if (t.is_bfloat16()) {
558
559
    os << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
578
579
    os << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
       << ")))->" << access[i % 2];
580
581
582
583
584
  } else {
    os << vec << "." << access[i];
  }
}

585
586
void CodeGenTileLangCUDA::PrintVecElemStore(const std::string &vec, DataType t,
                                            int i, const std::string &value) {
587
588
  this->PrintIndent();
  static const char access[] = {'x', 'y', 'z', 'w'};
589
590
591
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
592
593
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (t.lanes() == 2 || t.lanes() == 3) {
594
595
      stream << vec << '.' << access[i % t.lanes()] << "="
             << "(" << value << ");\n";
596
597
598
599
600
601
602
603
604
605
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 4 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 4 * 8 << ");\n";
    }
  } else if (t.is_float16()) {
606
607
    stream << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
608
  } else if (t.is_bfloat16()) {
609
610
    stream << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
629
630
    stream << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << " = " << value << ";\n";
631
632
633
634
635
  } else {
    stream << vec << "." << access[i] << " = " << value << ";\n";
  }
}

636
void CodeGenTileLangCUDA::PrintStorageSync(const CallNode *op) {
637
638
  auto args = op->args;
  const std::string &sync = args[0].as<StringImmNode>()->value;
639
640
641
642
  if (sync == "warp") {
    // DO nothing.
  } else if (sync == "shared" || sync == "shared.dyn") {
    this->PrintIndent();
643
644
645
646
647
648
649
650
651
652
653
654
655
656
    if (args.size() == 1) {
      this->stream << "__syncthreads();\n";
    } else if (args.size() == 2) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ">();\n";
    } else if (args.size() == 3) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      auto thread_count = args[2].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ", "
                   << thread_count << ">();\n";
    } else {
      LOG(FATAL) << "Invalid number of arguments for storage sync: "
                 << args.size();
    }
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
  } else if (sync == "global") {
    if (!need_global_barrier_) {
      need_global_barrier_ = true;
    }
    // global synchronizer
    std::string is_load = PrintExpr(op->args[1]);
    std::string num_blocks = PrintExpr(op->args[2]);
    this->PrintIndent();
    // In theory only threadfence is needed
    // but we observed problems with only threadfence
    this->stream << "__threadfence_system();\n";
    this->PrintIndent();
    this->stream << "if (" << is_load << ") {\n";
    int wb = this->BeginScope();
    this->PrintIndent();
    this->stream << "atomicAdd(&" << vid_global_barrier_state_ << ", 1);\n";
    this->PrintIndent();
    std::string ptr = name_supply_->FreshName("pf");
    this->stream << "volatile unsigned* " << ptr << " = &"
                 << vid_global_barrier_state_ << ";\n";
    this->PrintIndent();
    this->stream << vid_global_barrier_expect_ << " += " << num_blocks << ";\n";
    this->PrintIndent();
    this->stream << "while (" << ptr << "[0] < " << vid_global_barrier_expect_
                 << ");\n";
    this->EndScope(wb);
    this->PrintIndent();
    this->stream << "}\n";
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
687
688
689
  }
}

690
691
692
693
694
void CodeGenTileLangCUDA::PrintStorageScope(const std::string &scope,
                                            std::ostream &os) { // NOLINT(*)
  ICHECK_NE(scope, "global")
      << "Cannot allocate global memory when targeting CUDA. You must pass "
         "all global arrays as input instead";
695
696
697
698
699
700
701
  if (scope == "shared") {
    os << "__shared__ ";
  } else if (scope == "shared.dyn") {
    os << "extern __shared__ __align__(1024) ";
  }
}

702
703
704
705
std::string CodeGenTileLangCUDA::CastFromTo(std::string value, DataType from,
                                            DataType target) {
  if (from == target)
    return value;
706
707
708
709
  std::ostringstream os;
  os << "((";
  this->PrintType(target, os);
  os << ")";
710
711
  if (from.is_float16() && (target.is_int() || target.is_uint()) &&
      target.bits() == 8) {
712
713
714
715
716
717
718
719
720
721
    os << "(";
    if (target.is_uint()) {
      os << "u";
    }
    os << "int)";
  }
  os << value << ")";
  return os.str();
}

722
void CodeGenTileLangCUDA::VisitExpr_(const CastNode *op, std::ostream &os) {
723
724
725
726
727
  DataType from_ty = op->value.dtype();
  DataType target_ty = op->dtype;
  ICHECK_EQ(target_ty.lanes(), from_ty.lanes());

  // Emit simple C-style type conversion.
728
729
  if (from_ty.is_scalar())
    return CodeGenC::VisitExpr_(op, os);
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

  // We could emit make_float4 like calls, but the emitted code looks
  // too compact to read. Emit this as vectorized unary ops.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(target_ty, stream);
  stream << ' ' << sret << ";\n";
  {
    std::string src = SSAGetID(PrintExpr(op->value), from_ty);
    for (int i = 0, lanes = from_ty.lanes(); i < lanes; ++i) {
      std::ostringstream val;
      val << "(";
      PrintType(target_ty.element_of(), val);
      val << ")(";
      PrintVecElemLoad(src, from_ty, i, val);
      val << ")";
      PrintVecElemStore(sret, target_ty, i, val.str());
    }
  }
  os << sret;
}

752
753
754
755
void CodeGenTileLangCUDA::PrintCallExtern(Type ret_type, String global_symbol,
                                          const Array<PrimExpr> &args,
                                          bool skip_first_arg,
                                          std::ostream &os) { // NOLINT(*)
756
  DataType ret_dtype = GetRuntimeDataType(ret_type);
757
  if (ret_dtype.is_fixed_length_vector()) {
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    //
    // Emit an unsupported vector call
    //
    // v = intrin_f((float4*)A[0], (float4*)B[0])
    //
    // as
    //
    // float4 __ret;
    // {
    //   float4 __arg0 = ((float4*)A)[0];
    //   float4 __arg1 = ((float4*)B)[0];
    //   __ret.x = intrin_f(__arg0.x, __arg1.x);
    //   __ret.y = intrin_f(__arg0.y, __arg1.y);
    //   __ret.z = intrin_f(__arg0.z, __arg1.z);
    //   __ret.w = intrin_f(__arg0.w, __arg1.w);
    // }
    // v = __ret;
    //
    // Declare the result vector.
    std::string sret = name_supply_->FreshName("_");
    this->PrintIndent();
    this->PrintType(ret_dtype, stream);
    stream << ' ' << sret << ";\n";
    {
      // Load arguments.
      std::vector<std::string> sargs;
      size_t arg_begin = static_cast<size_t>(skip_first_arg);
      for (size_t i = arg_begin; i < args.size(); ++i) {
        std::string val = SSAGetID(PrintExpr(args[i]), args[i].dtype());
        sargs.push_back(std::move(val));
      }

      // Emit a scalar call for each lane.
      for (int i = 0; i < ret_dtype.lanes(); ++i) {
        std::ostringstream scall;
        scall << global_symbol << "(";
        for (size_t j = 0; j < sargs.size(); ++j) {
795
796
          if (j > 0)
            scall << ", ";
797
798
799
800
801
802
803
804
          PrintVecElemLoad(sargs[j], args[arg_begin + j].dtype(), i, scall);
        }
        scall << ")";
        PrintVecElemStore(sret, ret_dtype, i, scall.str());
      }
    }
    os << sret;
  } else {
805
806
    CodeGenC::PrintCallExtern(ret_type, global_symbol, args, skip_first_arg,
                              os);
807
808
809
810
  }
}

// Print a reference expression to a buffer.
811
812
813
814
std::string CodeGenTileLangCUDA::GetBufferRef(DataType t,
                                              const BufferNode *buffer,
                                              PrimExpr index) {
  const VarNode *buffer_var = buffer->data.get();
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
  std::ostringstream os;
  std::string vid = GetVarID(buffer_var);
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  // bool is_vol = IsVolatile(buffer_var);
  // always false for tl cutlass backend.
  bool is_vol = false;

  auto ptr_cast = [this, is_vol, scope](DataType pointed_to) {
    std::ostringstream ptr_os;
    ptr_os << "(";
    if (is_vol) {
      ptr_os << "volatile ";
    }
    if (!scope.empty() && IsScopePartOfType()) {
      PrintStorageScope(scope, ptr_os);
    }
    PrintType(pointed_to, ptr_os);
    ptr_os << "*)";
    return ptr_os.str();
  };

  DataType buffer_element_dtype = buffer->dtype;

  std::string buffer_str = vid;
  if (!HandleTypeMatch(buffer_var, buffer_element_dtype) || is_vol) {
    std::stringstream temp;
    temp << "(" << ptr_cast(buffer_element_dtype) << vid << ")";
    buffer_str = temp.str();
  }
847
848
849
850
851
852
853
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }
  if (scope == "local.var") {
    os << vid;
    return os.str();
  }
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
  std::string index_str = PrintExpr(index);
  if (t.bits() == 4 || (t.bits() == 1 && t.is_int())) {
    // This is a special case, because CodegenCUDA::PrintType()
    // returns "int" for bool and for 4-bit integers. In most cases,
    // we divide by the number of lanes to determine the index.
    // However, the backing type for scalar int4 and scalar bool is
    // int32.  Therefore, we need to divide by the ratio of their
    // sizes in that case.
    int div_factor = (t.lanes() == 1) ? (32 / t.bits()) : t.lanes();

    os << "*("
       << "(" << ptr_cast(t) << vid << ")"
       << " + " << index_str << " / " << div_factor << ")";
  } else if (t == buffer_element_dtype) {
    os << buffer_str << "[" << index_str << "]";
  } else {
    os << "*" << ptr_cast(t) << "(" << buffer_str << " + " << index_str << ")";
  }

  return os.str();
}

876
void CodeGenTileLangCUDA::VisitExpr_(const CallNode *op, std::ostream &os) {
877
  auto print_extern_call_stmt = [&](std::string name, size_t offset = 0) {
878
879
880
881
    // Cache context into a private ss, otherwise the let node may generate
    // within the function call arguments.
    std::ostringstream ss;

882
    for (size_t i = offset; i < op->args.size(); i++) {
883
      if (i > offset)
884
885
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
886
    }
887
888
889
890

    this->PrintIndent();
    this->stream << name << "(";
    this->stream << ss.str();
891
892
893
894
895
896
897
898
    this->stream << ");\n";
  };
  if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
899
900
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
901
902
    if (op->args.size() == 5) {
      this->PrintIndent();
903
904
      this->stream << "tl::cp_async_gs<" << size << ">(" << dst << "+"
                   << dst_offset << ", " << src << "+" << src_offset << ");\n";
905
906
907
    } else {
      std::string condition = this->PrintExpr(op->args[5]);
      this->PrintIndent();
908
909
910
      this->stream << "tl::cp_async_gs_conditional<" << size << ">(" << dst
                   << "+" << dst_offset << ", " << src << "+" << src_offset
                   << ", " << condition << ");\n";
911
912
913
914
915
916
917
918
919
920
921
    }
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    print_extern_call_stmt("tl::cp_async_commit");
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
    std::string func_name = "tl::cp_async_wait<" + std::to_string(n) + ">";
    print_extern_call_stmt(func_name, 1);
  } else if (op->op.same_as(builtin::create_barriers())) {
    this->PrintIndent();
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
    std::string barrier_name = "_mbarrier";
922
923
    this->stream << "__shared__ uint64_t " << barrier_name << "["
                 << barrier_count << "];\n";
924
  } else if (op->op.same_as(tl::get_mbarrier())) {
925
926
927
928
929
930
931
932
933
934
935
    std::string barrier_name = "_mbarrier";
    std::string barrier_id = this->PrintExpr(op->args[0]);
    os << barrier_name + "[" + barrier_id + "]";
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    print_extern_call_stmt("tl::mbarrier_arrive");
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    print_extern_call_stmt("tl::mbarrier_init");
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    print_extern_call_stmt("tl::mbarrier_arrive_expect_tx");
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive");
936
  } else if (op->op.same_as(tl::mbarrier_expect_tx())) {
937
    print_extern_call_stmt("tl::mbarrier_expect_tx");
938
  } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
939
    print_extern_call_stmt("tl::mbarrier_wait");
940
  } else if (op->op.same_as(tl::sync_thread_partial())) {
941
    print_extern_call_stmt("tl::syncthreads_partial");
942
  } else if (op->op.same_as(tl::tma_load())) {
943
    std::ostringstream ss;
944
    ICHECK_GE(op->args.size(), 2);
945
    ss << "tl::tma_load(";
946
    auto desc = op->args[0];
947
    ss << this->PrintExpr(desc) << ", ";
948
    if (const IntImmNode *imm = op->args[1].as<IntImmNode>()) {
949
      ss << "_mbarrier[" << imm->value << "], ";
950
    } else {
951
      ss << this->PrintExpr(op->args[1]) << ", ";
952
953
954
    }
    for (size_t i = 2; i < op->args.size(); i++) {
      if (i > 2)
955
956
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
957
    }
958
959
960
    ss << ");\n";
    this->PrintIndent();
    this->stream << ss.str();
961
  } else if (op->op.same_as(tl::tma_load_im2col())) {
962
    print_extern_call_stmt("tl::tma_load_im2col");
963
  } else if (op->op.same_as(tl::tma_store())) {
964
    print_extern_call_stmt("tl::tma_store");
965
  } else if (op->op.same_as(tl::ptx_ldmatirx())) {
966
967
968
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
969
970
    if (trans == 1)
      func_name += "_trans";
971
    print_extern_call_stmt(func_name, 2);
972
  } else if (op->op.same_as(tl::ptx_stmatirx())) {
973
974
975
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_stmatrix_x" + std::to_string(num);
976
977
    if (trans == 1)
      func_name += "_trans";
978
    print_extern_call_stmt(func_name, 2);
979
  } else if (op->op.same_as(tl::fence_proxy_async())) {
980
    print_extern_call_stmt("tl::fence_proxy_async");
981
  } else if (op->op.same_as(tl::tma_store_arrive())) {
982
    print_extern_call_stmt("tl::tma_store_arrive");
983
  } else if (op->op.same_as(tl::tma_store_wait())) {
984
    print_extern_call_stmt("tl::tma_store_wait<0>");
985
  } else if (op->op.same_as(tl::set_max_nreg())) {
986
987
988
    this->PrintIndent();
    int nreg = Downcast<IntImm>(op->args[0])->value;
    int is_inc = Downcast<IntImm>(op->args[1])->value;
989
990
    std::string func_name =
        is_inc ? "tl::warpgroup_reg_alloc" : "tl::warpgroup_reg_dealloc";
991
    this->stream << func_name << "<" << std::to_string(nreg) << ">();\n";
992
  } else if (op->op.same_as(tl::wait_wgmma())) {
993
994
995
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::wait_wgmma<" << std::to_string(num_mma) << ">();\n";
996
  } else if (op->op.same_as(tl::pack_b16())) {
997
998
    os << "__pack_half2(" << this->PrintExpr(op->args[0]) << ", "
       << this->PrintExpr(op->args[1]) << ")";
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
  } else if (op->op.same_as(tl::sync_grid())) {
    this->need_cooperative_groups_ = true;
    this->PrintIndent();
    this->stream << "cooperative_groups::grid_group grid = "
                    "cooperative_groups::this_grid();\n";
    this->PrintIndent();
    this->stream << "grid.sync();\n";
  } else if (op->op.same_as(tl::loop_break())) {
    this->PrintIndent();
    this->stream << "break;\n";
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
  } else if (op->op.same_as(builtin::tvm_fill_fragment())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 6U);
    os << "nvcuda::wmma::fill_fragment(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_load_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::load_matrix_sync(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[6], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_store_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::store_matrix_sync(";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[6], os);
1042
    if (const StringImmNode *str = op->args[7].as<StringImmNode>()) {
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
      os << ", nvcuda::wmma::mem_" << str->value;
    } else {
      LOG(FATAL) << "Invalid parameters";
    }
    os << ")";
  } else if (op->op.same_as(builtin::tvm_mma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::mma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::tvm_bmma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::bmma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::ptx_mma())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp64, ...
    // arg 4: B precision: fp16, fp64, ...
    // arg 5: C precision: fp32, fp64, ...
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index
    // arg 12: saturate
    // arg 13: (optional) 1-bit operator (xor or and)
    ICHECK(op->args.size() == 13U || op->args.size() == 14U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
    bool saturate = Downcast<Bool>(op->args[12])->value;
1097
1098
1099
1100
1101
    std::string bit_op =
        op->args.size() > 13 ? Downcast<StringImm>(op->args[13])->value : "";
    std::string asm_code = PrintMMAAssembly(
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_bias,
        b_ref, b_bias, c_ref, c_bias, "", "", "", bit_op, false, saturate);
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138

    this->stream << asm_code;
  } else if (op->op.same_as(builtin::ptx_mma_sp())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp32, ...
    // arg 4: B precision: fp16, fp32, ...
    // arg 5: C precision: fp16, fp32, ...
    // arg 6: A multiplicand pointer
    // arg 7: A multiplicand index
    // arg 8: B multiplicand pointer
    // arg 9: B multiplicand index
    // arg 10: C accumulator pointer
    // arg 11: C accumulator index
    // arg 12: metadata
    // arg 13: metadata index
    // arg 14: sparse_selector
    // arg 15: saturate
    ICHECK_EQ(op->args.size(), 16U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_offset = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_offset = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_offset = this->PrintExpr(op->args[11]);
    std::string metadata = this->PrintExpr(op->args[12]);
    std::string metadata_offset = this->PrintExpr(op->args[13]);
    std::string sparse_selector = this->PrintExpr(op->args[14]);
    bool saturate = Downcast<Bool>(op->args[15])->value;
    std::string asm_code = PrintMMAAssembly(
1139
1140
1141
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_offset,
        b_ref, b_offset, c_ref, c_offset, metadata, metadata_offset,
        sparse_selector, "", true, saturate);
1142
1143
1144
1145
1146
1147
1148
1149
    this->stream << asm_code;
  } else if (op->op.same_as(builtin::ptx_ldmatrix())) {
    // arg 0: whether the matrix is loaded in column major format or not.
    // arg 1: number of matrices to load.
    // arg 2: The data type in the matrix, .b16 is the only accepted data type.
    // arg 3: pointer to local buffer.
    // arg 4: The offset of the element to store in the local buffer.
    // arg 5: pointer to the shared memory buffer to load.
1150
1151
    // arg 6: The offset of the start element of the row to load in shared
    // memory.
1152
1153
1154
1155
1156
1157
1158
1159
    ICHECK_EQ(op->args.size(), 7U);
    bool trans = Downcast<Bool>(op->args[0])->value;
    int num = Downcast<Integer>(op->args[1])->value;
    std::string type = Downcast<StringImm>(op->args[2])->value;
    std::string local_ptr = this->PrintExpr(op->args[3]);
    std::string local_elem_offset = this->PrintExpr(op->args[4]);
    std::string smem_ptr = this->PrintExpr(op->args[5]);
    if (trans && op->dtype.bits() == 8) {
1160
1161
      // Since ldmatrix assumes that a matrix element is 16 bit, it cannot
      // properly transpose an int8 matrix.
1162
1163
1164
1165
      std::string smem_stride = this->PrintExpr(op->args[6]);
      ICHECK(num == 4);
      os << "for (int i = 0; i < 16; ++i) {\n";
      os << local_ptr << "[" + local_elem_offset + " + i] = " << smem_ptr
1166
1167
1168
1169
         << "[(i % 8) / 4 * " + smem_stride +
                " * 16 + (threadIdx.x % 4) * 4 * " + smem_stride +
                "+ (i % 4) * " + smem_stride +
                " + threadIdx.x / 4 +  (i / 8) * 8];\n";
1170
1171
1172
1173
      os << "}\n";
    } else {
      std::string smem_elem_offset = this->PrintExpr(op->args[6]);
      need_cast_smem_ptr_to_int_ = true;
1174
1175
1176
      this->stream << PrintLoadMatrixAssembly(trans, num, type, local_ptr,
                                              local_elem_offset, smem_ptr,
                                              smem_elem_offset);
1177
1178
1179
1180
1181
1182
1183
1184
1185
    }
  } else if (op->op.same_as(builtin::mma_store())) {
    int m = Downcast<Integer>(op->args[0])->value;
    int n = Downcast<Integer>(op->args[1])->value;
    std::string dst = this->PrintExpr(op->args[2]);
    std::string src = this->PrintExpr(op->args[3]);
    std::string src_offset = this->PrintExpr(op->args[4]);
    PrimExpr stride = op->args[5];

1186
1187
    ICHECK(m == 16 && n == 16)
        << "Only m == 16 && n == 16 case supported for now";
1188

1189
1190
1191
1192
1193
    // Each thread in a warp holds a certain number of elements of an MMA
    // output. For example, if we compute a 16x16 tile using MMA, each thread
    // holds 8 elements in its registers. So conceptually, a warp memory is
    // organized as a 32x8 block. A map from a 16x16 tile to a 32x8 block of
    // memory is specified by the index map below.
1194

1195
1196
    // To store the 32x8 output back to a 16x16 tile in shared or global memory,
    // we invert this map to determine the output location for each 8 element.
1197

1198
1199
    const auto index_map_func = ffi::Function::GetGlobal(
        "tir.index_map.shared_16x16_to_mma_32x8_layout");
1200

1201
1202
1203
    IndexMap index_map;
    if (!index_map_func) {
      Var i, j;
1204

1205
      // The index map is defined as follows:
1206
1207
1208
1209
1210
      index_map = IndexMap(
          {i, j}, {4 * FloorMod(i, 8) + FloorDiv(FloorMod(j, 8), 2),
                   4 * FloorDiv(j, 8) + FloorDiv(i, 8) * 2 + FloorMod(j, 2)});
    } else {
      index_map = IndexMap::FromFunc(2, *index_map_func);
1211
1212
1213
1214
1215
1216
1217
    }

    arith::Analyzer analyzer;
    auto inverse_index_map =
        index_map.Inverse({Range(0, m), Range(0, n)}, &analyzer);
    auto indices_16x16 = inverse_index_map->final_indices;

1218
1219
1220
    // "//" and "%" in the index map are translated to FloorDiv/Mod, but the
    // plain Div/Mod are fine. FloorDiv/Mod are supposed to be lowered before
    // they reach codegen, so manually replace them to the plain ones here.
1221
    class LowerFloorDivMod : public ExprMutator {
1222
1223
    public:
      PrimExpr VisitExpr_(const FloorDivNode *op) {
1224
1225
        return tir::Div(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
1226
      PrimExpr VisitExpr_(const FloorModNode *op) {
1227
1228
1229
1230
        return tir::Mod(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
    };

1231
1232
    auto dst_ind =
        LowerFloorDivMod()(indices_16x16[0] * stride + indices_16x16[1]);
1233
1234
1235
1236
1237
1238
1239
1240
1241

    var_idmap_[inverse_index_map->initial_indices[0].get()] = "threadIdx.x";
    var_idmap_[inverse_index_map->initial_indices[1].get()] = "local_id";
    if (op->dtype.bits() == 16) {
      os << "for (int local_id = 0; local_id < 8; local_id+=2) {\n";
      os << "*((uint *)&" << dst << "[" + this->PrintExpr(dst_ind) + "])"
         << " = "
         << "*((uint *)&" << src << "[" << src_offset << " + local_id]);\n";
      os << "}\n";
1242
    } else {
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
      os << "for (int local_id = 0; local_id < 8; ++local_id) {\n";
      os << dst << "[" + this->PrintExpr(dst_ind) + "]"
         << " = " << src << "[" << src_offset << " + local_id];\n";
      os << "}\n";
    }

  } else if (op->op.same_as(builtin::mma_fill())) {
    std::string num_elem = this->PrintExpr(op->args[0]);
    std::string dst = this->PrintExpr(op->args[1]);
    std::string dst_offset = this->PrintExpr(op->args[2]);

    os << "for (int i = 0; i < " << num_elem << "; ++i) {\n";
    os << dst << "[" << dst_offset << " + i] = 0.0;";
    os << "}\n";
  } else if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    need_cast_smem_ptr_to_int_ = true;
1264
1265
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
1266
    if (op->args.size() == 5) {
1267
1268
      this->stream << PrintCpAsyncAssembly(dst, dst_offset, src, src_offset,
                                           size);
1269
    } else {
1270
1271
      this->stream << PrintPredicatedCpAsyncAssembly(
          dst, dst_offset, src, src_offset, size, this->PrintExpr(op->args[5]));
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
    }
  } else if (op->op.same_as(builtin::ptx_cp_async_bulk())) {
    need_cast_smem_ptr_to_int_ = true;
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    int barrier_id = Downcast<IntImm>(op->args[5])->value;
    CHECK(barrier_id < barrier_count_);
1282
1283
1284
1285
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
    this->stream << PrintCpAsyncBulkAsm(dst, dst_offset, src, src_offset, size,
                                        barrier);
1286
1287
1288
1289
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    this->stream << "__asm__ __volatile__(\"cp.async.commit_group;\");\n\n";
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
1290
1291
    this->stream << "__asm__ __volatile__(\"cp.async.wait_group " << n
                 << ";\");\n\n";
1292
1293
1294
1295
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1296
1297
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1298
1299
1300
1301
1302
    this->stream << PrintCpAsyncBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1303
1304
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1305
1306
1307
1308
1309
1310
    std::string thread_count = this->PrintExpr(op->args[1]);
    this->stream << PrintInitBarrierThreadCountAsm(barrier, thread_count);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1311
1312
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1313
1314
1315
1316
1317
    this->stream << PrintArriveBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1318
1319
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1320
1321
1322
1323
1324
1325
    std::string byte_count = this->PrintExpr(op->args[1]);
    this->stream << PrintArriveBarrierExpectTxAsm(barrier, byte_count);
  } else if (op->op.same_as(builtin::ptx_wait_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1326
1327
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1328
1329
1330
1331
1332
1333
1334
1335
    this->stream << PrintWaitBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::create_barriers())) {
    CHECK_EQ(barrier_count_, -1);
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
    // pad barrier alignment to avoid runtime alignment errors
    CHECK_EQ(barrier_alignment_bytes_ % sizeof(uint64_t), 0);
    int barrier_alignment_count = barrier_alignment_bytes_ / sizeof(uint64_t);
    if (barrier_count % barrier_alignment_count != 0) {
1336
1337
      barrier_count = ((barrier_count / barrier_alignment_count) + 1) *
                      barrier_alignment_count;
1338
1339
    }
    barrier_count_ = barrier_count;
1340
1341
1342
1343
1344
    this->stream << "__shared__ __align__(" << barrier_alignment_bytes_
                 << ") uint64_t " << barrier_name_ << "[" << barrier_count
                 << "];\n";
    this->stream << "for (int i = 0; i < " << barrier_count << "; ++i) { "
                 << barrier_name_ << "[i] = 0; }\n";
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
  } else if (op->op.same_as(builtin::ptx_ldg32())) {
    /*
    asm volatile (
        "{.reg .pred p;\n"
        " setp.ne.b32 p, %2, 0;\n"
        // " @p ld.global.nc.f32 %0, [%1];}\n"t
        " @p ld.global.nc.L2::128B.f32 %0, [%1];}\n"
        : "=f"(reg)
        : "l"(addr), "r"((int)guard)
    );
    */

    // get local
    std::string reg = this->PrintExpr(op->args[0]);
    // get guard
    std::string guard = this->PrintExpr(op->args[1]);
1361
    const BufferLoadNode *addr_buffer = op->args[2].as<BufferLoadNode>();
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
    std::string global_addr = this->PrintExpr(addr_buffer->indices[0]);
    std::string global_buffer = this->PrintExpr(addr_buffer->buffer->data);
    std::string local_addr = this->PrintExpr(op->args[3]);
    this->stream << "asm volatile (\n";
    this->stream << "\"{.reg .pred p;\\n\"\n";
    this->stream << "\" setp.ne.b32 p, %2, 0;\\n\"\n";
    this->stream << "\" @!p mov.b32 %0, 0;\\n\"\n";
    this->stream << "\" @p ld.global.nc.f32 %0, [%1];}\\n\"\n";
    // stream << "\" @p ld.global.nc.L2::128B.f32 %0, [%1];}\\n\"\n" ;
    stream << ": \"=f\"(" << reg << "[" << local_addr << "]"
           << ")\n";
1373
1374
    stream << ": \"l\"((void*)(" << global_buffer << "+" << global_addr
           << ")), \"r\"((int)" << guard << ")\n";
1375
    stream << ");\n";
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
  } else if (op->op.same_as(builtin::reinterpret())) {
    DataType tgt_dtype = op->dtype;
    DataType src_dtype = op->args[0]->dtype;
    PrimExpr value = op->args[0];

    // Handle float4_e2m1fn reinterpret
    if (!src_dtype.is_float4_e2m1fn() && !tgt_dtype.is_float4_e2m1fn()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    if (src_dtype == tgt_dtype || tgt_dtype.lanes() * tgt_dtype.bits() ==
                                      src_dtype.lanes() * src_dtype.bits()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    CHECK_EQ(tgt_dtype.lanes(), src_dtype.lanes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of lanes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;
    CHECK_EQ(tgt_dtype.bytes(), src_dtype.bytes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of bytes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;

    int lanes = tgt_dtype.lanes();

    int ssa_scope = BeginScope();
    if (lanes == 1) {
      // The case of lane=1 is same as the normal reinterpret,
      // except that we allow the src and dst dtype to have different number of
      // bits.
      std::string rhs = SSAGetID(PrintExpr(value), src_dtype);
      os << "(*(";
      this->PrintType(tgt_dtype, os);
      os << " *)(&(" << rhs << ")))";
    } else if (lanes == 2) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint16, and then extract bits of two fp4
        // numbers, and finally reinterpret the result as fp4x2.
        value =
            tir::Call(DataType::UInt(16), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     tir::Cast(DataType::UInt(8),
                               (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                                   ((temp_var >> 4) &
                                    IntImm(DataType::UInt(16), 0xF0))));
      } else {
        value = tir::Cast(
            DataType::UInt(16),
            tir::Call(DataType::UInt(8), tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                         ((temp_var & IntImm(DataType::UInt(16), 0xF0)) << 4));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else if (lanes == 4) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint32, and then extract bits of four fp4
        // numbers, and finally reinterpret the result as fp4x4.
        value =
            tir::Call(DataType::UInt(32), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            tir::Cast(
                DataType::UInt(16),
                (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                    ((temp_var >> 4) & IntImm(DataType::UInt(32), 0xF0)) |
                    ((temp_var >> 8) & IntImm(DataType::UInt(32), 0xF00)) |
                    ((temp_var >> 12) & IntImm(DataType::UInt(32), 0xF000))));
      } else {
        value = tir::Cast(DataType::UInt(32),
                          tir::Call(DataType::UInt(16),
                                    tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF0)) << 4) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF00)) << 8) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF000)) << 12));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else {
      LOG(FATAL) << "Invalid number of lanes for float4_e2m1fn reinterpret: "
                 << lanes;
    }
    EndScope(ssa_scope);
  } else if (op->op.same_as(builtin::thread_return())) {
    os << "return";
1470
1471
1472
1473
1474
  } else {
    CodeGenC::VisitExpr_(op, os);
  }
}

1475
void CodeGenTileLangCUDA::VisitStmt_(const AttrStmtNode *op) {
1476
  if (op->attr_key == tir::attr::fragment_shape) {
1477
1478
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *shape_str = op->value.as<StringImmNode>();
1479
1480
    fragment_shapes[buffer] = shape_str->value;
  } else if (op->attr_key == tir::attr::fragment_layout) {
1481
1482
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *layout_str = op->value.as<StringImmNode>();
1483
1484
    fragment_layouts[buffer] = layout_str->value;
  } else if (op->attr_key == tir::attr::async_commit_queue_scope) {
1485
1486
1487
    const IntImmNode *queue_id = op->value.as<IntImmNode>();
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
1488
1489
1490
1491
1492
1493
1494
    this->VisitStmt(op->body);
    auto commit_group = Call(DataType::Void(), builtin::ptx_commit_group(), {});
    this->VisitExpr(commit_group, this->stream);
    return;
  } else if (op->attr_key == tir::attr::async_wait_queue_scope) {
    auto wait_attrs = GetAsyncWaitAttributes(op);
    auto queue_id = wait_attrs.first.as<IntImmNode>();
1495
1496
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
1497
    auto wait_cnt = wait_attrs.second;
1498
1499
    auto wait_group =
        Call(DataType::Void(), builtin::ptx_wait_group(), {wait_cnt});
1500
1501
1502
1503
1504
1505
1506
    this->VisitExpr(wait_group, this->stream);
    auto inner = op->body.as<AttrStmtNode>();
    ICHECK(inner);
    this->VisitStmt(inner->body);
    return;
  } else if (op->attr_key == "threadblock_swizzle_pattern") {
    this->PrintIndent();
1507
    const StringImmNode *pattern = op->value.as<StringImmNode>();
1508
1509
1510
1511
1512
1513
1514
1515
    ICHECK(pattern);
    this->stream << "const dim3 blockIdx = " << pattern->value << "();\n";
    this->VisitStmt(op->body);
    return;
  }
  CodeGenC::VisitStmt_(op);
}

1516
void CodeGenTileLangCUDA::VisitStmt_(const AllocateNode *op) {
1517
1518
1519
1520
  ICHECK(!is_zero(op->condition));
  std::string vid = AllocVarID(op->buffer_var.get());
  this->PrintIndent();
  std::string scope = GetPtrStorageScope(op->buffer_var);
1521
  const VarNode *buffer = op->buffer_var.as<VarNode>();
1522
1523
  if (scope.find("wmma.") == 0) {
    if (scope == "wmma.matrix_a" || scope == "wmma.matrix_b") {
1524
1525
1526
1527
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Int(8) || op->dtype == DataType::UInt(8) ||
             op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
             op->dtype == DataType::Int(1) || op->dtype == DataType::BFloat(16))
1528
1529
1530
          << "Matrix_a and matrix_b only support half or char or unsigned char "
          << "or uint4 or int4 or int1 type for now";
    } else {
1531
1532
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Float(32) || op->dtype == DataType::Int(32))
1533
1534
1535
          << "Accumulator only support half, float and int type for now";
    }
    PrintWmmaScope(scope, op->dtype, buffer, stream);
1536
  } else {
1537
1538
1539
1540
1541
1542
1543
1544
    PrintStorageScope(scope, stream);
    PrintType(op->dtype, stream);
  }

  if (scope == "shared.dyn") {
    stream << ' ' << vid << "[];\n";
  } else {
    size_t constant_size = op->ConstantAllocationSize();
1545
    ICHECK_GT(constant_size, 0)
1546
1547
        << "Can only handle constant size stack allocation for now, but get "
        << constant_size << " for " << op->buffer_var->name_hint;
1548
1549
1550
1551
1552
1553
1554
1555
    if (scope.find("wmma.") == 0) {
      constant_size = GetWmmaFragmentSize(scope, buffer, constant_size);
    }
    if ((op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
         op->dtype == DataType::Int(1)) &&
        scope == "shared") {
      constant_size = constant_size / (32 / op->dtype.bits());
    }
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
    if (scope == "shared") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
    } else if (scope == "local") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
    } else if (scope == "local.var") {
      stream << ' ' << vid << " = " << PrintExpr(tir::make_const(op->dtype, 0))
             << ";\n";
    } else {
      ICHECK(false) << "Unsupported scope: " << scope;
    }
1566
1567
1568
1569
1570
1571
  }

  RegisterHandleType(op->buffer_var.get(), op->dtype);
  this->PrintStmt(op->body);
}

1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
void CodeGenTileLangCUDA::VisitStmt_(const EvaluateNode *op) {
  if (is_const_int(op->value))
    return;
  const CallNode *call = op->value.as<CallNode>();
  if (call && call->op.same_as(builtin::tvm_global_barrier_kinit())) {
    PrintIndent();
    stream << "__shared__ unsigned " << vid_global_barrier_expect_ << ";\n";
    PrintIndent();
    stream << "if (threadIdx.x == 0) {\n";
    PrintIndent();
    stream << "  " << vid_global_barrier_expect_ << " = 0;\n";
    PrintIndent();
    stream << "}\n";
1585
1586
1587
1588
1589
1590
1591
1592
  } else if (call && call->op.same_as(builtin::call_extern())) {
    ICHECK(call->args.size() >= 1)
        << "call_extern must have at least 1 argument";
    std::string func_name = call->args[0].as<StringImmNode>()->value;
    if (func_name.find("tl::gemm_sp") == 0) {
      enable_sparse_gemm_ = true;
    }
    CodeGenC::VisitStmt_(op);
1593
1594
1595
1596
1597
  } else {
    CodeGenC::VisitStmt_(op);
  }
}

1598
void CodeGenTileLangCUDA::VisitExpr_(const RampNode *op, std::ostream &os) {
1599
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1600
1601
  CHECK_LE(lanes, 4) << "Translate Ramp Node " << GetRef<Ramp>(op) << " with "
                     << lanes << " lanes is not allowed.";
1602
1603
1604
1605
1606
1607
  os << "(make_";
  PrintType(op->dtype, os);
  os << "(";
  for (int i = 0; i < lanes; i++) {
    os << "(" << PrintExpr(op->base) << ")"
       << "+(" << PrintExpr(op->stride) << "*" << i << ")";
1608
1609
    if (i != lanes - 1)
      os << ", ";
1610
1611
1612
1613
  }
  os << "))";
}

1614
1615
void CodeGenTileLangCUDA::VisitExpr_(const BroadcastNode *op,
                                     std::ostream &os) { // NOLINT(*)
1616
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1617
1618
  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 8 &&
      lanes == 4) {
1619
    // make_int8x4
1620
    const int64_t *p = as_const_int(op->value);
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
    ICHECK(p);
    int64_t v = *p & 0xFF;
    v = (v << 24) | (v << 16) | (v << 8) | v;
    if (op->dtype.is_uint()) {
      os << "(uint)" << v;
    } else {
      os << "(int)" << v;
    }
    return;
  }

  if (op->dtype.is_float16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1638
1639
      if (i != 0)
        os << ", ";
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
      os << "__pack_half2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if (op->dtype.is_bfloat16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1652
1653
      if (i != 0)
        os << ", ";
1654
1655
1656
1657
1658
1659
      os << "__pack_nv_bfloat162(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

1660
1661
  if (op->dtype.is_float() && op->dtype.bits() == 32 &&
      op->dtype.lanes() == 8) {
1662
1663
1664
    std::string v = PrintExpr(op->value);
    os << "make_ulonglong4(";
    for (int i = 0; i < 4; ++i) {
1665
1666
      if (i != 0)
        os << ", ";
1667
1668
1669
1670
1671
1672
1673
1674
      os << "*(unsigned long long*)&make_float2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 4) {
    bool fail = false;
1675
    const int64_t *p = as_const_int(op->value);
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
    ICHECK(p);
    int64_t v = *p & 0xF;

    if (lanes == 4) {
      v = (v << 12) | (v << 8) | (v << 4) | v;
      if (op->dtype.is_uint()) {
        os << "(uint16_t)" << v;
      } else {
        os << "(int16_t)" << v;
      }
    } else {
1687
1688
      v = (v << 28) | (v << 24) | (v << 20) | (v << 16) | (v << 12) | (v << 8) |
          (v << 4) | v;
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
      if (lanes == 8) {
        if (op->dtype.is_uint()) {
          os << "(uint)" << v;
        } else {
          os << "(int)" << v;
        }
      } else if (lanes == 16 || lanes == 32) {
        os << "make_";
        PrintType(op->dtype, os);
        os << '(';
        for (int i = 0; i < lanes / 8; ++i) {
1700
1701
          if (i != 0)
            os << ", ";
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
          if (op->dtype.is_uint()) {
            os << "(uint)" << v;
          } else {
            os << "(int)" << v;
          }
        }
        os << ')';
      } else {
        fail = true;
      }
    }

    if (!fail) {
      return;
    }
  }

  std::string v = PrintExpr(op->value);
  os << "make_";
  PrintType(op->dtype, os);
  os << '(';
  for (int i = 0; i < lanes; ++i) {
1724
1725
    if (i != 0)
      os << ", ";
1726
1727
1728
1729
1730
    os << v;
  }
  os << ')';
}

1731
1732
inline void PrintConst(const FloatImmNode *op, std::ostream &os,
                       CodeGenTileLangCUDA *p) { // NOLINT(*)
1733
1734
1735
1736
1737
1738
  // Type code is kBFloat
  if (op->dtype.is_bfloat16()) {
    os << "bfloat16_t";
    os << '(' << std::scientific << op->value << 'f' << ')';
    return;
  }
1739
1740
1741
1742
1743
1744
  // Type code is kFloat8_e5m2 or kE4M4Float
  if (op->dtype.is_float8() || op->dtype.is_float4()) {
    p->PrintType(op->dtype, os);
    os << '(' << std::scientific << op->value << 'f' << ')';
    return;
  }
1745
1746
  // Type code is kFloat
  switch (op->dtype.bits()) {
1747
1748
1749
1750
1751
1752
  case 64:
  case 32: {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
1753
      }
1754
      temp << ((op->dtype.bits() == 32) ? "CUDART_INF_F" : "CUDART_INF");
1755
      p->need_math_constants_h_ = true;
1756
1757
    } else if (std::isnan(op->value)) {
      temp << ((op->dtype.bits() == 32) ? "CUDART_NAN_F" : "CUDART_NAN");
1758
      p->need_math_constants_h_ = true;
1759
1760
1761
1762
    } else {
      temp << std::scientific << op->value;
      if (op->dtype.bits() == 32)
        temp << 'f';
1763
    }
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
    p->MarkConst(temp.str());
    os << temp.str();
    break;
  }
  case 16: {
    os << "half_t" << '(';
    FloatImm const_f32 = FloatImm(DataType::Float(32), op->value);
    PrintConst(const_f32.get(), os, p);
    os << ')';
    break;
  }
  default:
    LOG(FATAL) << "Bad bit-width for float: " << op->dtype << "\n";
1777
1778
1779
  }
}

1780
1781
void CodeGenTileLangCUDA::VisitExpr_(const FloatImmNode *op,
                                     std::ostream &os) { // NOLINT(*)
1782
1783
1784
  PrintConst(op, os, this);
}

1785
1786
1787
void CodeGenTileLangCUDA::PrintWmmaScope(const std::string &scope, DataType t,
                                         const VarNode *variable,
                                         std::ostream &os) {
1788
1789
  std::stringstream type;
  PrintType(t, type);
1790
1791
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
  std::string shape_str = fragment_shapes.at(variable);
  if ((t.is_int() || t.is_uint()) && t.bits() < 8 && t.lanes() == 1) {
    type.str(std::string());
    if (t.is_int()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::s4";
      } else if (t.bits() == 1) {
        type << "nvcuda::wmma::experimental::precision::b1";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    } else if (t.is_uint()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::u4";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    }
  }
  if (scope == "wmma.matrix_a") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_a";
1814
1815
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
1816
1817
1818
  } else if (scope == "wmma.matrix_b") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_b";
1819
1820
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
1821
  } else if (scope == "wmma.accumulator") {
1822
1823
    os << "nvcuda::wmma::fragment<nvcuda::wmma::accumulator, " << shape_str
       << ", " << type.str() << ">";
1824
1825
1826
  }
}

1827
1828
int32_t CodeGenTileLangCUDA::GetWmmaFragmentSize(const std::string &scope,
                                                 const VarNode *variable,
1829
                                                 int32_t size) {
1830
1831
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
1832
1833
1834
1835
1836
1837
1838
1839
  std::string shape_str = fragment_shapes.at(variable);
  std::pair<int32_t, int32_t> dim = GetWmmaFragmentDimSize(shape_str, scope);
  if (dim.first * dim.second != 0)
    return size / dim.first / dim.second;
  else
    return 0;
}

1840
1841
1842
void CodeGenTileLangCUDA::HandleVolatileLoads(const std::string &value,
                                              const BufferLoadNode *op,
                                              std::ostream &os) {
1843
1844
1845
  // Cast away volatile qualifier for fp16 types. That is, only loads and
  // stores are volatile. The loaded objects are not marked as volatile.
  //
1846
1847
  if ((op->dtype.is_float16() || op->dtype.is_bfloat16()) &&
      IsVolatile(op->buffer->data.get())) {
1848
1849
1850
1851
1852
1853
1854
1855
    os << "(";
    PrintType(op->dtype, os);
    os << ")(" << value << ")";
  } else {
    os << value;
  }
}

1856
1857
1858
void CodeGenTileLangCUDA::PrintVecElemLoadExpr(DataType t, int i,
                                               const std::string &value,
                                               std::ostream &os) {
1859
1860
1861
1862
1863
1864
  ICHECK_GT(t.lanes(), 1);
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (!(t.lanes() == 2 || t.lanes() == 3)) {
      if (i != 0) {
        os << "|";
      }
1865
1866
      os << "((0x000000ff << " << i * 8 << ") & (" << value << " << " << i * 8
         << "))";
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
      return;
    }
  }

  if (t.is_float16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_half2(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (t.is_bfloat16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_bfloat162(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (i == 0) {
    os << "make_";
    PrintType(t, os);
    os << "(";
  }
  os << value;
  if (i != t.lanes() - 1) {
    os << ",";
  } else {
    os << ")";
  }
  return;
}

1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
void CodeGenTileLangCUDA::PrintFunctionSignature(const String &function_name,
                                                 const PrimFunc &func,
                                                 std::ostream &os) {
  PrintFuncPrefix(os);
  CodeGenC::PrintType(func->ret_type, os);
  CodeGenC::PrintExtraAttrs(func, os);
  bool no_alias = func->HasNonzeroAttr(tir::attr::kNoAlias);
  os << " " << function_name << "(";
  for (size_t i = 0; i < func->params.size(); ++i) {
    tir::Var v = func->params[i];
    std::string vid = AllocVarID(v.get());

    if (i > 0) {
      os << ", ";
    }

    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (ptr->storage_scope == "grid_constant") {
          os << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, os);
          os << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, os);
      }

      CodeGenC::PrintType(GetType(v), os);
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, os);
      }
    } else {
      CodeGenC::PrintType(GetType(v), os);
    }
    os << ' ' << vid;
  }
  os << ")";

  // Register handle data type
  // TODO(tvm-team): consider simply keep type info in the
  // type annotation(via a normalizing rewriting).
  for (const auto &param : func->params) {
    if (auto *ptr = param->type_annotation.as<PointerTypeNode>()) {
      if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
        RegisterHandleType(param.get(), prim->dtype);
      }
    }
  }
}

void CodeGenTileLangCUDA::AddFunction(const GlobalVar &gvar,
                                      const PrimFunc &f) {
  // If the function has already been forward-declared, this is a
  // no-op.
  CodeGenC::DeclareFunction(gvar, f);
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
  // clear previous generated state.
  this->InitFuncState(f);
  // reserve keywords
  ReserveKeywordsAsUnique();

  auto global_symbol = f->GetAttr<String>(tvm::attr::kGlobalSymbol);
  ICHECK(global_symbol.defined())
      << "CodeGenC: Expect PrimFunc to have the global_symbol attribute";
  bool no_alias = f->HasNonzeroAttr(tir::attr::kNoAlias);

  this->PrintFuncPrefix(stream);
  CodeGenC::PrintType(f->ret_type, stream);
2001
2002
  this->PrintExtraAttrs(f);

2003
2004
2005
2006
2007
  this->stream << " " << static_cast<std::string>(global_symbol.value()) << "(";

  for (size_t i = 0; i < f->params.size(); ++i) {
    tir::Var v = f->params[i];
    std::string vid = AllocVarID(v.get());
2008
2009
    if (i != 0)
      stream << ", ";
2010
2011
    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
2012
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
        if (ptr->storage_scope == "grid_constant") {
          stream << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, stream);
          stream << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, stream);
      }

      CodeGenC::PrintType(GetType(v), stream);
2027
2028
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, stream);
      }
    } else {
      CodeGenC::PrintType(GetType(v), stream);
    }
    stream << ' ' << vid;
  }
  stream << ") {\n";
  this->PreFunctionBody(f);
  int func_scope = this->BeginScope();
  this->PrintStmt(f->body);
  this->EndScope(func_scope);
  this->PrintIndent();
  this->stream << "}\n\n";
}

2050
2051
} // namespace codegen
} // namespace tvm