codegen_cuda.cc 85.3 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file target/codegen.cc
 */

#include "codegen_cuda.h"
#include <tvm/arith/analyzer.h>
7
#include <tvm/ffi/function.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
16
#include <tvm/tir/op.h>

#include <cmath>
#include <string>
#include <utility>
#include <vector>

#include "../op/builtin.h"
17
#include "./ptx.h"
18
#include "arith/pattern_match.h"
19
20
21

namespace tvm {
namespace codegen {
22
using namespace tvm::tl::codegen;
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
struct CUDAMath {
  std::string operator()(DataType t, std::string name) const {
    if (t.is_float()) {
      switch (t.bits()) {
      case 64:
        return name;
      case 32:
        return name + 'f';
      case 16: {
        if (name == "fabs") {
          return "__habs";
        } else if (name == "round") {
          return "hrint";
        } else {
          return "h" + name;
        }
      }
      default:
        return "";
      }
    } else if (t.is_bfloat16()) {
      if (name == "fabs") {
        return "__habs";
      } else if (name == "round") {
        return "hrint";
      } else {
        return "h" + name;
      }
    } else if (t.is_int() || t.is_uint()) {
      switch (t.bits()) {
      case 32:
        return "__" + name;
      case 64:
        return "__" + name + "ll";
      default:
        return "";
      }
    }
    return "";
  }
};

struct CUDAFastMath : public CUDAMath {
  std::string operator()(DataType t, std::string name) const {
    if (t.is_float() && t.bits() == 32) {
      return "__" + name + 'f';
    } else {
      return CUDAMath::operator()(t, name);
    }
    return "";
  }
};

struct CUDAFastMathTan : public CUDAMath {
  std::string operator()(DataType t, std::string name) const {
    if (t.is_float()) {
      switch (t.bits()) {
      case 64:
        return name;
      // `__tanf` seems to produce some values too deviant from numpy tan
      // version. So, let's use just `tanf` instead.
      case 32:
        return name + 'f';
      case 16:
        return 'h' + name;
      default:
        return "";
      }
    }
    return "";
  }
};

97
98
99
100
101
102
103
104
105
106
107
108
struct CUDAIEEEMath {
  std::string operator()(DataType t, std::string name,
                         std::string rounding_mode) const {
    if (t.is_float() && t.bits() == 32) {
      return "__" + name + "_" + rounding_mode;
    } else if (t.is_float() && t.bits() == 64) {
      return "__d" + name + "_" + rounding_mode;
    }
    return "";
  }
};

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
static std::string GetFP8Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "_2";
  } else if (lanes == 4) {
    vec = "_4";
  } else if (lanes == 8) {
    vec = "_8";
  } else if (lanes == 16) {
    vec = "_16";
  } else {
    LOG(FATAL) << "Only support scalar and vector types of width (2, 4, 8, 16) "
                  "for FP8";
  }
127
128
  if (type.is_float8_e4m3fn() || type.is_float8_e4m3fnuz() ||
      type.is_float8_e4m3()) {
129
    stream << "fp8_e4" << vec << "_t";
130
131
  } else if (type.is_float8_e5m2() || type.is_float8_e5m2fnuz() ||
             type.is_float8_e5m2()) {
132
133
    stream << "fp8_e5" << vec << "_t";
  } else {
134
    LOG(FATAL) << "Unsupported FP8 type in CUDA codegen but got " << type;
135
136
137
138
  }
  return stream.str();
}

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
std::string GetFP6Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "x2";
  } else if (lanes == 4) {
    vec = "x4";
  } else if (lanes == 8) {
    vec = "x8";
  } else if (lanes == 16) {
    vec = "x16";
  } else {
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4) for FP6";
  }
  stream << "__nv_fp6";
  std::string suffix;
  if (type.code() == DataType::kFloat6_e2m3fn) {
    suffix = "_e2m3";
  } else if (type.code() == DataType::kFloat6_e3m2fn) {
    suffix = "_e3m2";
  } else {
    LOG(FATAL) << "Unsupported FP6 type in CUDA codegen";
  }
  stream << vec << suffix;
  return stream.str();
}

std::string GetFP4Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "x2";
  } else if (lanes == 4) {
    vec = "x4";
  } else if (lanes == 8) {
    vec = "x8";
  } else if (lanes == 16) {
    vec = "x16";
  } else {
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4) for FP4";
  }
  stream << "__nv_fp4";
  std::string suffix;
  if (type.code() == DataType::kFloat4_e2m1fn) {
    suffix = "_e2m1";
  } else {
    LOG(FATAL) << "Unsupported FP4 type in CUDA codegen";
  }
  stream << vec << suffix;
  return stream.str();
}

199
200
CodeGenTileLangCUDA::CodeGenTileLangCUDA() {
  restrict_keyword_ = "__restrict__";
201
202
203
204
205
  vid_global_barrier_state_ =
      name_supply_->FreshName(runtime::symbol::tvm_global_barrier_state);
  vid_global_barrier_expect_ = name_supply_->FreshName("__barrier_expect");
  ICHECK_EQ(vid_global_barrier_state_,
            runtime::symbol::tvm_global_barrier_state);
206
}
207

208
209
210
void CodeGenTileLangCUDA::PrintFuncPrefix(std::ostream &os) {
  os << "extern \"C\" __global__ ";
}
211
212

class LaunchConfigExtractor : public tir::StmtVisitor {
213
214
private:
  void VisitStmt_(const AttrStmtNode *op) final {
215
216
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
217
218
      if (iv->var->name_hint == "threadIdx.x" ||
          iv->thread_tag == "threadIdx.x") {
219
        threadIdx_x_ext = op->value;
220
221
      } else if (iv->var->name_hint == "threadIdx.y" ||
                 iv->thread_tag == "threadIdx.y") {
222
        threadIdx_y_ext = op->value;
223
224
      } else if (iv->var->name_hint == "threadIdx.z" ||
                 iv->thread_tag == "threadIdx.z") {
225
226
227
228
229
230
        threadIdx_z_ext = op->value;
      }
    }
    StmtVisitor::VisitStmt_(op);
  }

231
public:
232
233
234
235
236
  PrimExpr threadIdx_x_ext = Integer(1);
  PrimExpr threadIdx_y_ext = Integer(1);
  PrimExpr threadIdx_z_ext = Integer(1);
};

237
void CodeGenTileLangCUDA::PrintExtraAttrs(const PrimFunc &f) {
238
239
240
  LaunchConfigExtractor extractor;
  extractor(f->body);
  arith::Analyzer analyzer;
241
242
243
244
245
  PrimExpr threadIdx_ext =
      analyzer.Simplify(extractor.threadIdx_x_ext * extractor.threadIdx_y_ext *
                        extractor.threadIdx_z_ext);
  if (const IntImmNode *const threadIdx_ext_int =
          threadIdx_ext.as<IntImmNode>()) {
246
    if (threadIdx_ext_int->value == 1) {
247
248
      // unable to extract the number of threads per block, hence directly
      // return
249
250
      return;
    }
251
    stream << " __launch_bounds__(" << threadIdx_ext_int->value << ", 1)";
252
253
254
255
256
257
258
  }
}

std::string CodeGenTileLangCUDA::Finish() {
  if (need_mma_h_) {
    decl_stream << "#include <mma.h>\n";
  }
259
260
261
262
263
264
265
266
  if (enable_fp8_) {
    decl_stream << "#include <tl_templates/cuda/cuda_fp8.h>\n";
  }

  if (need_math_constants_h_) {
    decl_stream << "#include <math_constants.h>\n";
  }

267
268
269
270
  if (need_cooperative_groups_) {
    decl_stream << "#include <cooperative_groups.h>\n";
  }

271
  decl_stream << "#include <tl_templates/cuda/gemm.h>\n";
272
273
274
  if (enable_sparse_gemm_) {
    decl_stream << "#include <tl_templates/cuda/gemm_sp.h>\n";
  }
275
276
277
278
  decl_stream << "#include <tl_templates/cuda/copy.h>\n";
  decl_stream << "#include <tl_templates/cuda/reduce.h>\n";
  decl_stream << "#include <tl_templates/cuda/ldsm.h>\n";
  decl_stream << "#include <tl_templates/cuda/threadblock_swizzle.h>\n";
279
  decl_stream << "#include <tl_templates/cuda/debug.h>\n";
280
281
282
  decl_stream << "#ifdef ENABLE_BF16\n";
  decl_stream << "#include <tl_templates/cuda/cuda_bf16_fallbacks.cuh>\n";
  decl_stream << "#endif\n";
283
284

  if (need_global_barrier_) {
285
286
    decl_stream << "__device__ unsigned " << vid_global_barrier_state_
                << " = 0;\n";
287
  }
288
  decl_stream << "\n";
289

290
291
292
  return CodeGenC::Finish();
}

293
void CodeGenTileLangCUDA::VisitStmt_(const tir::ForNode *op) {
294
295
296
297
  if (op->kind == tir::ForKind::kUnrolled) {
    PrintIndent();
    stream << "#pragma unroll\n";
  }
298
299
  std::string extent =
      PrintExpr(arith::Analyzer().Simplify(op->extent + op->min));
300
301
302
303
304
  PrintIndent();
  std::string vid = AllocVarID(op->loop_var.get());
  std::string start = PrintExpr(op->min);
  stream << "for (";
  PrintType(op->loop_var.dtype(), stream);
305
306
  stream << ' ' << vid << " = " << start << "; " << vid << " < " << extent
         << "; ++" << vid << ") {\n";
307
308
309
310
311
312
313
  int for_scope = BeginScope();
  PrintStmt(op->body);
  this->EndScope(for_scope);
  PrintIndent();
  stream << "}\n";
}

314
void CodeGenTileLangCUDA::BindThreadIndex(const IterVar &iv) {
315
  ICHECK(!var_idmap_.count(iv->var.get()));
316
317
  var_idmap_[iv->var.get()] =
      CastFromTo(iv->thread_tag, DataType::UInt(32), iv->var.dtype());
318
319
}

320
void CodeGenTileLangCUDA::PrintType(DataType t, std::ostream &os) { // NOLINT(*)
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
  int lanes = t.lanes();
  if (t.is_handle()) {
    ICHECK(t.is_scalar()) << "do not yet support vector types";
    os << "void*";
    return;
  }

  if (t.is_void()) {
    os << "void";
    return;
  }

  if (t == tl::cuTensorMapType()) {
    os << "CUtensorMap";
    return;
  }

  bool fail = false;
  if (t.is_float()) {
    switch (t.bits()) {
341
    case 16:
342
      enable_fp16_ = true;
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
      if (t.is_scalar()) {
        os << "half_t";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp16 vector elements.
        //
        // half4 is stored as uint2
        //
        // h4.x is emitted as *(half2*)(&(u2.x)).x
        // h4.y is emitted as *(half2*)(&(u2.x)).y
        // h4.z is emitted as *(half2*)(&(u2.y)).x
        // h4.w is emitted as *(half2*)(&(u2.y)).y
        //
        ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
        os << "uint" << lanes / 2;
      } else {
358
        fail = true;
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
      }
      break;
    case 32:
      if (lanes <= 4) {
        os << "float";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp32 vector elements for 4 < lanes <= 8.
        //
        // float8 is stored as ulonglong4
        //
        // f8.v1 is emitted as *(float2*)(&(ul4.x)).x
        // f8.v2 is emitted as *(float2*)(&(ul4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for float type with lanes > 4";
        os << "ulonglong" << lanes / 2;
      } else {
        fail = true;
      }
      break;
    case 64:
      os << "double";
      break;
    default:
      fail = true;
      break;
385
    }
386
387
388
389
    if (!fail && (t.is_scalar() || t.bits() == 16))
      return;
    if (!fail && (lanes > 4 && lanes <= 8 && t.bits() == 32))
      return;
390
391
392
393
394
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  } else if (t.is_bfloat16()) {
395
    enable_bf16_ = true;
396
397
398
399
400
401
402
403
    if (t.is_scalar()) {
      os << "bfloat16_t";
    } else if (lanes <= 8) {
      ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
      os << "uint" << lanes / 2;
    } else {
      fail = true;
    }
404
405
    if (!fail)
      return;
406
  } else if (t.is_float8()) {
407
408
409
    enable_fp8_ = true;
    os << GetFP8Type(t);
    return;
410
411
412
413
414
415
416
417
418
419
420
421
  } else if (t.is_float6()) {
    enable_fp6_ = true;
    if (t.lanes() <= 4) {
      os << GetFP6Type(t);
    }
    return;
  } else if (t.is_float4()) {
    enable_fp4_ = true;
    if (t.lanes() <= 4) {
      os << GetFP4Type(t);
    }
    return;
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
  } else if (t == DataType::Bool()) {
    os << "bool";
    return;
  } else if (t.is_vector_bool()) {
    // CUDA does not support bool vectors.
    // Use ushort vectors to represent instead.
    int n = t.lanes();
    if (n <= 4) {
      os << "ushort" << n;
      return;
    }
  } else if (t.is_uint() || t.is_int()) {
    if (t.is_uint()) {
      os << "u";
    }
    switch (t.bits()) {
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    case 1: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int8_t";
        return;
      } else if (t.lanes() == 16) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 32) {
        os << "int";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
453
      }
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    }
    case 4: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 4) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 8) {
        // directly 8 4-bit int in integer.
        os << "int";
        return;
      } else if (t.lanes() == 16) {
        os << "int2";
        return;
      } else if (t.lanes() == 32) {
        os << "int4";
        return;
      } else if (t.lanes() == 64) {
        os << "int8";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
477
      }
478
479
480
481
    }
    case 8: {
      if (t.lanes() == 4) {
        // directly 4 8 bit int in integer.
482
        enable_int8_ = true;
483
484
485
486
487
488
489

        // We use int for int8x4 instead of char4 because using char4 is
        // likely to produce extra instructions to pack four int8 elements
        // into 32-bit data.
        os << "int";
        return;
      } else if (t.lanes() == 8) {
490
        enable_int8_ = true;
491
492
493
        os << "int2";
        return;
      } else if (t.lanes() == 16) {
494
        enable_int8_ = true;
495
496
497
498
        os << "int4";
        return;
      } else if (!t.is_uint() && t.is_scalar()) {
        os << "signed char";
499
        break;
500
501
      } else {
        os << "char";
502
503
        break;
      }
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
    }
    case 16: {
      if (t.is_scalar()) {
        os << "short";
      } else if (t.lanes() <= 4) {
        os << "short" << lanes;
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int16 vector elements.
        //
        // short4 is stored as int2
        //
        // s4.x is emitted as *(short2*)(&(i2.x)).x
        // s4.y is emitted as *(short2*)(&(i2.x)).y
        // s4.z is emitted as *(short2*)(&(i2.y)).x
        // s4.w is emitted as *(short2*)(&(i2.y)).y
        //
        ICHECK_EQ(t.lanes() % 2, 0)
            << "only support even lane for shorT type with lanes > 4";
        os << "int" << t.lanes() / 2;
      } else {
        fail = true;
      }
      if (!fail) {
527
528
        return;
      }
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
      break;
    }
    case 32: {
      if (t.is_scalar()) {
        os << "int";
      } else if (t.lanes() <= 4) {
        os << "int" << t.lanes();
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int32 vector elements for 4 < lanes <= 8.
        //
        // int8 is stored as longlong4
        //
        // i8.v1 is emitted as *(int2*)(&(l4.x)).x
        // i8.v2 is emitted as *(int2*)(&(l4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for int32 type with lanes > 4";
        os << "longlong" << lanes / 2;
      } else {
548
        fail = true;
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
      }
      if (!fail) {
        return;
      }
      break;
    }
    case 64: {
      if (t.is_scalar()) {
        os << "int64_t";
      } else if (t.lanes() == 2) {
        os << "longlong2";
      } else if (t.lanes() == 3) {
        os << "longlong3";
      } else if (t.lanes() == 4) {
        os << "longlong4";
      }
      return;
    }
    default:
      fail = true;
      break;
570
571
572
573
574
575
576
577
578
579
580
581
    }
    if (!fail && lanes == 1) {
      return;
    }
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  }
  LOG(FATAL) << "Cannot convert type " << t << " to CUDA type";
}

582
583
584
void CodeGenTileLangCUDA::PrintVecBinaryOp(const std::string &op, DataType t,
                                           PrimExpr lhs, PrimExpr rhs,
                                           std::ostream &os) { // NOLINT(*)
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
  // Declare the result.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(t, stream);
  stream << ' ' << sret << ";\n";
  int ssa_scope = BeginScope();
  {
    // Unpack into individual ops.
    std::string vlhs = SSAGetID(PrintExpr(lhs), lhs.dtype());
    std::string vrhs = SSAGetID(PrintExpr(rhs), rhs.dtype());

    for (int i = 0, lanes = t.lanes(); i < lanes; ++i) {
      std::ostringstream value_temp;
      if (isalpha(op[0])) {
        value_temp << op << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << ", ";
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      } else {
        value_temp << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << op;
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      }
      PrintVecElemStore(sret, t, i, value_temp.str());
    }
  }
  EndScope(ssa_scope);
  os << sret;
}

618
619
620
void CodeGenTileLangCUDA::PrintVecElemLoad(const std::string &vec, DataType t,
                                           int i,
                                           std::ostream &os) { // NOLINT(*)
621
622
623
624
625
626
  if (t.is_scalar()) {
    os << vec;
    return;
  }

  static const char access[] = {'x', 'y', 'z', 'w'};
627
628
629
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
630
631
632
633
634
635
636
637
638
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    std::string type_name = t.is_int() ? "char" : "unsigned char";
    if (t.lanes() == 2 || t.lanes() == 3) {
      os << vec << "." << access[i % t.lanes()];
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      os << "((" << type_name << ")(" << ac << " >> " << i % 4 * 8 << "))";
    }
  } else if (t.is_float16()) {
639
640
    os << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
641
  } else if (t.is_bfloat16()) {
642
643
    os << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
662
663
    os << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
       << ")))->" << access[i % 2];
664
665
666
667
668
  } else {
    os << vec << "." << access[i];
  }
}

669
670
void CodeGenTileLangCUDA::PrintVecElemStore(const std::string &vec, DataType t,
                                            int i, const std::string &value) {
671
672
  this->PrintIndent();
  static const char access[] = {'x', 'y', 'z', 'w'};
673
674
675
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
676
677
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (t.lanes() == 2 || t.lanes() == 3) {
678
679
      stream << vec << '.' << access[i % t.lanes()] << "="
             << "(" << value << ");\n";
680
681
682
683
684
685
686
687
688
689
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 4 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 4 * 8 << ");\n";
    }
  } else if (t.is_float16()) {
690
691
    stream << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
692
  } else if (t.is_bfloat16()) {
693
694
    stream << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
713
714
    stream << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << " = " << value << ";\n";
715
716
717
718
719
  } else {
    stream << vec << "." << access[i] << " = " << value << ";\n";
  }
}

720
void CodeGenTileLangCUDA::PrintStorageSync(const CallNode *op) {
721
722
  auto args = op->args;
  const std::string &sync = args[0].as<StringImmNode>()->value;
723
724
725
726
  if (sync == "warp") {
    // DO nothing.
  } else if (sync == "shared" || sync == "shared.dyn") {
    this->PrintIndent();
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    if (args.size() == 1) {
      this->stream << "__syncthreads();\n";
    } else if (args.size() == 2) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ">();\n";
    } else if (args.size() == 3) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      auto thread_count = args[2].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ", "
                   << thread_count << ">();\n";
    } else {
      LOG(FATAL) << "Invalid number of arguments for storage sync: "
                 << args.size();
    }
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
  } else if (sync == "global") {
    if (!need_global_barrier_) {
      need_global_barrier_ = true;
    }
    // global synchronizer
    std::string is_load = PrintExpr(op->args[1]);
    std::string num_blocks = PrintExpr(op->args[2]);
    this->PrintIndent();
    // In theory only threadfence is needed
    // but we observed problems with only threadfence
    this->stream << "__threadfence_system();\n";
    this->PrintIndent();
    this->stream << "if (" << is_load << ") {\n";
    int wb = this->BeginScope();
    this->PrintIndent();
    this->stream << "atomicAdd(&" << vid_global_barrier_state_ << ", 1);\n";
    this->PrintIndent();
    std::string ptr = name_supply_->FreshName("pf");
    this->stream << "volatile unsigned* " << ptr << " = &"
                 << vid_global_barrier_state_ << ";\n";
    this->PrintIndent();
    this->stream << vid_global_barrier_expect_ << " += " << num_blocks << ";\n";
    this->PrintIndent();
    this->stream << "while (" << ptr << "[0] < " << vid_global_barrier_expect_
                 << ");\n";
    this->EndScope(wb);
    this->PrintIndent();
    this->stream << "}\n";
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
771
772
773
  }
}

774
775
776
777
778
void CodeGenTileLangCUDA::PrintStorageScope(const std::string &scope,
                                            std::ostream &os) { // NOLINT(*)
  ICHECK_NE(scope, "global")
      << "Cannot allocate global memory when targeting CUDA. You must pass "
         "all global arrays as input instead";
779
  if (scope == "shared" || scope == "shared.barrier") {
780
781
782
783
784
785
    os << "__shared__ ";
  } else if (scope == "shared.dyn") {
    os << "extern __shared__ __align__(1024) ";
  }
}

786
787
788
789
std::string CodeGenTileLangCUDA::CastFromTo(std::string value, DataType from,
                                            DataType target) {
  if (from == target)
    return value;
790
791
792
793
  std::ostringstream os;
  os << "((";
  this->PrintType(target, os);
  os << ")";
794
795
  if (from.is_float16() && (target.is_int() || target.is_uint()) &&
      target.bits() == 8) {
796
797
798
799
800
801
802
803
804
805
    os << "(";
    if (target.is_uint()) {
      os << "u";
    }
    os << "int)";
  }
  os << value << ")";
  return os.str();
}

806
void CodeGenTileLangCUDA::VisitExpr_(const CastNode *op, std::ostream &os) {
807
808
809
810
811
  DataType from_ty = op->value.dtype();
  DataType target_ty = op->dtype;
  ICHECK_EQ(target_ty.lanes(), from_ty.lanes());

  // Emit simple C-style type conversion.
812
813
  if (from_ty.is_scalar())
    return CodeGenC::VisitExpr_(op, os);
814
815
816
817
818
819
820

  // We could emit make_float4 like calls, but the emitted code looks
  // too compact to read. Emit this as vectorized unary ops.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(target_ty, stream);
  stream << ' ' << sret << ";\n";
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
  std::string src = SSAGetID(PrintExpr(op->value), from_ty);

  // Handle bfloat16 special cases with supported ops
  bool used_bf16_op = false;
  if (from_ty.is_bfloat16() || target_ty.is_bfloat16()) {
    std::ostringstream func_name;
    if (from_ty.is_bfloat16())
      func_name << "bf16";
    else if (from_ty.is_float())
      func_name << "float";
    if (from_ty.lanes() > 1)
      func_name << from_ty.lanes();
    func_name << "2";
    if (target_ty.is_bfloat16())
      func_name << "bf16";
    else if (target_ty.is_float())
      func_name << "float";
    else if (target_ty == DataType::Int(16))
      func_name << "int16";
    if (target_ty.lanes() > 1)
      func_name << target_ty.lanes();

    auto fname = func_name.str();
    if (bf16_supported_ops_.count(fname)) {
      used_bf16_op = true;
      stream << "#ifdef ENABLE_BF16\n";
      PrintIndent();
      stream << "reinterpret_cast<";
      if (target_ty.is_bfloat16())
        stream << "__nv_bfloat16";
      else
        PrintType(target_ty.element_of(), stream);
      if (target_ty.lanes() > 1)
        stream << target_ty.lanes();
      stream << " &>(" << sret << ") = fastertransformer::" << fname
             << "(reinterpret_cast<";
      if (from_ty.is_bfloat16())
        stream << "__nv_bfloat16";
      else
        PrintType(from_ty.element_of(), stream);
      if (from_ty.lanes() > 1)
        stream << from_ty.lanes();
      stream << " const &>(" << src << "));\n";
      stream << "#else\n";
865
866
    }
  }
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881

  // Fallback: elementwise cast
  for (int i = 0, lanes = from_ty.lanes(); i < lanes; ++i) {
    std::ostringstream val;
    val << "(";
    PrintType(target_ty.element_of(), val);
    val << ")(";
    PrintVecElemLoad(src, from_ty, i, val);
    val << ")";
    PrintVecElemStore(sret, target_ty, i, val.str());
  }

  if (used_bf16_op) {
    stream << "#endif\n";
  }
882
883
884
  os << sret;
}

885
886
887
888
void CodeGenTileLangCUDA::PrintCallExtern(Type ret_type, String global_symbol,
                                          const Array<PrimExpr> &args,
                                          bool skip_first_arg,
                                          std::ostream &os) { // NOLINT(*)
889
  DataType ret_dtype = GetRuntimeDataType(ret_type);
890
  if (ret_dtype.is_fixed_length_vector()) {
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
    //
    // Emit an unsupported vector call
    //
    // v = intrin_f((float4*)A[0], (float4*)B[0])
    //
    // as
    //
    // float4 __ret;
    // {
    //   float4 __arg0 = ((float4*)A)[0];
    //   float4 __arg1 = ((float4*)B)[0];
    //   __ret.x = intrin_f(__arg0.x, __arg1.x);
    //   __ret.y = intrin_f(__arg0.y, __arg1.y);
    //   __ret.z = intrin_f(__arg0.z, __arg1.z);
    //   __ret.w = intrin_f(__arg0.w, __arg1.w);
    // }
    // v = __ret;
    //
    // Declare the result vector.
    std::string sret = name_supply_->FreshName("_");
    this->PrintIndent();
    this->PrintType(ret_dtype, stream);
    stream << ' ' << sret << ";\n";
    {
      // Load arguments.
      std::vector<std::string> sargs;
      size_t arg_begin = static_cast<size_t>(skip_first_arg);
      for (size_t i = arg_begin; i < args.size(); ++i) {
        std::string val = SSAGetID(PrintExpr(args[i]), args[i].dtype());
        sargs.push_back(std::move(val));
      }

      // Emit a scalar call for each lane.
      for (int i = 0; i < ret_dtype.lanes(); ++i) {
        std::ostringstream scall;
        scall << global_symbol << "(";
        for (size_t j = 0; j < sargs.size(); ++j) {
928
929
          if (j > 0)
            scall << ", ";
930
931
932
933
934
935
936
937
          PrintVecElemLoad(sargs[j], args[arg_begin + j].dtype(), i, scall);
        }
        scall << ")";
        PrintVecElemStore(sret, ret_dtype, i, scall.str());
      }
    }
    os << sret;
  } else {
938
939
    CodeGenC::PrintCallExtern(ret_type, global_symbol, args, skip_first_arg,
                              os);
940
941
942
943
  }
}

// Print a reference expression to a buffer.
944
945
946
947
std::string CodeGenTileLangCUDA::GetBufferRef(DataType t,
                                              const BufferNode *buffer,
                                              PrimExpr index) {
  const VarNode *buffer_var = buffer->data.get();
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
  std::ostringstream os;
  std::string vid = GetVarID(buffer_var);
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  // bool is_vol = IsVolatile(buffer_var);
  // always false for tl cutlass backend.
  bool is_vol = false;

  auto ptr_cast = [this, is_vol, scope](DataType pointed_to) {
    std::ostringstream ptr_os;
    ptr_os << "(";
    if (is_vol) {
      ptr_os << "volatile ";
    }
    if (!scope.empty() && IsScopePartOfType()) {
      PrintStorageScope(scope, ptr_os);
    }
    PrintType(pointed_to, ptr_os);
    ptr_os << "*)";
    return ptr_os.str();
  };

  DataType buffer_element_dtype = buffer->dtype;

  std::string buffer_str = vid;
  if (!HandleTypeMatch(buffer_var, buffer_element_dtype) || is_vol) {
    std::stringstream temp;
    temp << "(" << ptr_cast(buffer_element_dtype) << vid << ")";
    buffer_str = temp.str();
  }
980
981
982
983
984
985
986
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }
  if (scope == "local.var") {
    os << vid;
    return os.str();
  }
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
  std::string index_str = PrintExpr(index);
  if (t.bits() == 4 || (t.bits() == 1 && t.is_int())) {
    // This is a special case, because CodegenCUDA::PrintType()
    // returns "int" for bool and for 4-bit integers. In most cases,
    // we divide by the number of lanes to determine the index.
    // However, the backing type for scalar int4 and scalar bool is
    // int32.  Therefore, we need to divide by the ratio of their
    // sizes in that case.
    int div_factor = (t.lanes() == 1) ? (32 / t.bits()) : t.lanes();

    os << "*("
       << "(" << ptr_cast(t) << vid << ")"
       << " + " << index_str << " / " << div_factor << ")";
  } else if (t == buffer_element_dtype) {
    os << buffer_str << "[" << index_str << "]";
  } else {
    os << "*" << ptr_cast(t) << "(" << buffer_str << " + " << index_str << ")";
  }

  return os.str();
}

1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
/**
 * @brief Emit CUDA/TensorLib-specific code for a call expression.
 *
 * This visitor handles CallNode intrinsics and builtins that require emitting
 * CUDA/TL-specific code (inline PTX/ASM sequences, TensorLanguage runtime
 * calls, WMMA/TMA helpers, barriers, cp.async primitives, index-map based
 * stores, reinterpret/packing helpers, and various mma/ldmatrix patterns). The
 * function writes the generated code to the provided output stream and falls
 * back to the C codegen for unrecognized calls.
 *
 * The method recognizes and emits code for (non-exhaustive): cp.async and its
 * commit/wait variants, tma_load/store and im2col variants, ptX
 * ldmatrix/stmatrix helpers, mbarrier APIs, cooperative grid sync, WMMA/legacy
 * MMA intrinsics (fill/load/store/mma/bmma/ptx_mma/ptx_mma_sp), low-level PTX
 * asm helpers (ldg32, cp_async bulk/init/arrive/wait barriers), reinterpret
 * paths for special small-float encodings (e.g., float4 e2m1fn), tl::tl_gemm
 * and related external calls, and other TL runtime calls.
 *
 * Side effects:
 * - Emits to `os` and the internal codegen output stream.
 * - May set internal feature flags (e.g., need_cooperative_groups_,
 * need_mma_h_, need_cast_smem_ptr_to_int_, enable_sparse_gemm_).
 * - May open/close SSA scopes and mutate internal variable mappings.
 * - May call LOG(FATAL) / CHECK / ICHECK on invalid or unsupported argument
 *   patterns.
 *
 * @param op The call node to generate code for; the function inspects op->op
 *           and op->args to determine the appropriate emission.
 * @param os  Output stream to receive expression-level output when the caller
 *            expects an expression result (some paths write directly to the
 *            member stream instead).
 */
1041
void CodeGenTileLangCUDA::VisitExpr_(const CallNode *op, std::ostream &os) {
1042
1043
  auto print_extern_call_stmt = [&](std::string name, size_t start = 0,
                                    size_t end = 0) {
1044
1045
1046
1047
    // Cache context into a private ss, otherwise the let node may generate
    // within the function call arguments.
    std::ostringstream ss;

1048
1049
    for (size_t i = start; i < op->args.size() - end; i++) {
      if (i > start)
1050
1051
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
1052
    }
1053
1054
1055
1056

    this->PrintIndent();
    this->stream << name << "(";
    this->stream << ss.str();
1057
1058
    this->stream << ");\n";
  };
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
  auto print_mbarrier_obj = [&](PrimExpr barrier_id) {
    std::ostringstream ss;
    if (barrier_id.as<IntImmNode>()) {
      // incase the barrier_id is an integer, we need to print the barrier_id as
      // an integer
      ss << mbarrier_name_ << "[" << barrier_id << "]";
    } else {
      // otherwise may be a T.get_mbarrier() call or BufferLoad Node
      // we need to print the barrier_id as a string
      ss << this->PrintExpr(barrier_id);
    }
    return ss.str();
  };
1072
1073
1074
1075
1076
1077
  if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
1078
1079
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
1080
1081
    if (op->args.size() == 5) {
      this->PrintIndent();
1082
1083
      this->stream << "tl::cp_async_gs<" << size << ">(" << dst << "+"
                   << dst_offset << ", " << src << "+" << src_offset << ");\n";
1084
1085
1086
    } else {
      std::string condition = this->PrintExpr(op->args[5]);
      this->PrintIndent();
1087
1088
1089
      this->stream << "tl::cp_async_gs_conditional<" << size << ">(" << dst
                   << "+" << dst_offset << ", " << src << "+" << src_offset
                   << ", " << condition << ");\n";
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
    }
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    print_extern_call_stmt("tl::cp_async_commit");
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
    std::string func_name = "tl::cp_async_wait<" + std::to_string(n) + ">";
    print_extern_call_stmt(func_name, 1);
  } else if (op->op.same_as(builtin::create_barriers())) {
    this->PrintIndent();
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
1100
1101
    auto mbarrier_storage_name = mbarrier_name_ + "_mem";
    this->stream << "__shared__ uint64_t " << mbarrier_storage_name << "["
1102
                 << barrier_count << "];\n";
1103
1104
1105
    this->PrintIndent();
    this->stream << "auto " << mbarrier_name_ << " = reinterpret_cast<"
                 << mbarrier_dtype_ << "*>(" << mbarrier_storage_name << ");\n";
1106
  } else if (op->op.same_as(tl::get_mbarrier())) {
1107
    ICHECK_EQ(op->args.size(), 1);
1108
    std::string barrier_id = this->PrintExpr(op->args[0]);
1109
    os << mbarrier_name_ + "[" + barrier_id + "]";
1110
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
    if (op->args.size() == 1) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      this->stream << mbarrier_obj << ".arrive();\n";
    } else if (op->args.size() == 3) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto cta_id = this->PrintExpr(op->args[1]);
      auto pred = this->PrintExpr(op->args[2]);
      this->stream << mbarrier_obj << ".arrive(" << cta_id << ", " << pred
                   << ");\n";
    } else {
      LOG(FATAL) << "Invalid parameter  for tl::arrive_barrier "
                 << op->args.size();
    }
1126
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
1127
1128
1129
1130
1131
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto arrive_count = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".init(" << arrive_count << ");\n";
1132
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
    if (op->args.size() == 2) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto transaction_bytes = this->PrintExpr(op->args[1]);
      this->stream << mbarrier_obj << ".arrive_and_expect_tx("
                   << transaction_bytes << ");\n";
    } else if (op->args.size() == 4) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto transaction_bytes = this->PrintExpr(op->args[1]);
      auto cta_id = this->PrintExpr(op->args[2]);
      auto pred = this->PrintExpr(op->args[3]);
      this->stream << mbarrier_obj << ".arrive_and_expect_tx("
                   << transaction_bytes << ", " << cta_id << ", " << pred
                   << ");\n";
    } else {
      LOG(FATAL) << "Invalid parameter  for tl::arrive_barrier_expect_tx "
                 << op->args.size();
    }
1152
1153
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive");
1154
1155
  } else if (op->op.same_as(tl::ptx_cp_async_barrier_noinc())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive_noinc");
1156
  } else if (op->op.same_as(tl::mbarrier_expect_tx())) {
1157
1158
1159
1160
1161
1162
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto transaction_bytes = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".expect_transaction(" << transaction_bytes
                 << ");\n";
1163
  } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
1164
1165
1166
1167
1168
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto phase = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".wait(" << phase << ");\n";
1169
1170
  } else if (op->op.same_as(tl::no_set_max_nreg())) {
    return;
1171
  } else if (op->op.same_as(tl::tma_load())) {
1172
    std::ostringstream ss;
1173
    ICHECK_GE(op->args.size(), 2);
1174
1175
1176
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
1177
1178
1179
1180
1181
1182
    // Simplify the code by using the default eviction policy
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_load<tl::CacheHintSm90::" << eviction_policy << ">(";
    } else {
      ss << "tl::tma_load(";
    }
1183
    auto desc = op->args[0];
1184
    ss << this->PrintExpr(desc) << ", ";
1185
    ss << print_mbarrier_obj(op->args[1]) << ", ";
1186
    for (size_t i = 2; i < op->args.size() - 1; i++) {
1187
      if (i > 2)
1188
1189
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
1190
    }
1191
1192
1193
    ss << ");\n";
    this->PrintIndent();
    this->stream << ss.str();
1194
  } else if (op->op.same_as(tl::tma_load_im2col())) {
1195
    std::stringstream ss;
1196
1197
1198
1199
1200
1201
1202
1203
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_load_im2col<tl::CacheHintSm90::" << eviction_policy << ">";
    } else {
      ss << "tl::tma_load_im2col";
    }
1204
    print_extern_call_stmt(ss.str(), 0, 1);
1205
  } else if (op->op.same_as(tl::tma_store())) {
1206
    std::stringstream ss;
1207
1208
1209
1210
1211
1212
1213
1214
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_store<tl::CacheHintSm90::" << eviction_policy << ">";
    } else {
      ss << "tl::tma_store";
    }
1215
    print_extern_call_stmt(ss.str(), 0, 1);
1216
  } else if (op->op.same_as(tl::ptx_ldmatrix())) {
1217
1218
1219
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
1220
1221
    if (trans == 1)
      func_name += "_trans";
1222
    print_extern_call_stmt(func_name, 2);
1223
  } else if (op->op.same_as(tl::ptx_stmatrix())) {
1224
1225
1226
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_stmatrix_x" + std::to_string(num);
1227
1228
    if (trans == 1)
      func_name += "_trans";
1229
    print_extern_call_stmt(func_name, 2);
1230
  } else if (op->op.same_as(tl::fence_proxy_async())) {
1231
    print_extern_call_stmt("tl::fence_proxy_async");
1232
  } else if (op->op.same_as(tl::tma_store_arrive())) {
1233
    print_extern_call_stmt("tl::tma_store_arrive");
1234
  } else if (op->op.same_as(tl::tma_store_wait())) {
1235
    print_extern_call_stmt("tl::tma_store_wait<0>");
1236
  } else if (op->op.same_as(tl::set_max_nreg())) {
1237
1238
1239
    this->PrintIndent();
    int nreg = Downcast<IntImm>(op->args[0])->value;
    int is_inc = Downcast<IntImm>(op->args[1])->value;
1240
1241
    std::string func_name =
        is_inc ? "tl::warpgroup_reg_alloc" : "tl::warpgroup_reg_dealloc";
1242
    this->stream << func_name << "<" << std::to_string(nreg) << ">();\n";
1243
  } else if (op->op.same_as(tl::wait_wgmma())) {
1244
1245
1246
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::wait_wgmma<" << std::to_string(num_mma) << ">();\n";
1247
  } else if (op->op.same_as(tl::pack_b16())) {
1248
1249
    os << "__pack_half2(" << this->PrintExpr(op->args[0]) << ", "
       << this->PrintExpr(op->args[1]) << ")";
1250
1251
1252
  } else if (op->op.same_as(tl::sync_grid())) {
    this->need_cooperative_groups_ = true;
    this->PrintIndent();
1253
    this->stream << "cooperative_groups::this_grid().sync();\n";
1254
1255
1256
  } else if (op->op.same_as(tl::loop_break())) {
    this->PrintIndent();
    this->stream << "break;\n";
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
  } else if (op->op.same_as(builtin::tvm_fill_fragment())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 6U);
    os << "nvcuda::wmma::fill_fragment(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_load_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::load_matrix_sync(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[6], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_store_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::store_matrix_sync(";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[6], os);
1290
    if (const StringImmNode *str = op->args[7].as<StringImmNode>()) {
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
      os << ", nvcuda::wmma::mem_" << str->value;
    } else {
      LOG(FATAL) << "Invalid parameters";
    }
    os << ")";
  } else if (op->op.same_as(builtin::tvm_mma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::mma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::tvm_bmma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::bmma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::ptx_mma())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp64, ...
    // arg 4: B precision: fp16, fp64, ...
    // arg 5: C precision: fp32, fp64, ...
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index
    // arg 12: saturate
    // arg 13: (optional) 1-bit operator (xor or and)
    ICHECK(op->args.size() == 13U || op->args.size() == 14U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
    bool saturate = Downcast<Bool>(op->args[12])->value;
1345
1346
1347
1348
1349
    std::string bit_op =
        op->args.size() > 13 ? Downcast<StringImm>(op->args[13])->value : "";
    std::string asm_code = PrintMMAAssembly(
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_bias,
        b_ref, b_bias, c_ref, c_bias, "", "", "", bit_op, false, saturate);
1350
    this->PrintIndent();
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
    this->stream << asm_code;
  } else if (op->op.same_as(builtin::ptx_mma_sp())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp32, ...
    // arg 4: B precision: fp16, fp32, ...
    // arg 5: C precision: fp16, fp32, ...
    // arg 6: A multiplicand pointer
    // arg 7: A multiplicand index
    // arg 8: B multiplicand pointer
    // arg 9: B multiplicand index
    // arg 10: C accumulator pointer
    // arg 11: C accumulator index
    // arg 12: metadata
    // arg 13: metadata index
    // arg 14: sparse_selector
    // arg 15: saturate
    ICHECK_EQ(op->args.size(), 16U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_offset = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_offset = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_offset = this->PrintExpr(op->args[11]);
    std::string metadata = this->PrintExpr(op->args[12]);
    std::string metadata_offset = this->PrintExpr(op->args[13]);
    std::string sparse_selector = this->PrintExpr(op->args[14]);
    bool saturate = Downcast<Bool>(op->args[15])->value;
1386
    this->PrintIndent();
1387
    std::string asm_code = PrintMMAAssembly(
1388
1389
1390
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_offset,
        b_ref, b_offset, c_ref, c_offset, metadata, metadata_offset,
        sparse_selector, "", true, saturate);
1391
1392
1393
1394
1395
1396
1397
1398
    this->stream << asm_code;
  } else if (op->op.same_as(builtin::ptx_ldmatrix())) {
    // arg 0: whether the matrix is loaded in column major format or not.
    // arg 1: number of matrices to load.
    // arg 2: The data type in the matrix, .b16 is the only accepted data type.
    // arg 3: pointer to local buffer.
    // arg 4: The offset of the element to store in the local buffer.
    // arg 5: pointer to the shared memory buffer to load.
1399
1400
    // arg 6: The offset of the start element of the row to load in shared
    // memory.
1401
1402
1403
1404
1405
1406
1407
1408
    ICHECK_EQ(op->args.size(), 7U);
    bool trans = Downcast<Bool>(op->args[0])->value;
    int num = Downcast<Integer>(op->args[1])->value;
    std::string type = Downcast<StringImm>(op->args[2])->value;
    std::string local_ptr = this->PrintExpr(op->args[3]);
    std::string local_elem_offset = this->PrintExpr(op->args[4]);
    std::string smem_ptr = this->PrintExpr(op->args[5]);
    if (trans && op->dtype.bits() == 8) {
1409
1410
      // Since ldmatrix assumes that a matrix element is 16 bit, it cannot
      // properly transpose an int8 matrix.
1411
1412
1413
1414
      std::string smem_stride = this->PrintExpr(op->args[6]);
      ICHECK(num == 4);
      os << "for (int i = 0; i < 16; ++i) {\n";
      os << local_ptr << "[" + local_elem_offset + " + i] = " << smem_ptr
1415
1416
1417
1418
         << "[(i % 8) / 4 * " + smem_stride +
                " * 16 + (threadIdx.x % 4) * 4 * " + smem_stride +
                "+ (i % 4) * " + smem_stride +
                " + threadIdx.x / 4 +  (i / 8) * 8];\n";
1419
1420
1421
      os << "}\n";
    } else {
      std::string smem_elem_offset = this->PrintExpr(op->args[6]);
1422
1423
1424
1425
1426
1427
      std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
      if (trans == 1)
        func_name += "_trans";
      this->PrintIndent();
      this->stream << func_name << "(" << smem_ptr << " + " << smem_elem_offset
                   << ", " << local_ptr << " + " << local_elem_offset << ");\n";
1428
1429
1430
1431
1432
1433
1434
1435
1436
    }
  } else if (op->op.same_as(builtin::mma_store())) {
    int m = Downcast<Integer>(op->args[0])->value;
    int n = Downcast<Integer>(op->args[1])->value;
    std::string dst = this->PrintExpr(op->args[2]);
    std::string src = this->PrintExpr(op->args[3]);
    std::string src_offset = this->PrintExpr(op->args[4]);
    PrimExpr stride = op->args[5];

1437
1438
    ICHECK(m == 16 && n == 16)
        << "Only m == 16 && n == 16 case supported for now";
1439

1440
1441
1442
1443
1444
    // Each thread in a warp holds a certain number of elements of an MMA
    // output. For example, if we compute a 16x16 tile using MMA, each thread
    // holds 8 elements in its registers. So conceptually, a warp memory is
    // organized as a 32x8 block. A map from a 16x16 tile to a 32x8 block of
    // memory is specified by the index map below.
1445

1446
1447
    // To store the 32x8 output back to a 16x16 tile in shared or global memory,
    // we invert this map to determine the output location for each 8 element.
1448

1449
1450
    const auto index_map_func = ffi::Function::GetGlobal(
        "tir.index_map.shared_16x16_to_mma_32x8_layout");
1451

1452
1453
1454
    IndexMap index_map;
    if (!index_map_func) {
      Var i, j;
1455

1456
      // The index map is defined as follows:
1457
1458
1459
1460
1461
      index_map = IndexMap(
          {i, j}, {4 * FloorMod(i, 8) + FloorDiv(FloorMod(j, 8), 2),
                   4 * FloorDiv(j, 8) + FloorDiv(i, 8) * 2 + FloorMod(j, 2)});
    } else {
      index_map = IndexMap::FromFunc(2, *index_map_func);
1462
1463
1464
1465
1466
1467
1468
    }

    arith::Analyzer analyzer;
    auto inverse_index_map =
        index_map.Inverse({Range(0, m), Range(0, n)}, &analyzer);
    auto indices_16x16 = inverse_index_map->final_indices;

1469
1470
1471
    // "//" and "%" in the index map are translated to FloorDiv/Mod, but the
    // plain Div/Mod are fine. FloorDiv/Mod are supposed to be lowered before
    // they reach codegen, so manually replace them to the plain ones here.
1472
    class LowerFloorDivMod : public ExprMutator {
1473
1474
    public:
      PrimExpr VisitExpr_(const FloorDivNode *op) {
1475
1476
        return tir::Div(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
1477
      PrimExpr VisitExpr_(const FloorModNode *op) {
1478
1479
1480
1481
        return tir::Mod(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
    };

1482
1483
    auto dst_ind =
        LowerFloorDivMod()(indices_16x16[0] * stride + indices_16x16[1]);
1484
1485
1486
1487
1488
1489
1490
1491
1492

    var_idmap_[inverse_index_map->initial_indices[0].get()] = "threadIdx.x";
    var_idmap_[inverse_index_map->initial_indices[1].get()] = "local_id";
    if (op->dtype.bits() == 16) {
      os << "for (int local_id = 0; local_id < 8; local_id+=2) {\n";
      os << "*((uint *)&" << dst << "[" + this->PrintExpr(dst_ind) + "])"
         << " = "
         << "*((uint *)&" << src << "[" << src_offset << " + local_id]);\n";
      os << "}\n";
1493
    } else {
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
      os << "for (int local_id = 0; local_id < 8; ++local_id) {\n";
      os << dst << "[" + this->PrintExpr(dst_ind) + "]"
         << " = " << src << "[" << src_offset << " + local_id];\n";
      os << "}\n";
    }

  } else if (op->op.same_as(builtin::mma_fill())) {
    std::string num_elem = this->PrintExpr(op->args[0]);
    std::string dst = this->PrintExpr(op->args[1]);
    std::string dst_offset = this->PrintExpr(op->args[2]);

    os << "for (int i = 0; i < " << num_elem << "; ++i) {\n";
    os << dst << "[" << dst_offset << " + i] = 0.0;";
    os << "}\n";
  } else if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    need_cast_smem_ptr_to_int_ = true;
1515
1516
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
1517
    if (op->args.size() == 5) {
1518
1519
      this->stream << PrintCpAsyncAssembly(dst, dst_offset, src, src_offset,
                                           size);
1520
    } else {
1521
1522
      this->stream << PrintPredicatedCpAsyncAssembly(
          dst, dst_offset, src, src_offset, size, this->PrintExpr(op->args[5]));
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
    }
  } else if (op->op.same_as(builtin::ptx_cp_async_bulk())) {
    need_cast_smem_ptr_to_int_ = true;
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    int barrier_id = Downcast<IntImm>(op->args[5])->value;
    CHECK(barrier_id < barrier_count_);
1533
1534
1535
1536
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
    this->stream << PrintCpAsyncBulkAsm(dst, dst_offset, src, src_offset, size,
                                        barrier);
1537
1538
1539
1540
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    this->stream << "__asm__ __volatile__(\"cp.async.commit_group;\");\n\n";
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
1541
1542
    this->stream << "__asm__ __volatile__(\"cp.async.wait_group " << n
                 << ";\");\n\n";
1543
1544
1545
1546
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1547
1548
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1549
1550
1551
1552
1553
1554
    std::string thread_count = this->PrintExpr(op->args[1]);
    this->stream << PrintInitBarrierThreadCountAsm(barrier, thread_count);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1555
1556
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1557
1558
1559
1560
1561
    this->stream << PrintArriveBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1562
1563
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1564
1565
1566
1567
1568
1569
    std::string byte_count = this->PrintExpr(op->args[1]);
    this->stream << PrintArriveBarrierExpectTxAsm(barrier, byte_count);
  } else if (op->op.same_as(builtin::ptx_wait_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1570
1571
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    this->stream << PrintWaitBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_ldg32())) {
    /*
    asm volatile (
        "{.reg .pred p;\n"
        " setp.ne.b32 p, %2, 0;\n"
        // " @p ld.global.nc.f32 %0, [%1];}\n"t
        " @p ld.global.nc.L2::128B.f32 %0, [%1];}\n"
        : "=f"(reg)
        : "l"(addr), "r"((int)guard)
    );
    */

    // get local
    std::string reg = this->PrintExpr(op->args[0]);
    // get guard
    std::string guard = this->PrintExpr(op->args[1]);
1589
    const BufferLoadNode *addr_buffer = op->args[2].as<BufferLoadNode>();
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
    std::string global_addr = this->PrintExpr(addr_buffer->indices[0]);
    std::string global_buffer = this->PrintExpr(addr_buffer->buffer->data);
    std::string local_addr = this->PrintExpr(op->args[3]);
    this->stream << "asm volatile (\n";
    this->stream << "\"{.reg .pred p;\\n\"\n";
    this->stream << "\" setp.ne.b32 p, %2, 0;\\n\"\n";
    this->stream << "\" @!p mov.b32 %0, 0;\\n\"\n";
    this->stream << "\" @p ld.global.nc.f32 %0, [%1];}\\n\"\n";
    // stream << "\" @p ld.global.nc.L2::128B.f32 %0, [%1];}\\n\"\n" ;
    stream << ": \"=f\"(" << reg << "[" << local_addr << "]"
           << ")\n";
1601
1602
    stream << ": \"l\"((void*)(" << global_buffer << "+" << global_addr
           << ")), \"r\"((int)" << guard << ")\n";
1603
    stream << ");\n";
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
  } else if (op->op.same_as(builtin::reinterpret())) {
    DataType tgt_dtype = op->dtype;
    DataType src_dtype = op->args[0]->dtype;
    PrimExpr value = op->args[0];

    // Handle float4_e2m1fn reinterpret
    if (!src_dtype.is_float4_e2m1fn() && !tgt_dtype.is_float4_e2m1fn()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    if (src_dtype == tgt_dtype || tgt_dtype.lanes() * tgt_dtype.bits() ==
                                      src_dtype.lanes() * src_dtype.bits()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    CHECK_EQ(tgt_dtype.lanes(), src_dtype.lanes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of lanes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;
    CHECK_EQ(tgt_dtype.bytes(), src_dtype.bytes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of bytes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;

    int lanes = tgt_dtype.lanes();

    int ssa_scope = BeginScope();
    if (lanes == 1) {
      // The case of lane=1 is same as the normal reinterpret,
      // except that we allow the src and dst dtype to have different number of
      // bits.
      std::string rhs = SSAGetID(PrintExpr(value), src_dtype);
      os << "(*(";
      this->PrintType(tgt_dtype, os);
      os << " *)(&(" << rhs << ")))";
    } else if (lanes == 2) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint16, and then extract bits of two fp4
        // numbers, and finally reinterpret the result as fp4x2.
        value =
            tir::Call(DataType::UInt(16), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     tir::Cast(DataType::UInt(8),
                               (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                                   ((temp_var >> 4) &
                                    IntImm(DataType::UInt(16), 0xF0))));
      } else {
        value = tir::Cast(
            DataType::UInt(16),
            tir::Call(DataType::UInt(8), tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                         ((temp_var & IntImm(DataType::UInt(16), 0xF0)) << 4));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else if (lanes == 4) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint32, and then extract bits of four fp4
        // numbers, and finally reinterpret the result as fp4x4.
        value =
            tir::Call(DataType::UInt(32), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            tir::Cast(
                DataType::UInt(16),
                (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                    ((temp_var >> 4) & IntImm(DataType::UInt(32), 0xF0)) |
                    ((temp_var >> 8) & IntImm(DataType::UInt(32), 0xF00)) |
                    ((temp_var >> 12) & IntImm(DataType::UInt(32), 0xF000))));
      } else {
        value = tir::Cast(DataType::UInt(32),
                          tir::Call(DataType::UInt(16),
                                    tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF0)) << 4) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF00)) << 8) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF000)) << 12));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else {
      LOG(FATAL) << "Invalid number of lanes for float4_e2m1fn reinterpret: "
                 << lanes;
    }
    EndScope(ssa_scope);
  } else if (op->op.same_as(builtin::thread_return())) {
    os << "return";
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
  } else if (op->op.same_as(tl::tl_gemm())) {
    ICHECK(op->args.size() == 4) << "tl_gemm expects 4 arguments <op_instance, "
                                    "A_ptr, B_ptr, C_ptr>, but got "
                                 << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
    this->PrintCallExtern(GetType(GetRef<PrimExpr>(op)), op_instance->value,
                          op->args, true, os);
  } else if (op->op.same_as(tl::tl_gemm_sp())) {
    ICHECK(op->args.size() == 5)
        << "tl_gemm_sp expects 5 arguments <op_instance, A_ptr, B_ptr, C_ptr, "
           "E_ptr>, but got "
        << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
    enable_sparse_gemm_ = true;
    this->PrintCallExtern(GetType(GetRef<PrimExpr>(op)), op_instance->value,
                          op->args, true, os);
1714
1715
  } else if (op->op.same_as(tl::tl_shuffle_elect())) {
    os << "tl::tl_shuffle_elect<" << PrintExpr(op->args[0]) << ">()";
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
  } else if (op->op.same_as(tl::__exp())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "exp");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__exp10())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "exp10");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__log())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "log");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__log2())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "log2");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__log10())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "log10");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__tan())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "tan");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__cos())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "cos");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__sin())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "sin");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
  } else if (op->op.same_as(tl::ieee_add())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fadd", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
  } else if (op->op.same_as(tl::ieee_sub())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fsub", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
  } else if (op->op.same_as(tl::ieee_mul())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fmul", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
  } else if (op->op.same_as(tl::ieee_fmaf())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[3])->value;
    std::string func_name = math_func(op->dtype, "fmaf", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ", " << PrintExpr(op->args[2]) << ")";
  } else if (op->op.same_as(tl::ieee_frcp())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[1])->value;
    std::string func_name = math_func(op->dtype, "frcp", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::ieee_fsqrt())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[1])->value;
    std::string func_name = math_func(op->dtype, "fsqrt", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::ieee_frsqrt())) {
    CUDAIEEEMath math_func;
    std::string func_name = math_func(op->dtype, "frsqrt", "rn");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::ieee_fdiv())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fdiv", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
1792
1793
1794
1795
1796
  } else {
    CodeGenC::VisitExpr_(op, os);
  }
}

1797
void CodeGenTileLangCUDA::VisitStmt_(const AttrStmtNode *op) {
1798
  if (op->attr_key == tir::attr::fragment_shape) {
1799
1800
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *shape_str = op->value.as<StringImmNode>();
1801
1802
    fragment_shapes[buffer] = shape_str->value;
  } else if (op->attr_key == tir::attr::fragment_layout) {
1803
1804
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *layout_str = op->value.as<StringImmNode>();
1805
1806
    fragment_layouts[buffer] = layout_str->value;
  } else if (op->attr_key == tir::attr::async_commit_queue_scope) {
1807
1808
1809
    const IntImmNode *queue_id = op->value.as<IntImmNode>();
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
1810
1811
1812
1813
1814
1815
1816
    this->VisitStmt(op->body);
    auto commit_group = Call(DataType::Void(), builtin::ptx_commit_group(), {});
    this->VisitExpr(commit_group, this->stream);
    return;
  } else if (op->attr_key == tir::attr::async_wait_queue_scope) {
    auto wait_attrs = GetAsyncWaitAttributes(op);
    auto queue_id = wait_attrs.first.as<IntImmNode>();
1817
1818
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
1819
    auto wait_cnt = wait_attrs.second;
1820
1821
    auto wait_group =
        Call(DataType::Void(), builtin::ptx_wait_group(), {wait_cnt});
1822
1823
1824
1825
1826
1827
1828
    this->VisitExpr(wait_group, this->stream);
    auto inner = op->body.as<AttrStmtNode>();
    ICHECK(inner);
    this->VisitStmt(inner->body);
    return;
  } else if (op->attr_key == "threadblock_swizzle_pattern") {
    this->PrintIndent();
1829
    const StringImmNode *pattern = op->value.as<StringImmNode>();
1830
1831
1832
1833
1834
1835
1836
1837
    ICHECK(pattern);
    this->stream << "const dim3 blockIdx = " << pattern->value << "();\n";
    this->VisitStmt(op->body);
    return;
  }
  CodeGenC::VisitStmt_(op);
}

1838
void CodeGenTileLangCUDA::VisitStmt_(const AllocateNode *op) {
1839
1840
1841
1842
  ICHECK(!is_zero(op->condition));
  std::string vid = AllocVarID(op->buffer_var.get());
  this->PrintIndent();
  std::string scope = GetPtrStorageScope(op->buffer_var);
1843
  const VarNode *buffer = op->buffer_var.as<VarNode>();
1844
1845
  if (scope.find("wmma.") == 0) {
    if (scope == "wmma.matrix_a" || scope == "wmma.matrix_b") {
1846
1847
1848
1849
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Int(8) || op->dtype == DataType::UInt(8) ||
             op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
             op->dtype == DataType::Int(1) || op->dtype == DataType::BFloat(16))
1850
1851
1852
          << "Matrix_a and matrix_b only support half or char or unsigned char "
          << "or uint4 or int4 or int1 type for now";
    } else {
1853
1854
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Float(32) || op->dtype == DataType::Int(32))
1855
1856
1857
          << "Accumulator only support half, float and int type for now";
    }
    PrintWmmaScope(scope, op->dtype, buffer, stream);
1858
  } else {
1859
1860
1861
1862
1863
1864
1865
1866
    PrintStorageScope(scope, stream);
    PrintType(op->dtype, stream);
  }

  if (scope == "shared.dyn") {
    stream << ' ' << vid << "[];\n";
  } else {
    size_t constant_size = op->ConstantAllocationSize();
1867
    ICHECK_GT(constant_size, 0)
1868
1869
        << "Can only handle constant size stack allocation for now, but get "
        << constant_size << " for " << op->buffer_var->name_hint;
1870
1871
1872
1873
1874
1875
1876
1877
    if (scope.find("wmma.") == 0) {
      constant_size = GetWmmaFragmentSize(scope, buffer, constant_size);
    }
    if ((op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
         op->dtype == DataType::Int(1)) &&
        scope == "shared") {
      constant_size = constant_size / (32 / op->dtype.bits());
    }
1878
1879
    if (scope == "shared") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
1880
1881
1882
1883
1884
1885
    } else if (scope == "shared.barrier") {
      auto v_id_mem = vid + "_mem";
      stream << ' ' << v_id_mem << "[" << constant_size << "];\n";
      PrintIndent();
      stream << "auto " << vid << " = reinterpret_cast<" << mbarrier_dtype_
             << "*>(" << v_id_mem << ");\n";
1886
1887
1888
1889
1890
1891
1892
1893
    } else if (scope == "local") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
    } else if (scope == "local.var") {
      stream << ' ' << vid << " = " << PrintExpr(tir::make_const(op->dtype, 0))
             << ";\n";
    } else {
      ICHECK(false) << "Unsupported scope: " << scope;
    }
1894
1895
1896
1897
1898
1899
  }

  RegisterHandleType(op->buffer_var.get(), op->dtype);
  this->PrintStmt(op->body);
}

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
void CodeGenTileLangCUDA::VisitStmt_(const EvaluateNode *op) {
  if (is_const_int(op->value))
    return;
  const CallNode *call = op->value.as<CallNode>();
  if (call && call->op.same_as(builtin::tvm_global_barrier_kinit())) {
    PrintIndent();
    stream << "__shared__ unsigned " << vid_global_barrier_expect_ << ";\n";
    PrintIndent();
    stream << "if (threadIdx.x == 0) {\n";
    PrintIndent();
    stream << "  " << vid_global_barrier_expect_ << " = 0;\n";
    PrintIndent();
    stream << "}\n";
  } else {
    CodeGenC::VisitStmt_(op);
  }
}

1918
void CodeGenTileLangCUDA::VisitExpr_(const RampNode *op, std::ostream &os) {
1919
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1920
1921
  CHECK_LE(lanes, 4) << "Translate Ramp Node " << GetRef<Ramp>(op) << " with "
                     << lanes << " lanes is not allowed.";
1922
1923
1924
1925
1926
1927
  os << "(make_";
  PrintType(op->dtype, os);
  os << "(";
  for (int i = 0; i < lanes; i++) {
    os << "(" << PrintExpr(op->base) << ")"
       << "+(" << PrintExpr(op->stride) << "*" << i << ")";
1928
1929
    if (i != lanes - 1)
      os << ", ";
1930
1931
1932
1933
  }
  os << "))";
}

1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
void CodeGenTileLangCUDA::VisitExpr_(const BufferLoadNode *op,
                                     std::ostream &os) { // NOLINT(*)
  ICHECK_EQ(op->indices.size(), 1)
      << "Load from non-flat memory not supported.";
  ICHECK(!op->predicate.defined())
      << "Predicated buffer load is not supported.";

  DataType value_dtype = op->dtype;
  PrimExpr index = op->indices[0];
  Var buffer_var = op->buffer->data;
  DataType element_dtype = op->buffer->dtype;

  int lanes = op->dtype.lanes();
  // delcare type.
  if (value_dtype.lanes() == element_dtype.lanes()) {
    std::string ref = GetBufferRef(op->dtype, op->buffer.get(), index);
    HandleVolatileLoads(ref, op, os);
  } else {
    bool can_vector_load = false;
    arith::PVar<PrimExpr> base;
    if (arith::ramp(base, 1, op->dtype.lanes()).Match(index)) {
      const RampNode *ramp = index.as<RampNode>();
      ICHECK(ramp);
      can_vector_load = true;
      // arith::ModularSet me = arith::Analyzer().modular_set(ramp->base);
      // The condition: {k * coeff + base} divisible by the alignment for any k
      // if (me->coeff % op->dtype.lanes() == 0 && me->base % op->dtype.lanes()
      // == 0) {
      //   can_vector_load = true;
      // }
    }

    if (value_dtype.is_float4_e2m1fn() && lanes != 1) {
      // A float4_e2m1fn element has 4 bits, which is an incomplete byte.
      // So we cannot vector load it.
      can_vector_load = false;
    }
    if (can_vector_load) {
      std::string ref = GetVecLoad(op->dtype, op->buffer.get(), base.Eval());
      HandleVolatileLoads(ref, op, os);
    } else {
      std::ostringstream svalue_expr;
      std::string sindex = SSAGetID(PrintExpr(index), index.dtype());
      std::string vid = GetVarID(buffer_var.get());
      DataType elem_type = op->dtype.element_of();
      for (int i = 0; i < lanes; ++i) {
        std::ostringstream value_temp;
        if (!HandleTypeMatch(buffer_var.get(), elem_type)) {
          value_temp << "((";
          if (buffer_var.get()->dtype.is_handle()) {
            auto it = alloc_storage_scope_.find(buffer_var.get());
            if (it != alloc_storage_scope_.end()) {
              PrintStorageScope(it->second, value_temp);
            }
          }
          PrintType(elem_type, value_temp);
          value_temp << "*)" << vid << ')';
        } else {
          value_temp << vid;
        }
        value_temp << '[';
        PrintVecElemLoad(sindex, index.dtype(), i, value_temp);
        value_temp << ']';
        PrintVecElemLoadExpr(op->dtype, i, value_temp.str(), svalue_expr);
      }
      os << svalue_expr.str();
    }
  }
}

2004
2005
void CodeGenTileLangCUDA::VisitExpr_(const BroadcastNode *op,
                                     std::ostream &os) { // NOLINT(*)
2006
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
2007
2008
  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 8 &&
      lanes == 4) {
2009
    // make_int8x4
2010
    const int64_t *p = as_const_int(op->value);
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
    ICHECK(p);
    int64_t v = *p & 0xFF;
    v = (v << 24) | (v << 16) | (v << 8) | v;
    if (op->dtype.is_uint()) {
      os << "(uint)" << v;
    } else {
      os << "(int)" << v;
    }
    return;
  }

  if (op->dtype.is_float16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
2028
2029
      if (i != 0)
        os << ", ";
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
      os << "__pack_half2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if (op->dtype.is_bfloat16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
2042
2043
      if (i != 0)
        os << ", ";
2044
2045
2046
2047
2048
2049
      os << "__pack_nv_bfloat162(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

2050
2051
  if (op->dtype.is_float() && op->dtype.bits() == 32 &&
      op->dtype.lanes() == 8) {
2052
2053
2054
    std::string v = PrintExpr(op->value);
    os << "make_ulonglong4(";
    for (int i = 0; i < 4; ++i) {
2055
2056
      if (i != 0)
        os << ", ";
2057
2058
2059
2060
2061
2062
2063
2064
      os << "*(unsigned long long*)&make_float2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 4) {
    bool fail = false;
2065
    const int64_t *p = as_const_int(op->value);
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
    ICHECK(p);
    int64_t v = *p & 0xF;

    if (lanes == 4) {
      v = (v << 12) | (v << 8) | (v << 4) | v;
      if (op->dtype.is_uint()) {
        os << "(uint16_t)" << v;
      } else {
        os << "(int16_t)" << v;
      }
    } else {
2077
2078
      v = (v << 28) | (v << 24) | (v << 20) | (v << 16) | (v << 12) | (v << 8) |
          (v << 4) | v;
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
      if (lanes == 8) {
        if (op->dtype.is_uint()) {
          os << "(uint)" << v;
        } else {
          os << "(int)" << v;
        }
      } else if (lanes == 16 || lanes == 32) {
        os << "make_";
        PrintType(op->dtype, os);
        os << '(';
        for (int i = 0; i < lanes / 8; ++i) {
2090
2091
          if (i != 0)
            os << ", ";
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
          if (op->dtype.is_uint()) {
            os << "(uint)" << v;
          } else {
            os << "(int)" << v;
          }
        }
        os << ')';
      } else {
        fail = true;
      }
    }

    if (!fail) {
      return;
    }
  }

  std::string v = PrintExpr(op->value);
  os << "make_";
  PrintType(op->dtype, os);
  os << '(';
  for (int i = 0; i < lanes; ++i) {
2114
2115
    if (i != 0)
      os << ", ";
2116
2117
2118
2119
2120
    os << v;
  }
  os << ')';
}

2121
2122
inline void PrintConst(const FloatImmNode *op, std::ostream &os,
                       CodeGenTileLangCUDA *p) { // NOLINT(*)
2123
2124
2125
  // Type code is kBFloat
  if (op->dtype.is_bfloat16()) {
    os << "bfloat16_t";
2126
2127
2128
    os << '(' << std::hexfloat << op->value << 'f';
    os << "/*" << std::scientific << op->value << "*/";
    os << ')';
2129
2130
    return;
  }
2131
2132
2133
  // Type code is kFloat8_e5m2 or kE4M4Float
  if (op->dtype.is_float8() || op->dtype.is_float4()) {
    p->PrintType(op->dtype, os);
2134
2135
2136
    os << '(' << std::hexfloat << op->value << 'f';
    os << "/*" << std::scientific << op->value << "*/";
    os << ')';
2137
2138
    return;
  }
2139
2140
  // Type code is kFloat
  switch (op->dtype.bits()) {
2141
2142
2143
2144
2145
2146
  case 64:
  case 32: {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
2147
      }
2148
      temp << ((op->dtype.bits() == 32) ? "CUDART_INF_F" : "CUDART_INF");
2149
      p->need_math_constants_h_ = true;
2150
2151
    } else if (std::isnan(op->value)) {
      temp << ((op->dtype.bits() == 32) ? "CUDART_NAN_F" : "CUDART_NAN");
2152
      p->need_math_constants_h_ = true;
2153
    } else {
2154
      temp << std::hexfloat << op->value;
2155
2156
      if (op->dtype.bits() == 32)
        temp << 'f';
2157
      temp << "/*" << std::scientific << op->value << "*/";
2158
    }
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
    p->MarkConst(temp.str());
    os << temp.str();
    break;
  }
  case 16: {
    os << "half_t" << '(';
    FloatImm const_f32 = FloatImm(DataType::Float(32), op->value);
    PrintConst(const_f32.get(), os, p);
    os << ')';
    break;
  }
  default:
    LOG(FATAL) << "Bad bit-width for float: " << op->dtype << "\n";
2172
2173
2174
  }
}

2175
2176
void CodeGenTileLangCUDA::VisitExpr_(const FloatImmNode *op,
                                     std::ostream &os) { // NOLINT(*)
2177
2178
2179
  PrintConst(op, os, this);
}

2180
2181
2182
void CodeGenTileLangCUDA::PrintWmmaScope(const std::string &scope, DataType t,
                                         const VarNode *variable,
                                         std::ostream &os) {
2183
2184
  std::stringstream type;
  PrintType(t, type);
2185
2186
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
  std::string shape_str = fragment_shapes.at(variable);
  if ((t.is_int() || t.is_uint()) && t.bits() < 8 && t.lanes() == 1) {
    type.str(std::string());
    if (t.is_int()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::s4";
      } else if (t.bits() == 1) {
        type << "nvcuda::wmma::experimental::precision::b1";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    } else if (t.is_uint()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::u4";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    }
  }
  if (scope == "wmma.matrix_a") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_a";
2209
2210
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
2211
2212
2213
  } else if (scope == "wmma.matrix_b") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_b";
2214
2215
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
2216
  } else if (scope == "wmma.accumulator") {
2217
2218
    os << "nvcuda::wmma::fragment<nvcuda::wmma::accumulator, " << shape_str
       << ", " << type.str() << ">";
2219
2220
2221
  }
}

2222
2223
int32_t CodeGenTileLangCUDA::GetWmmaFragmentSize(const std::string &scope,
                                                 const VarNode *variable,
2224
                                                 int32_t size) {
2225
2226
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
2227
2228
2229
2230
2231
2232
2233
2234
  std::string shape_str = fragment_shapes.at(variable);
  std::pair<int32_t, int32_t> dim = GetWmmaFragmentDimSize(shape_str, scope);
  if (dim.first * dim.second != 0)
    return size / dim.first / dim.second;
  else
    return 0;
}

2235
2236
2237
void CodeGenTileLangCUDA::HandleVolatileLoads(const std::string &value,
                                              const BufferLoadNode *op,
                                              std::ostream &os) {
2238
2239
2240
  // Cast away volatile qualifier for fp16 types. That is, only loads and
  // stores are volatile. The loaded objects are not marked as volatile.
  //
2241
2242
  if ((op->dtype.is_float16() || op->dtype.is_bfloat16()) &&
      IsVolatile(op->buffer->data.get())) {
2243
2244
2245
2246
2247
2248
2249
2250
    os << "(";
    PrintType(op->dtype, os);
    os << ")(" << value << ")";
  } else {
    os << value;
  }
}

2251
2252
2253
void CodeGenTileLangCUDA::PrintVecElemLoadExpr(DataType t, int i,
                                               const std::string &value,
                                               std::ostream &os) {
2254
2255
2256
2257
2258
2259
  ICHECK_GT(t.lanes(), 1);
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (!(t.lanes() == 2 || t.lanes() == 3)) {
      if (i != 0) {
        os << "|";
      }
2260
2261
      os << "((0x000000ff << " << i * 8 << ") & (" << value << " << " << i * 8
         << "))";
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
      return;
    }
  }

  if (t.is_float16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_half2(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (t.is_bfloat16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_bfloat162(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (i == 0) {
    os << "make_";
    PrintType(t, os);
    os << "(";
  }
  os << value;
  if (i != t.lanes() - 1) {
    os << ",";
  } else {
    os << ")";
  }
  return;
}

2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
void CodeGenTileLangCUDA::PrintFunctionSignature(const String &function_name,
                                                 const PrimFunc &func,
                                                 std::ostream &os) {
  PrintFuncPrefix(os);
  CodeGenC::PrintType(func->ret_type, os);
  CodeGenC::PrintExtraAttrs(func, os);
  bool no_alias = func->HasNonzeroAttr(tir::attr::kNoAlias);
  os << " " << function_name << "(";
  for (size_t i = 0; i < func->params.size(); ++i) {
    tir::Var v = func->params[i];
    std::string vid = AllocVarID(v.get());

    if (i > 0) {
      os << ", ";
    }

    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (ptr->storage_scope == "grid_constant") {
          os << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, os);
          os << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, os);
      }

      CodeGenC::PrintType(GetType(v), os);
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, os);
      }
    } else {
      CodeGenC::PrintType(GetType(v), os);
    }
    os << ' ' << vid;
  }
  os << ")";

  // Register handle data type
  // TODO(tvm-team): consider simply keep type info in the
  // type annotation(via a normalizing rewriting).
  for (const auto &param : func->params) {
    if (auto *ptr = param->type_annotation.as<PointerTypeNode>()) {
      if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
        RegisterHandleType(param.get(), prim->dtype);
      }
    }
  }
}

void CodeGenTileLangCUDA::AddFunction(const GlobalVar &gvar,
                                      const PrimFunc &f) {
  // If the function has already been forward-declared, this is a
  // no-op.
  CodeGenC::DeclareFunction(gvar, f);
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
  // clear previous generated state.
  this->InitFuncState(f);
  // reserve keywords
  ReserveKeywordsAsUnique();

  auto global_symbol = f->GetAttr<String>(tvm::attr::kGlobalSymbol);
  ICHECK(global_symbol.defined())
      << "CodeGenC: Expect PrimFunc to have the global_symbol attribute";
  bool no_alias = f->HasNonzeroAttr(tir::attr::kNoAlias);

  this->PrintFuncPrefix(stream);
  CodeGenC::PrintType(f->ret_type, stream);
2396
2397
  this->PrintExtraAttrs(f);

2398
2399
2400
2401
2402
  this->stream << " " << static_cast<std::string>(global_symbol.value()) << "(";

  for (size_t i = 0; i < f->params.size(); ++i) {
    tir::Var v = f->params[i];
    std::string vid = AllocVarID(v.get());
2403
2404
    if (i != 0)
      stream << ", ";
2405
2406
    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
2407
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
        if (ptr->storage_scope == "grid_constant") {
          stream << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, stream);
          stream << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, stream);
      }

      CodeGenC::PrintType(GetType(v), stream);
2422
2423
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, stream);
      }
    } else {
      CodeGenC::PrintType(GetType(v), stream);
    }
    stream << ' ' << vid;
  }
  stream << ") {\n";
  this->PreFunctionBody(f);
  int func_scope = this->BeginScope();
  this->PrintStmt(f->body);
  this->EndScope(func_scope);
  this->PrintIndent();
  this->stream << "}\n\n";
}

2445
2446
} // namespace codegen
} // namespace tvm