codegen_cuda.cc 124 KB
Newer Older
1
2
3
4
5
6
/*!
 * \file target/codegen.cc
 */

#include "codegen_cuda.h"
#include <tvm/arith/analyzer.h>
7
#include <tvm/ffi/function.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
16
#include <tvm/tir/op.h>

#include <cmath>
#include <string>
#include <utility>
#include <vector>

#include "../op/builtin.h"
17
#include "./ptx.h"
18
#include "arith/pattern_match.h"
19
20
21

namespace tvm {
namespace codegen {
22
using namespace tvm::tl::codegen;
23
using namespace ffi;
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
struct CUDAMath {
  std::string operator()(DataType t, std::string name) const {
    if (t.is_float()) {
      switch (t.bits()) {
      case 64:
        return name;
      case 32:
        return name + 'f';
      case 16: {
        if (name == "fabs") {
          return "__habs";
        } else if (name == "round") {
          return "hrint";
        } else {
          return "h" + name;
        }
      }
      default:
        return "";
      }
    } else if (t.is_bfloat16()) {
      if (name == "fabs") {
        return "__habs";
      } else if (name == "round") {
        return "hrint";
      } else {
        return "h" + name;
      }
    } else if (t.is_int() || t.is_uint()) {
      switch (t.bits()) {
      case 32:
        return "__" + name;
      case 64:
        return "__" + name + "ll";
      default:
        return "";
      }
    }
    return "";
  }
};

struct CUDAFastMath : public CUDAMath {
  std::string operator()(DataType t, std::string name) const {
    if (t.is_float() && t.bits() == 32) {
      return "__" + name + 'f';
    } else {
      return CUDAMath::operator()(t, name);
    }
    return "";
  }
};

struct CUDAFastMathTan : public CUDAMath {
  std::string operator()(DataType t, std::string name) const {
    if (t.is_float()) {
      switch (t.bits()) {
      case 64:
        return name;
      // `__tanf` seems to produce some values too deviant from numpy tan
      // version. So, let's use just `tanf` instead.
      case 32:
        return name + 'f';
      case 16:
        return 'h' + name;
      default:
        return "";
      }
    }
    return "";
  }
};

98
99
100
101
102
103
104
105
106
107
108
109
struct CUDAIEEEMath {
  std::string operator()(DataType t, std::string name,
                         std::string rounding_mode) const {
    if (t.is_float() && t.bits() == 32) {
      return "__" + name + "_" + rounding_mode;
    } else if (t.is_float() && t.bits() == 64) {
      return "__d" + name + "_" + rounding_mode;
    }
    return "";
  }
};

110
111
112
113
114
115
116
117
118
119
120
121
122
123
static std::string GetFP8Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "_2";
  } else if (lanes == 4) {
    vec = "_4";
  } else if (lanes == 8) {
    vec = "_8";
  } else if (lanes == 16) {
    vec = "_16";
124
125
  } else if (lanes == 32) {
    vec = "_32";
126
  } else {
127
128
129
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4, 8, 16, 32) "
           "for FP8";
130
  }
131
132
  if (type.is_float8_e4m3fn() || type.is_float8_e4m3fnuz() ||
      type.is_float8_e4m3()) {
133
    stream << "fp8_e4" << vec << "_t";
134
135
  } else if (type.is_float8_e5m2() || type.is_float8_e5m2fnuz() ||
             type.is_float8_e5m2()) {
136
137
    stream << "fp8_e5" << vec << "_t";
  } else {
138
    LOG(FATAL) << "Unsupported FP8 type in CUDA codegen but got " << type;
139
140
141
142
  }
  return stream.str();
}

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
std::string GetFP6Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "x2";
  } else if (lanes == 4) {
    vec = "x4";
  } else if (lanes == 8) {
    vec = "x8";
  } else if (lanes == 16) {
    vec = "x16";
  } else {
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4) for FP6";
  }
  stream << "__nv_fp6";
  std::string suffix;
  if (type.code() == DataType::kFloat6_e2m3fn) {
    suffix = "_e2m3";
  } else if (type.code() == DataType::kFloat6_e3m2fn) {
    suffix = "_e3m2";
  } else {
    LOG(FATAL) << "Unsupported FP6 type in CUDA codegen";
  }
  stream << vec << suffix;
  return stream.str();
}

std::string GetFP4Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "x2";
  } else if (lanes == 4) {
    vec = "x4";
  } else if (lanes == 8) {
    vec = "x8";
  } else if (lanes == 16) {
    vec = "x16";
  } else {
    LOG(FATAL)
        << "Only support scalar and vector types of width (2, 4) for FP4";
  }
  stream << "__nv_fp4";
  std::string suffix;
  if (type.code() == DataType::kFloat4_e2m1fn) {
    suffix = "_e2m1";
  } else {
    LOG(FATAL) << "Unsupported FP4 type in CUDA codegen";
  }
  stream << vec << suffix;
  return stream.str();
}

203
204
CodeGenTileLangCUDA::CodeGenTileLangCUDA() {
  restrict_keyword_ = "__restrict__";
205
206
207
208
209
  vid_global_barrier_state_ =
      name_supply_->FreshName(runtime::symbol::tvm_global_barrier_state);
  vid_global_barrier_expect_ = name_supply_->FreshName("__barrier_expect");
  ICHECK_EQ(vid_global_barrier_state_,
            runtime::symbol::tvm_global_barrier_state);
210
}
211

212
213
214
void CodeGenTileLangCUDA::PrintFuncPrefix(std::ostream &os) {
  os << "extern \"C\" __global__ ";
}
215
216

class LaunchConfigExtractor : public tir::StmtVisitor {
217
218
private:
  void VisitStmt_(const AttrStmtNode *op) final {
219
220
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
221
222
      if (iv->var->name_hint == "threadIdx.x" ||
          iv->thread_tag == "threadIdx.x") {
223
        threadIdx_x_ext = op->value;
224
225
      } else if (iv->var->name_hint == "threadIdx.y" ||
                 iv->thread_tag == "threadIdx.y") {
226
        threadIdx_y_ext = op->value;
227
228
      } else if (iv->var->name_hint == "threadIdx.z" ||
                 iv->thread_tag == "threadIdx.z") {
229
230
231
232
233
234
        threadIdx_z_ext = op->value;
      }
    }
    StmtVisitor::VisitStmt_(op);
  }

235
public:
236
237
238
239
240
  PrimExpr threadIdx_x_ext = Integer(1);
  PrimExpr threadIdx_y_ext = Integer(1);
  PrimExpr threadIdx_z_ext = Integer(1);
};

241
void CodeGenTileLangCUDA::PrintExtraAttrs(const PrimFunc &f) {
242
243
244
  LaunchConfigExtractor extractor;
  extractor(f->body);
  arith::Analyzer analyzer;
245
246
247
248
249
  PrimExpr threadIdx_ext =
      analyzer.Simplify(extractor.threadIdx_x_ext * extractor.threadIdx_y_ext *
                        extractor.threadIdx_z_ext);
  if (const IntImmNode *const threadIdx_ext_int =
          threadIdx_ext.as<IntImmNode>()) {
250
    if (threadIdx_ext_int->value == 1) {
251
252
      // unable to extract the number of threads per block, hence directly
      // return
253
254
      return;
    }
255
    stream << " __launch_bounds__(" << threadIdx_ext_int->value << ", 1)";
256
257
258
259
260
261
262
  }
}

std::string CodeGenTileLangCUDA::Finish() {
  if (need_mma_h_) {
    decl_stream << "#include <mma.h>\n";
  }
263
264
265
266
267
268
269
270
271
  if (need_mma_instruction_h_) {
    decl_stream << "#include <tl_templates/cuda/instruction/mma.h>\n";
  }
  if (need_wgmma_instruction_h_) {
    decl_stream << "#include <tl_templates/cuda/instruction/wgmma.h>\n";
  }
  if (need_tcgen05mma_instruction_h_) {
    decl_stream << "#include <tl_templates/cuda/instruction/tcgen05mma.h>\n";
  }
272
273
274
  if (need_mma_sm70_instruction_h_) {
    decl_stream << "#include <tl_templates/cuda/instruction/mma_sm70.h>\n";
  }
275
276
277
  if (need_tcgen05_common_h_) {
    decl_stream << "#include <tl_templates/cuda/tcgen_05.h>\n";
  }
278
279
280
281
282
283
284
285
  if (enable_fp8_) {
    decl_stream << "#include <tl_templates/cuda/cuda_fp8.h>\n";
  }

  if (need_math_constants_h_) {
    decl_stream << "#include <math_constants.h>\n";
  }

286
287
288
289
  if (need_cooperative_groups_) {
    decl_stream << "#include <cooperative_groups.h>\n";
  }

290
  decl_stream << "#include <tl_templates/cuda/gemm.h>\n";
291
292
293
  if (enable_sparse_gemm_) {
    decl_stream << "#include <tl_templates/cuda/gemm_sp.h>\n";
  }
294
295
296
297
  decl_stream << "#include <tl_templates/cuda/copy.h>\n";
  decl_stream << "#include <tl_templates/cuda/reduce.h>\n";
  decl_stream << "#include <tl_templates/cuda/ldsm.h>\n";
  decl_stream << "#include <tl_templates/cuda/threadblock_swizzle.h>\n";
298
  decl_stream << "#include <tl_templates/cuda/debug.h>\n";
299
300
301
  decl_stream << "#ifdef ENABLE_BF16\n";
  decl_stream << "#include <tl_templates/cuda/cuda_bf16_fallbacks.cuh>\n";
  decl_stream << "#endif\n";
302
303

  if (need_global_barrier_) {
304
305
    decl_stream << "__device__ unsigned " << vid_global_barrier_state_
                << " = 0;\n";
306
  }
307
  decl_stream << "\n";
308

309
310
311
  return CodeGenC::Finish();
}

312
void CodeGenTileLangCUDA::VisitStmt_(const tir::ForNode *op) {
313
314
  if (op->kind == tir::ForKind::kUnrolled) {
    PrintIndent();
315
316
317
318
319
320
    if (unroll_factor.count(op->loop_var.get())) {
      stream << "#pragma unroll "
             << PrintExpr(unroll_factor[op->loop_var.get()]) << "\n";
    } else {
      stream << "#pragma unroll\n";
    }
321
  }
322
323
  std::string extent =
      PrintExpr(arith::Analyzer().Simplify(op->extent + op->min));
324
325
326
327
328
  PrintIndent();
  std::string vid = AllocVarID(op->loop_var.get());
  std::string start = PrintExpr(op->min);
  stream << "for (";
  PrintType(op->loop_var.dtype(), stream);
329
330
  stream << ' ' << vid << " = " << start << "; " << vid << " < " << extent
         << "; ++" << vid << ") {\n";
331
332
333
334
335
336
337
  int for_scope = BeginScope();
  PrintStmt(op->body);
  this->EndScope(for_scope);
  PrintIndent();
  stream << "}\n";
}

338
void CodeGenTileLangCUDA::BindThreadIndex(const IterVar &iv) {
339
  ICHECK(!var_idmap_.count(iv->var.get()));
340
341
  var_idmap_[iv->var.get()] =
      CastFromTo(iv->thread_tag, DataType::UInt(32), iv->var.dtype());
342
343
}

344
void CodeGenTileLangCUDA::PrintType(DataType t, std::ostream &os) { // NOLINT(*)
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
  int lanes = t.lanes();
  if (t.is_handle()) {
    ICHECK(t.is_scalar()) << "do not yet support vector types";
    os << "void*";
    return;
  }

  if (t.is_void()) {
    os << "void";
    return;
  }

  if (t == tl::cuTensorMapType()) {
    os << "CUtensorMap";
    return;
  }

  bool fail = false;
  if (t.is_float()) {
    switch (t.bits()) {
365
    case 16:
366
      enable_fp16_ = true;
367
368
369
370
371
372
373
374
375
376
377
378
379
380
      if (t.is_scalar()) {
        os << "half_t";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp16 vector elements.
        //
        // half4 is stored as uint2
        //
        // h4.x is emitted as *(half2*)(&(u2.x)).x
        // h4.y is emitted as *(half2*)(&(u2.x)).y
        // h4.z is emitted as *(half2*)(&(u2.y)).x
        // h4.w is emitted as *(half2*)(&(u2.y)).y
        //
        ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
        os << "uint" << lanes / 2;
381
382
383
384
      } else if (lanes <= 16) {
        ICHECK_EQ(lanes % 4, 0) << "only support (mod 4 = 0) lanes for half "
                                   "type of more than 8 lanes";
        os << "ulonglong" << lanes / 4;
385
      } else {
386
        fail = true;
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
      }
      break;
    case 32:
      if (lanes <= 4) {
        os << "float";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp32 vector elements for 4 < lanes <= 8.
        //
        // float8 is stored as ulonglong4
        //
        // f8.v1 is emitted as *(float2*)(&(ul4.x)).x
        // f8.v2 is emitted as *(float2*)(&(ul4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for float type with lanes > 4";
        os << "ulonglong" << lanes / 2;
      } else {
        fail = true;
      }
      break;
    case 64:
      os << "double";
      break;
    default:
      fail = true;
      break;
413
    }
414
415
416
417
    if (!fail && (t.is_scalar() || t.bits() == 16))
      return;
    if (!fail && (lanes > 4 && lanes <= 8 && t.bits() == 32))
      return;
418
419
420
421
422
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  } else if (t.is_bfloat16()) {
423
    enable_bf16_ = true;
424
425
426
427
428
    if (t.is_scalar()) {
      os << "bfloat16_t";
    } else if (lanes <= 8) {
      ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
      os << "uint" << lanes / 2;
429
430
431
432
    } else if (lanes <= 16) {
      ICHECK_EQ(lanes % 4, 0) << "only support (mod 4 = 0) lanes for half type "
                                 "of more than 8 lanes";
      os << "ulonglong" << lanes / 4;
433
434
435
    } else {
      fail = true;
    }
436
437
    if (!fail)
      return;
438
  } else if (t.is_float8()) {
439
440
441
    enable_fp8_ = true;
    os << GetFP8Type(t);
    return;
442
443
444
445
446
447
448
449
450
451
452
453
  } else if (t.is_float6()) {
    enable_fp6_ = true;
    if (t.lanes() <= 4) {
      os << GetFP6Type(t);
    }
    return;
  } else if (t.is_float4()) {
    enable_fp4_ = true;
    if (t.lanes() <= 4) {
      os << GetFP4Type(t);
    }
    return;
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
  } else if (t == DataType::Bool()) {
    os << "bool";
    return;
  } else if (t.is_vector_bool()) {
    // CUDA does not support bool vectors.
    // Use ushort vectors to represent instead.
    int n = t.lanes();
    if (n <= 4) {
      os << "ushort" << n;
      return;
    }
  } else if (t.is_uint() || t.is_int()) {
    if (t.is_uint()) {
      os << "u";
    }
    switch (t.bits()) {
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    case 1: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int8_t";
        return;
      } else if (t.lanes() == 16) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 32) {
        os << "int";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
485
      }
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
    }
    case 4: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 4) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 8) {
        // directly 8 4-bit int in integer.
        os << "int";
        return;
      } else if (t.lanes() == 16) {
        os << "int2";
        return;
      } else if (t.lanes() == 32) {
        os << "int4";
        return;
      } else if (t.lanes() == 64) {
        os << "int8";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
509
      }
510
511
512
513
    }
    case 8: {
      if (t.lanes() == 4) {
        // directly 4 8 bit int in integer.
514
        enable_int8_ = true;
515
516
517
518
519
520
521

        // We use int for int8x4 instead of char4 because using char4 is
        // likely to produce extra instructions to pack four int8 elements
        // into 32-bit data.
        os << "int";
        return;
      } else if (t.lanes() == 8) {
522
        enable_int8_ = true;
523
524
525
        os << "int2";
        return;
      } else if (t.lanes() == 16) {
526
        enable_int8_ = true;
527
528
        os << "int4";
        return;
529
530
531
532
      } else if (t.lanes() == 32) {
        enable_int8_ = true;
        os << "longlong4";
        return;
533
534
      } else if (!t.is_uint() && t.is_scalar()) {
        os << "signed char";
535
        break;
536
537
      } else {
        os << "char";
538
539
        break;
      }
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
    }
    case 16: {
      if (t.is_scalar()) {
        os << "short";
      } else if (t.lanes() <= 4) {
        os << "short" << lanes;
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int16 vector elements.
        //
        // short4 is stored as int2
        //
        // s4.x is emitted as *(short2*)(&(i2.x)).x
        // s4.y is emitted as *(short2*)(&(i2.x)).y
        // s4.z is emitted as *(short2*)(&(i2.y)).x
        // s4.w is emitted as *(short2*)(&(i2.y)).y
        //
        ICHECK_EQ(t.lanes() % 2, 0)
            << "only support even lane for shorT type with lanes > 4";
        os << "int" << t.lanes() / 2;
      } else {
        fail = true;
      }
      if (!fail) {
563
564
        return;
      }
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
      break;
    }
    case 32: {
      if (t.is_scalar()) {
        os << "int";
      } else if (t.lanes() <= 4) {
        os << "int" << t.lanes();
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int32 vector elements for 4 < lanes <= 8.
        //
        // int8 is stored as longlong4
        //
        // i8.v1 is emitted as *(int2*)(&(l4.x)).x
        // i8.v2 is emitted as *(int2*)(&(l4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for int32 type with lanes > 4";
        os << "longlong" << lanes / 2;
      } else {
584
        fail = true;
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
      }
      if (!fail) {
        return;
      }
      break;
    }
    case 64: {
      if (t.is_scalar()) {
        os << "int64_t";
      } else if (t.lanes() == 2) {
        os << "longlong2";
      } else if (t.lanes() == 3) {
        os << "longlong3";
      } else if (t.lanes() == 4) {
        os << "longlong4";
600
601
      } else {
        fail = true;
602
      }
603
604
605
606
      if (!fail) {
        return;
      }
      break;
607
608
609
610
    }
    default:
      fail = true;
      break;
611
612
613
614
615
616
617
618
619
620
621
622
    }
    if (!fail && lanes == 1) {
      return;
    }
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  }
  LOG(FATAL) << "Cannot convert type " << t << " to CUDA type";
}

623
624
625
void CodeGenTileLangCUDA::PrintVecBinaryOp(const std::string &op, DataType t,
                                           PrimExpr lhs, PrimExpr rhs,
                                           std::ostream &os) { // NOLINT(*)
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
  // Declare the result.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(t, stream);
  stream << ' ' << sret << ";\n";
  int ssa_scope = BeginScope();
  {
    // Unpack into individual ops.
    std::string vlhs = SSAGetID(PrintExpr(lhs), lhs.dtype());
    std::string vrhs = SSAGetID(PrintExpr(rhs), rhs.dtype());

    for (int i = 0, lanes = t.lanes(); i < lanes; ++i) {
      std::ostringstream value_temp;
      if (isalpha(op[0])) {
        value_temp << op << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << ", ";
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      } else {
        value_temp << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << op;
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      }
      PrintVecElemStore(sret, t, i, value_temp.str());
    }
  }
  EndScope(ssa_scope);
  os << sret;
}

659
660
661
void CodeGenTileLangCUDA::PrintVecElemLoad(const std::string &vec, DataType t,
                                           int i,
                                           std::ostream &os) { // NOLINT(*)
662
663
664
665
666
667
  if (t.is_scalar()) {
    os << vec;
    return;
  }

  static const char access[] = {'x', 'y', 'z', 'w'};
668
  ICHECK(i >= 0 && i < 256 / t.bits());
669
670
671
672
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    std::string type_name = t.is_int() ? "char" : "unsigned char";
    if (t.lanes() == 2 || t.lanes() == 3) {
      os << vec << "." << access[i % t.lanes()];
673
    } else if (t.lanes() <= 16) {
674
675
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      os << "((" << type_name << ")(" << ac << " >> " << i % 4 * 8 << "))";
676
677
678
679
    } else {
      ICHECK(t.lanes() == 32);
      std::string ac = vec + "." + access[i / 8];
      os << "((" << type_name << ")(" << ac << " >> " << i % 8 * 8 << "))";
680
681
    }
  } else if (t.is_float16()) {
682
683
684
685
686
687
688
    if (t.lanes() <= 8) {
      os << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
         << access[i % 2];
    } else {
      os << "(((half2*)(&(" << vec << "." << access[i / 4] << "))) + "
         << (i / 2 % 2) << ")->" << access[i % 2];
    }
689
  } else if (t.is_bfloat16()) {
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
    if (t.lanes() <= 8) {
      os << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
         << access[i % 2];
    } else {
      os << "(((nv_bfloat162*)(&(" << vec << "." << access[i / 4] << "))) + "
         << (i / 2 % 2) << ")->" << access[i % 2];
    }
  } else if (t.is_float8()) {
    os << vec;
    // fp8_e5_32_t
    if (t.lanes() >= 32)
      os << "." << access[i / 16];
    // fp8_e5_16_t
    if (t.lanes() >= 16)
      os << "." << access[(i % 16) / 8];
    // fp8_e5_8_t
    if (t.lanes() >= 8)
      os << "." << access[(i % 8) / 4];
    // fp8_e5_4_t or fp8_e5_2_t
    os << "." << access[i % 4];
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
728
729
    os << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
       << ")))->" << access[i % 2];
730
731
732
733
734
  } else {
    os << vec << "." << access[i];
  }
}

735
736
void CodeGenTileLangCUDA::PrintVecElemStore(const std::string &vec, DataType t,
                                            int i, const std::string &value) {
737
738
  this->PrintIndent();
  static const char access[] = {'x', 'y', 'z', 'w'};
739
  ICHECK(i >= 0 && i < 256 / t.bits());
740
741
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (t.lanes() == 2 || t.lanes() == 3) {
742
743
      stream << vec << '.' << access[i % t.lanes()] << "="
             << "(" << value << ");\n";
744
    } else if (t.lanes() <= 16) {
745
746
747
748
749
750
751
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 4 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 4 * 8 << ");\n";
752
753
754
755
756
757
758
759
760
    } else {
      ICHECK(t.lanes() == 32);
      std::string ac = vec + "." + access[i / 8];
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 8 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 8 * 8 << ");\n";
761
762
    }
  } else if (t.is_float16()) {
763
764
765
766
767
768
769
770
    if (t.lanes() <= 8) {
      stream << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
             << access[i % 2] << " = " << value << ";\n";
    } else {
      stream << "(((half2*)(&(" << vec << "." << access[i / 4] << "))) + "
             << (i / 2 % 2) << ")->" << access[i % 2] << " = " << value
             << ";\n";
    }
771
  } else if (t.is_bfloat16()) {
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    if (t.lanes() <= 8) {
      stream << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
             << access[i % 2] << " = " << value << ";\n";
    } else {
      stream << "(((nv_bfloat162*)(&(" << vec << "." << access[i / 4]
             << "))) + " << (i / 2 % 2) << ")->" << access[i % 2] << " = "
             << value << ";\n";
    }
  } else if (t.is_float8()) {
    stream << vec;
    // fp8_e5_32_t
    if (t.lanes() >= 32)
      stream << "." << access[i / 16];
    // fp8_e5_16_t
    if (t.lanes() >= 16)
      stream << "." << access[(i % 16) / 8];
    // fp8_e5_8_t
    if (t.lanes() >= 8)
      stream << "." << access[(i % 8) / 4];
    // fp8_e5_4_t or fp8_e5_2_t
    stream << "." << access[i % 4] << " = " << value << ";\n";
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
811
812
    stream << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << " = " << value << ";\n";
813
814
815
816
817
  } else {
    stream << vec << "." << access[i] << " = " << value << ";\n";
  }
}

818
void CodeGenTileLangCUDA::PrintStorageSync(const CallNode *op) {
819
820
  auto args = op->args;
  const std::string &sync = args[0].as<StringImmNode>()->value;
821
822
823
824
  if (sync == "warp") {
    // DO nothing.
  } else if (sync == "shared" || sync == "shared.dyn") {
    this->PrintIndent();
825
826
827
828
829
830
831
832
833
834
835
836
837
838
    if (args.size() == 1) {
      this->stream << "__syncthreads();\n";
    } else if (args.size() == 2) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ">();\n";
    } else if (args.size() == 3) {
      auto barrier_id = args[1].as<IntImmNode>()->value;
      auto thread_count = args[2].as<IntImmNode>()->value;
      this->stream << "tl::__sync_thread_partial<" << barrier_id << ", "
                   << thread_count << ">();\n";
    } else {
      LOG(FATAL) << "Invalid number of arguments for storage sync: "
                 << args.size();
    }
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
  } else if (sync == "global") {
    if (!need_global_barrier_) {
      need_global_barrier_ = true;
    }
    // global synchronizer
    std::string is_load = PrintExpr(op->args[1]);
    std::string num_blocks = PrintExpr(op->args[2]);
    this->PrintIndent();
    // In theory only threadfence is needed
    // but we observed problems with only threadfence
    this->stream << "__threadfence_system();\n";
    this->PrintIndent();
    this->stream << "if (" << is_load << ") {\n";
    int wb = this->BeginScope();
    this->PrintIndent();
    this->stream << "atomicAdd(&" << vid_global_barrier_state_ << ", 1);\n";
    this->PrintIndent();
    std::string ptr = name_supply_->FreshName("pf");
    this->stream << "volatile unsigned* " << ptr << " = &"
                 << vid_global_barrier_state_ << ";\n";
    this->PrintIndent();
    this->stream << vid_global_barrier_expect_ << " += " << num_blocks << ";\n";
    this->PrintIndent();
    this->stream << "while (" << ptr << "[0] < " << vid_global_barrier_expect_
                 << ");\n";
    this->EndScope(wb);
    this->PrintIndent();
    this->stream << "}\n";
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
869
870
871
  }
}

872
873
874
875
876
void CodeGenTileLangCUDA::PrintStorageScope(const std::string &scope,
                                            std::ostream &os) { // NOLINT(*)
  ICHECK_NE(scope, "global")
      << "Cannot allocate global memory when targeting CUDA. You must pass "
         "all global arrays as input instead";
877
  if (scope == "shared" || scope == "shared.barrier") {
878
879
880
881
882
883
    os << "__shared__ ";
  } else if (scope == "shared.dyn") {
    os << "extern __shared__ __align__(1024) ";
  }
}

884
885
886
887
std::string CodeGenTileLangCUDA::CastFromTo(std::string value, DataType from,
                                            DataType target) {
  if (from == target)
    return value;
888
889
890
891
  std::ostringstream os;
  os << "((";
  this->PrintType(target, os);
  os << ")";
892
893
  if (from.is_float16() && (target.is_int() || target.is_uint()) &&
      target.bits() == 8) {
894
895
896
897
898
899
    os << "(";
    if (target.is_uint()) {
      os << "u";
    }
    os << "int)";
  }
900
901
902
  if ((from.is_float16() || from.is_bfloat16()) && target.is_float8()) {
    os << "(float)";
  }
903
904
905
906
  os << value << ")";
  return os.str();
}

907
void CodeGenTileLangCUDA::VisitExpr_(const CastNode *op, std::ostream &os) {
908
909
910
911
912
  DataType from_ty = op->value.dtype();
  DataType target_ty = op->dtype;
  ICHECK_EQ(target_ty.lanes(), from_ty.lanes());

  // Emit simple C-style type conversion.
913
914
  if (from_ty.is_scalar())
    return CodeGenC::VisitExpr_(op, os);
915
916
917
918
919
920
921

  // We could emit make_float4 like calls, but the emitted code looks
  // too compact to read. Emit this as vectorized unary ops.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(target_ty, stream);
  stream << ' ' << sret << ";\n";
922
923
  std::string src = SSAGetID(PrintExpr(op->value), from_ty);

924
925
926
927
928
  // Handle conversion between float16 and float32
  if (from_ty.is_float16() && target_ty.is_float()) {
    // Use __half22float2 for vectorized conversion (half2 -> float2)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // half2 -> float2
929
      PrintIndent();
930
931
932
933
934
935
936
937
938
939
940
941
942
      stream << sret << " = __half22float2(*(half2*)(&(" << src << ")));\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // half4 -> float4
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[0] = "
             << "__half22float2(*(half2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[1] = "
             << "__half22float2(*((half2*)(&(" << src << "))+1));\n";
      os << sret;
      return;
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // half8 -> float8
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[0] = "
             << "__half22float2(*(half2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[1] = "
             << "__half22float2(*((half2*)(&(" << src << "))+1));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[2] = "
             << "__half22float2(*((half2*)(&(" << src << "))+2));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[3] = "
             << "__half22float2(*((half2*)(&(" << src << "))+3));\n";
      os << sret;
      return;
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    }
  } else if (from_ty.is_float() && target_ty.is_float16()) {
    // Use __float22half2_rn for vectorized conversion (float2 -> half2)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // float2 -> half2
      PrintIndent();
      stream << "*(half2*)(&(" << sret << ")) = __float22half2_rn(*(float2*)(&("
             << src << ")));\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // float4 -> half4
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[0] = "
             << "__float22half2_rn(*(float2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[1] = "
             << "__float22half2_rn(*((float2*)(&(" << src << "))+1));\n";
      os << sret;
      return;
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // float8 -> half8
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[0] = "
             << "__float22half2_rn(*(float2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[1] = "
             << "__float22half2_rn(*((float2*)(&(" << src << "))+1));\n";
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[2] = "
             << "__float22half2_rn(*((float2*)(&(" << src << "))+2));\n";
      PrintIndent();
      stream << "((half2*)(&" << sret << "))[3] = "
             << "__float22half2_rn(*((float2*)(&(" << src << "))+3));\n";
      os << sret;
      return;
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
    }
  }

  // Handle conversion between bfloat16 and float32
  if (from_ty.is_bfloat16() && target_ty.is_float()) {
    // Use __bfloat1622float2 for vectorized conversion (bfloat162 -> float2)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // bfloat162 -> float2
      PrintIndent();
      stream << sret
             << " = __bfloat1622float2(*reinterpret_cast<__nv_bfloat162*>(&("
             << src << ")));\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // bfloat162x2 -> float4
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[0] = "
             << "__bfloat1622float2(*reinterpret_cast<__nv_bfloat162*>(&("
             << src << ")));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[1] = "
             << "__bfloat1622float2(*(reinterpret_cast<__nv_bfloat162*>(&("
             << src << "))+1));\n";
      os << sret;
      return;
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // bfloat162x4 -> float8
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[0] = "
             << "__bfloat1622float2(*reinterpret_cast<__nv_bfloat162*>(&("
             << src << ")));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[1] = "
             << "__bfloat1622float2(*(reinterpret_cast<__nv_bfloat162*>(&("
             << src << "))+1));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[2] = "
             << "__bfloat1622float2(*(reinterpret_cast<__nv_bfloat162*>(&("
             << src << "))+2));\n";
      PrintIndent();
      stream << "((float2*)(&" << sret << "))[3] = "
             << "__bfloat1622float2(*(reinterpret_cast<__nv_bfloat162*>(&("
             << src << "))+3));\n";
      os << sret;
      return;
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    }
  } else if (from_ty.is_float() && target_ty.is_bfloat16()) {
    // Use __float22bfloat162_rn for vectorized conversion (float2 -> bfloat162)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // float2 -> bfloat162
      PrintIndent();
      stream << "*reinterpret_cast<__nv_bfloat162*>(&(" << sret
             << ")) = __float22bfloat162_rn(*(float2*)(&(" << src << ")));\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // float4 -> bfloat162x2
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[0] = "
             << "__float22bfloat162_rn(*(float2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[1] = "
             << "__float22bfloat162_rn(*((float2*)(&(" << src << "))+1));\n";
      os << sret;
      return;
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // float8 -> bfloat162x4
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[0] = "
             << "__float22bfloat162_rn(*(float2*)(&(" << src << ")));\n";
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[1] = "
             << "__float22bfloat162_rn(*((float2*)(&(" << src << "))+1));\n";
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[2] = "
             << "__float22bfloat162_rn(*((float2*)(&(" << src << "))+2));\n";
      PrintIndent();
      stream << "(reinterpret_cast<__nv_bfloat162*>(&" << sret << "))[3] = "
             << "__float22bfloat162_rn(*((float2*)(&(" << src << "))+3));\n";
      os << sret;
      return;
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
    }
  }

  // Handle conversion from float32 to float8 (E4M3/E5M2)
  if (from_ty.is_float() &&
      (target_ty.is_float8_e4m3() || target_ty.is_float8_e5m2())) {
    // FP32 -> FP8: Use __nv_cvt_float2_to_fp8x2 for vectorized conversion
    // (float2 -> fp8x2)
    if (from_ty.lanes() == 2 && target_ty.lanes() == 2) {
      // float2 -> fp8x2
      PrintIndent();
      stream << "*reinterpret_cast<__nv_fp8x2_storage_t*>(&(" << sret
             << ")) = __nv_cvt_float2_to_fp8x2(*reinterpret_cast<float2*>(&("
             << src << ")), __NV_SATFINITE, "
             << (target_ty.is_float8_e4m3() ? "__NV_E4M3" : "__NV_E5M2")
             << ");\n";
      os << sret;
      return;
    } else if (from_ty.lanes() == 4 && target_ty.lanes() == 4) {
      // float4 -> fp8x4
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[0] = "
             << "__nv_cvt_float2_to_fp8x2(*(float2*)(&(" << src
             << ")), __NV_SATFINITE, "
             << (target_ty.is_float8_e4m3() ? "__NV_E4M3" : "__NV_E5M2")
             << ");\n";
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[1] = "
             << "__nv_cvt_float2_to_fp8x2(*((float2*)(&(" << src
             << "))+1), __NV_SATFINITE, "
             << (target_ty.is_float8_e4m3() ? "__NV_E4M3" : "__NV_E5M2")
             << ");\n";
1109
1110
      os << sret;
      return;
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
    } else if (from_ty.lanes() == 8 && target_ty.lanes() == 8) {
      // float8 -> fp8x8
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[0] = "
             << "__nv_cvt_float2_to_fp8x2(*(float2*)(&(" << src
             << ")), __NV_SATFINITE, "
             << (target_ty.is_float8_e4m3() ? "__NV_E4M3" : "__NV_E5M2")
             << ");\n";
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[1] = "
             << "__nv_cvt_float2_to_fp8x2(*((float2*)(&(" << src
             << "))+1), __NV_SATFINITE, "
             << (target_ty.is_float8_e4m3() ? "__NV_E4M3" : "__NV_E5M2")
             << ");\n";
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[2] = "
             << "__nv_cvt_float2_to_fp8x2(*((float2*)(&(" << src
             << "))+2), __NV_SATFINITE, "
             << (target_ty.is_float8_e4m3() ? "__NV_E4M3" : "__NV_E5M2")
             << ");\n";
      PrintIndent();
      stream << "((__nv_fp8x2_storage_t*)(&" << sret << "))[3] = "
             << "__nv_cvt_float2_to_fp8x2(*((float2*)(&(" << src
             << "))+3), __NV_SATFINITE, "
             << (target_ty.is_float8_e4m3() ? "__NV_E4M3" : "__NV_E5M2")
             << ");\n";
      os << sret;
      return;
1139
1140
    }
  }
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

  // Fallback: elementwise cast
  for (int i = 0, lanes = from_ty.lanes(); i < lanes; ++i) {
    std::ostringstream val;
    val << "(";
    PrintType(target_ty.element_of(), val);
    val << ")(";
    PrintVecElemLoad(src, from_ty, i, val);
    val << ")";
    PrintVecElemStore(sret, target_ty, i, val.str());
  }

1153
1154
1155
  os << sret;
}

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
void CodeGenTileLangCUDA::VisitExpr_(const MinNode *op, std::ostream &os) {
  // TODO(wt): Consider vectorized reduction and impl for other dtypes
  DataType t = op->dtype;

  // Standard min/max functions don't support bfloat16 or float16
  if ((t.is_bfloat16() || t.is_float16()) && t.is_scalar()) {
    os << "cutlass::fast_min(" << PrintExpr(op->a) << ", " << PrintExpr(op->b)
       << ")";
    return;
  }

  // For float32 and float64 scalar, use standard min functions
  if (t.is_float() && t.is_scalar()) {
    if (t.bits() == 32 || t.bits() == 64) {
      os << "min(" << PrintExpr(op->a) << ", " << PrintExpr(op->b) << ")";
      return;
    }
  }

  // For all other scalar types (int, uint), use default implementation
  CodeGenC::VisitExpr_(op, os);
}

void CodeGenTileLangCUDA::VisitExpr_(const MaxNode *op, std::ostream &os) {
  // TODO(wt): Consider vectorized reduction and impl for other dtypes
  DataType t = op->dtype;

  // Standard min/max functions don't support bfloat16 or float16
  if ((t.is_bfloat16() || t.is_float16()) && t.is_scalar()) {
    os << "cutlass::fast_max(" << PrintExpr(op->a) << ", " << PrintExpr(op->b)
       << ")";
    return;
  }

  // For float32 and float64 scalar, use standard max functions
  if (t.is_float() && t.is_scalar()) {
    if (t.bits() == 32 || t.bits() == 64) {
      os << "max(" << PrintExpr(op->a) << ", " << PrintExpr(op->b) << ")";
      return;
    }
  }

  // For all other scalar types (int, uint), use default implementation
  CodeGenC::VisitExpr_(op, os);
}

1202
1203
1204
1205
void CodeGenTileLangCUDA::PrintCallExtern(Type ret_type, String global_symbol,
                                          const Array<PrimExpr> &args,
                                          bool skip_first_arg,
                                          std::ostream &os) { // NOLINT(*)
1206
  DataType ret_dtype = GetRuntimeDataType(ret_type);
1207
  if (ret_dtype.is_fixed_length_vector()) {
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
    //
    // Emit an unsupported vector call
    //
    // v = intrin_f((float4*)A[0], (float4*)B[0])
    //
    // as
    //
    // float4 __ret;
    // {
    //   float4 __arg0 = ((float4*)A)[0];
    //   float4 __arg1 = ((float4*)B)[0];
    //   __ret.x = intrin_f(__arg0.x, __arg1.x);
    //   __ret.y = intrin_f(__arg0.y, __arg1.y);
    //   __ret.z = intrin_f(__arg0.z, __arg1.z);
    //   __ret.w = intrin_f(__arg0.w, __arg1.w);
    // }
    // v = __ret;
    //
    // Declare the result vector.
    std::string sret = name_supply_->FreshName("_");
    this->PrintIndent();
    this->PrintType(ret_dtype, stream);
    stream << ' ' << sret << ";\n";
    {
      // Load arguments.
      std::vector<std::string> sargs;
      size_t arg_begin = static_cast<size_t>(skip_first_arg);
      for (size_t i = arg_begin; i < args.size(); ++i) {
        std::string val = SSAGetID(PrintExpr(args[i]), args[i].dtype());
        sargs.push_back(std::move(val));
      }

      // Emit a scalar call for each lane.
      for (int i = 0; i < ret_dtype.lanes(); ++i) {
        std::ostringstream scall;
        scall << global_symbol << "(";
        for (size_t j = 0; j < sargs.size(); ++j) {
1245
1246
          if (j > 0)
            scall << ", ";
1247
1248
1249
1250
1251
1252
1253
1254
          PrintVecElemLoad(sargs[j], args[arg_begin + j].dtype(), i, scall);
        }
        scall << ")";
        PrintVecElemStore(sret, ret_dtype, i, scall.str());
      }
    }
    os << sret;
  } else {
1255
1256
    CodeGenC::PrintCallExtern(ret_type, global_symbol, args, skip_first_arg,
                              os);
1257
1258
1259
1260
  }
}

// Print a reference expression to a buffer.
1261
1262
1263
1264
std::string CodeGenTileLangCUDA::GetBufferRef(DataType t,
                                              const BufferNode *buffer,
                                              PrimExpr index) {
  const VarNode *buffer_var = buffer->data.get();
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
  std::ostringstream os;
  std::string vid = GetVarID(buffer_var);
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  // bool is_vol = IsVolatile(buffer_var);
  // always false for tl cutlass backend.
  bool is_vol = false;

  auto ptr_cast = [this, is_vol, scope](DataType pointed_to) {
    std::ostringstream ptr_os;
    ptr_os << "(";
    if (is_vol) {
      ptr_os << "volatile ";
    }
    if (!scope.empty() && IsScopePartOfType()) {
      PrintStorageScope(scope, ptr_os);
    }
    PrintType(pointed_to, ptr_os);
    ptr_os << "*)";
    return ptr_os.str();
  };

  DataType buffer_element_dtype = buffer->dtype;

  std::string buffer_str = vid;
  if (!HandleTypeMatch(buffer_var, buffer_element_dtype) || is_vol) {
    std::stringstream temp;
    temp << "(" << ptr_cast(buffer_element_dtype) << vid << ")";
    buffer_str = temp.str();
  }
1297
1298
1299
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }
1300
  if (scope == "local.var" || scope.find("local.descriptor") == 0) {
1301
1302
1303
    os << vid;
    return os.str();
  }
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
  std::string index_str = PrintExpr(index);
  if (t.bits() == 4 || (t.bits() == 1 && t.is_int())) {
    // This is a special case, because CodegenCUDA::PrintType()
    // returns "int" for bool and for 4-bit integers. In most cases,
    // we divide by the number of lanes to determine the index.
    // However, the backing type for scalar int4 and scalar bool is
    // int32.  Therefore, we need to divide by the ratio of their
    // sizes in that case.
    int div_factor = (t.lanes() == 1) ? (32 / t.bits()) : t.lanes();

    os << "*("
       << "(" << ptr_cast(t) << vid << ")"
       << " + " << index_str << " / " << div_factor << ")";
  } else if (t == buffer_element_dtype) {
    os << buffer_str << "[" << index_str << "]";
  } else {
    os << "*" << ptr_cast(t) << "(" << buffer_str << " + " << index_str << ")";
  }

  return os.str();
}

1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
std::string CodeGenTileLangCUDA::GetVecLoad(DataType t,
                                            const BufferNode *buffer,
                                            PrimExpr base) {
  const VarNode *buffer_var = buffer->data.get();
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }

  if (scope != "global" || t.bits() * t.lanes() <= 128) {
    return this->CodeGenC::GetVecLoad(t, buffer, base);
  }
  ICHECK_EQ(t.bits() * t.lanes(), 256)
      << "Unsupported vector load size: " << t.bits() * t.lanes();
  auto buffer_ref = this->GetBufferRef(t, buffer, base);
  std::ostringstream os;
  os << "tl::ld_global_256(&(" << buffer_ref << "))";
  return os.str();
}

void CodeGenTileLangCUDA::PrintVecStore(const BufferNode *buffer, DataType t,
                                        PrimExpr base,
                                        const std::string &value) {
  const VarNode *buffer_var = buffer->data.get();
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }

  if (scope != "global" || t.bits() * t.lanes() <= 128) {
    this->CodeGenC::PrintVecStore(buffer, t, base, value);
    return;
  }
  ICHECK_EQ(t.bits() * t.lanes(), 256)
      << "Unsupported vector load size: " << t.bits() * t.lanes();
  auto buffer_ref = this->GetBufferRef(t, buffer, base);
  this->PrintIndent();
  this->stream << "tl::st_global_256(&(" << buffer_ref << "), " << value
               << ");\n";
}

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
/**
 * @brief Emit CUDA/TensorLib-specific code for a call expression.
 *
 * This visitor handles CallNode intrinsics and builtins that require emitting
 * CUDA/TL-specific code (inline PTX/ASM sequences, TensorLanguage runtime
 * calls, WMMA/TMA helpers, barriers, cp.async primitives, index-map based
 * stores, reinterpret/packing helpers, and various mma/ldmatrix patterns). The
 * function writes the generated code to the provided output stream and falls
 * back to the C codegen for unrecognized calls.
 *
 * The method recognizes and emits code for (non-exhaustive): cp.async and its
 * commit/wait variants, tma_load/store and im2col variants, ptX
 * ldmatrix/stmatrix helpers, mbarrier APIs, cooperative grid sync, WMMA/legacy
 * MMA intrinsics (fill/load/store/mma/bmma/ptx_mma/ptx_mma_sp), low-level PTX
 * asm helpers (ldg32, cp_async bulk/init/arrive/wait barriers), reinterpret
 * paths for special small-float encodings (e.g., float4 e2m1fn), tl::tl_gemm
 * and related external calls, and other TL runtime calls.
 *
 * Side effects:
 * - Emits to `os` and the internal codegen output stream.
 * - May set internal feature flags (e.g., need_cooperative_groups_,
 * need_mma_h_, need_cast_smem_ptr_to_int_, enable_sparse_gemm_).
 * - May open/close SSA scopes and mutate internal variable mappings.
 * - May call LOG(FATAL) / CHECK / ICHECK on invalid or unsupported argument
 *   patterns.
 *
 * @param op The call node to generate code for; the function inspects op->op
 *           and op->args to determine the appropriate emission.
 * @param os  Output stream to receive expression-level output when the caller
 *            expects an expression result (some paths write directly to the
 *            member stream instead).
 */
1405
void CodeGenTileLangCUDA::VisitExpr_(const CallNode *op, std::ostream &os) {
1406
1407
  auto print_extern_call_stmt = [&](std::string name, size_t start = 0,
                                    size_t end = 0) {
1408
1409
1410
1411
    // Cache context into a private ss, otherwise the let node may generate
    // within the function call arguments.
    std::ostringstream ss;

1412
1413
    for (size_t i = start; i < op->args.size() - end; i++) {
      if (i > start)
1414
1415
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
1416
    }
1417
1418
1419
1420

    this->PrintIndent();
    this->stream << name << "(";
    this->stream << ss.str();
1421
1422
    this->stream << ");\n";
  };
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
  auto print_mbarrier_obj = [&](PrimExpr barrier_id) {
    std::ostringstream ss;
    if (barrier_id.as<IntImmNode>()) {
      // incase the barrier_id is an integer, we need to print the barrier_id as
      // an integer
      ss << mbarrier_name_ << "[" << barrier_id << "]";
    } else {
      // otherwise may be a T.get_mbarrier() call or BufferLoad Node
      // we need to print the barrier_id as a string
      ss << this->PrintExpr(barrier_id);
    }
    return ss.str();
  };
1436
1437
1438
1439
1440
1441
  if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
1442
1443
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
1444
1445
    if (op->args.size() == 5) {
      this->PrintIndent();
1446
1447
      this->stream << "tl::cp_async_gs<" << size << ">(" << dst << "+"
                   << dst_offset << ", " << src << "+" << src_offset << ");\n";
1448
1449
1450
    } else {
      std::string condition = this->PrintExpr(op->args[5]);
      this->PrintIndent();
1451
1452
1453
      this->stream << "tl::cp_async_gs_conditional<" << size << ">(" << dst
                   << "+" << dst_offset << ", " << src << "+" << src_offset
                   << ", " << condition << ");\n";
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
    }
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    print_extern_call_stmt("tl::cp_async_commit");
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
    std::string func_name = "tl::cp_async_wait<" + std::to_string(n) + ">";
    print_extern_call_stmt(func_name, 1);
  } else if (op->op.same_as(builtin::create_barriers())) {
    this->PrintIndent();
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
1464
1465
    auto mbarrier_storage_name = mbarrier_name_ + "_mem";
    this->stream << "__shared__ uint64_t " << mbarrier_storage_name << "["
1466
                 << barrier_count << "];\n";
1467
1468
1469
    this->PrintIndent();
    this->stream << "auto " << mbarrier_name_ << " = reinterpret_cast<"
                 << mbarrier_dtype_ << "*>(" << mbarrier_storage_name << ");\n";
1470
  } else if (op->op.same_as(tl::get_mbarrier())) {
1471
    ICHECK_EQ(op->args.size(), 1);
1472
    std::string barrier_id = this->PrintExpr(op->args[0]);
1473
    os << mbarrier_name_ + "[" + barrier_id + "]";
1474
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
    if (op->args.size() == 1) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      this->stream << mbarrier_obj << ".arrive();\n";
    } else if (op->args.size() == 3) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto cta_id = this->PrintExpr(op->args[1]);
      auto pred = this->PrintExpr(op->args[2]);
      this->stream << mbarrier_obj << ".arrive(" << cta_id << ", " << pred
                   << ");\n";
    } else {
      LOG(FATAL) << "Invalid parameter  for tl::arrive_barrier "
                 << op->args.size();
    }
1490
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
1491
1492
1493
1494
1495
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto arrive_count = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".init(" << arrive_count << ");\n";
1496
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
    if (op->args.size() == 2) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto transaction_bytes = this->PrintExpr(op->args[1]);
      this->stream << mbarrier_obj << ".arrive_and_expect_tx("
                   << transaction_bytes << ");\n";
    } else if (op->args.size() == 4) {
      this->PrintIndent();
      auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
      auto transaction_bytes = this->PrintExpr(op->args[1]);
      auto cta_id = this->PrintExpr(op->args[2]);
      auto pred = this->PrintExpr(op->args[3]);
      this->stream << mbarrier_obj << ".arrive_and_expect_tx("
                   << transaction_bytes << ", " << cta_id << ", " << pred
                   << ");\n";
    } else {
      LOG(FATAL) << "Invalid parameter  for tl::arrive_barrier_expect_tx "
                 << op->args.size();
    }
1516
1517
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive");
1518
1519
  } else if (op->op.same_as(tl::ptx_fence_barrier_init())) {
    print_extern_call_stmt("tl::fence_barrier_init");
1520
1521
  } else if (op->op.same_as(tl::ptx_cp_async_barrier_noinc())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive_noinc");
1522
  } else if (op->op.same_as(tl::mbarrier_expect_tx())) {
1523
1524
1525
1526
1527
1528
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto transaction_bytes = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".expect_transaction(" << transaction_bytes
                 << ");\n";
1529
  } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
1530
1531
1532
1533
1534
    ICHECK_EQ(op->args.size(), 2);
    this->PrintIndent();
    auto mbarrier_obj = print_mbarrier_obj(op->args[0]);
    auto phase = this->PrintExpr(op->args[1]);
    this->stream << mbarrier_obj << ".wait(" << phase << ");\n";
1535
1536
1537
1538
  } else if (op->op.same_as(tl::ptx_init_tensor_memory())) {
    print_extern_call_stmt("tl::tmem_allocate");
  } else if (op->op.same_as(tl::ptx_deallocate_tensor_memory())) {
    print_extern_call_stmt("tl::tmem_deallocate");
1539
1540
  } else if (op->op.same_as(tl::no_set_max_nreg())) {
    return;
1541
  } else if (op->op.same_as(tl::tma_load())) {
1542
    std::ostringstream ss;
1543
    ICHECK_GE(op->args.size(), 2);
1544
1545
1546
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
1547
1548
1549
1550
1551
1552
    // Simplify the code by using the default eviction policy
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_load<tl::CacheHintSm90::" << eviction_policy << ">(";
    } else {
      ss << "tl::tma_load(";
    }
1553
    auto desc = op->args[0];
1554
    ss << this->PrintExpr(desc) << ", ";
1555
    ss << print_mbarrier_obj(op->args[1]) << ", ";
1556
    for (size_t i = 2; i < op->args.size() - 1; i++) {
1557
      if (i > 2)
1558
1559
        ss << ", ";
      ss << this->PrintExpr(op->args[i]);
1560
    }
1561
1562
1563
    ss << ");\n";
    this->PrintIndent();
    this->stream << ss.str();
1564
  } else if (op->op.same_as(tl::tma_load_im2col())) {
1565
    std::stringstream ss;
1566
1567
1568
1569
1570
1571
1572
1573
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_load_im2col<tl::CacheHintSm90::" << eviction_policy << ">";
    } else {
      ss << "tl::tma_load_im2col";
    }
1574
    print_extern_call_stmt(ss.str(), 0, 1);
1575
  } else if (op->op.same_as(tl::tma_store())) {
1576
    std::stringstream ss;
1577
1578
1579
1580
1581
    auto need_reduce = op->args[op->args.size() - 2].as<IntImmNode>()->value;
    if (need_reduce) {
      print_extern_call_stmt("tl::tma_store_add", 0, 2);
      return;
    }
1582
1583
1584
1585
1586
1587
1588
1589
    auto eviction_policy =
        this->eviction_policy_names_
            [op->args[op->args.size() - 1].as<IntImmNode>()->value];
    if (eviction_policy != "EVICT_NORMAL") {
      ss << "tl::tma_store<tl::CacheHintSm90::" << eviction_policy << ">";
    } else {
      ss << "tl::tma_store";
    }
1590
    print_extern_call_stmt(ss.str(), 0, 2);
1591
  } else if (op->op.same_as(tl::ptx_ldmatrix())) {
1592
1593
1594
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
1595
1596
    if (trans == 1)
      func_name += "_trans";
1597
    print_extern_call_stmt(func_name, 2);
1598
  } else if (op->op.same_as(tl::ptx_stmatrix())) {
1599
1600
1601
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_stmatrix_x" + std::to_string(num);
1602
1603
    if (trans == 1)
      func_name += "_trans";
1604
    print_extern_call_stmt(func_name, 2);
1605
  } else if (op->op.same_as(tl::fence_proxy_async())) {
1606
    print_extern_call_stmt("tl::fence_proxy_async");
1607
  } else if (op->op.same_as(tl::tma_store_arrive())) {
1608
    print_extern_call_stmt("tl::tma_store_arrive");
1609
  } else if (op->op.same_as(tl::tma_store_wait())) {
1610
    print_extern_call_stmt("tl::tma_store_wait<0>");
1611
1612
1613
1614
1615
1616
1617
1618
1619
  } else if (op->op.same_as(tl::warpgroup_arrive())) {
    print_extern_call_stmt("tl::warpgroup_arrive");
  } else if (op->op.same_as(tl::warpgroup_commit_batch())) {
    print_extern_call_stmt("tl::warpgroup_commit_batch");
  } else if (op->op.same_as(tl::warpgroup_wait())) {
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::warpgroup_wait<" << std::to_string(num_mma)
                 << ">();\n";
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
  } else if (op->op.same_as(tl::warpgroup_fence_operand())) {
    ICHECK_EQ(op->args.size(), 4U);
    std::string dtype = Downcast<StringImm>(op->args[0])->value;
    std::string data_ptr = this->PrintExpr(op->args[1]);
    std::string offset = this->PrintExpr(op->args[2]);
    std::string num_regs = this->PrintExpr(op->args[3]);
    auto dtype_enum = tl::codegen::ptx::DTypeFromString(dtype);
    std::string cast_type = "uint32_t";
    if (dtype_enum == tl::codegen::ptx::DataType::kFloat32 ||
        dtype_enum == tl::codegen::ptx::DataType::kTensorFloat32) {
      cast_type = "float";
    }
    this->PrintIndent();
    this->stream << "tl::warpgroup_fence_operand(reinterpret_cast<" << cast_type
                 << "*>(" << data_ptr << " + " << offset << "), " << num_regs
                 << ");\n";
1636
  } else if (op->op.same_as(tl::set_max_nreg())) {
1637
1638
1639
    this->PrintIndent();
    int nreg = Downcast<IntImm>(op->args[0])->value;
    int is_inc = Downcast<IntImm>(op->args[1])->value;
1640
1641
    std::string func_name =
        is_inc ? "tl::warpgroup_reg_alloc" : "tl::warpgroup_reg_dealloc";
1642
    this->stream << func_name << "<" << std::to_string(nreg) << ">();\n";
1643
  } else if (op->op.same_as(tl::wait_wgmma())) {
1644
1645
1646
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::wait_wgmma<" << std::to_string(num_mma) << ">();\n";
1647
  } else if (op->op.same_as(tl::pack_b16())) {
1648
1649
    os << "__pack_half2(" << this->PrintExpr(op->args[0]) << ", "
       << this->PrintExpr(op->args[1]) << ")";
1650
1651
1652
  } else if (op->op.same_as(tl::sync_grid())) {
    this->need_cooperative_groups_ = true;
    this->PrintIndent();
1653
    this->stream << "cooperative_groups::this_grid().sync();\n";
1654
1655
1656
  } else if (op->op.same_as(tl::loop_break())) {
    this->PrintIndent();
    this->stream << "break;\n";
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
  } else if (op->op.same_as(builtin::tvm_fill_fragment())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 6U);
    os << "nvcuda::wmma::fill_fragment(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_load_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::load_matrix_sync(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[6], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_store_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::store_matrix_sync(";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[6], os);
1690
    if (const StringImmNode *str = op->args[7].as<StringImmNode>()) {
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
      os << ", nvcuda::wmma::mem_" << str->value;
    } else {
      LOG(FATAL) << "Invalid parameters";
    }
    os << ")";
  } else if (op->op.same_as(builtin::tvm_mma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::mma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::tvm_bmma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::bmma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::ptx_mma())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp64, ...
    // arg 4: B precision: fp16, fp64, ...
    // arg 5: C precision: fp32, fp64, ...
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index
    // arg 12: saturate
    // arg 13: (optional) 1-bit operator (xor or and)
    ICHECK(op->args.size() == 13U || op->args.size() == 14U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
1744
1745
1746
1747
1748
1749
    auto dtype_a_enum = tl::codegen::ptx::DTypeFromString(A_dtype);
    auto dtype_b_enum = tl::codegen::ptx::DTypeFromString(B_dtype);
    auto dtype_c_enum = tl::codegen::ptx::DTypeFromString(C_dtype);
    auto [m, n, k] = tl::codegen::ptx::ParseMMAShape(shape);

    need_mma_instruction_h_ = true;
1750
    this->PrintIndent();
1751
1752
1753
1754
1755
1756
    std::string mma_call =
        "tl::mma_sync<(AType), (BType), (CType), (M), (N), (K), (TransA), "
        "(TransB)>(reinterpret_cast<(CRegType)*>((C_ptr) + (C_offset)), "
        "reinterpret_cast<const (ARegType)*>((A_ptr) + (A_offset)), "
        "reinterpret_cast<const (BRegType)*>((B_ptr) + (B_offset)));\n";
    tl::codegen::Replacer replacer;
1757
1758
1759

    // TODO(lei): Type Workaround for TF32, should be removed when
    // we introduced tfloat32_t in the frontend.
1760
1761
1762
1763
1764
1765
1766
1767
    std::string AType = tl::codegen::ptx::DTypeEnumToString(dtype_a_enum);
    if (AType == "tl::DataType::kFloat32") {
      AType = "tl::DataType::kTensorFloat32";
    }
    std::string BType = tl::codegen::ptx::DTypeEnumToString(dtype_b_enum);
    if (BType == "tl::DataType::kFloat32") {
      BType = "tl::DataType::kTensorFloat32";
    }
1768
1769
1770
1771
1772
1773
1774
1775
    std::string ARegType = tl::codegen::GetMMARegisterType(dtype_a_enum);
    if (ARegType == "float") {
      ARegType = "uint32_t";
    }
    std::string BRegType = tl::codegen::GetMMARegisterType(dtype_b_enum);
    if (BRegType == "float") {
      BRegType = "uint32_t";
    }
1776

1777
1778
    replacer.register_rule("(AType)", AType);
    replacer.register_rule("(BType)", BType);
1779
1780
1781
1782
1783
1784
1785
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_c_enum));
    replacer.register_rule("(M)", std::to_string(m));
    replacer.register_rule("(N)", std::to_string(n));
    replacer.register_rule("(K)", std::to_string(k));
    replacer.register_rule("(TransA)", A_layout == "row" ? "false" : "true");
    replacer.register_rule("(TransB)", B_layout == "row" ? "false" : "true");
1786
1787
    replacer.register_rule("(ARegType)", ARegType);
    replacer.register_rule("(BRegType)", BRegType);
1788
1789
1790
1791
1792
1793
1794
1795
1796
    replacer.register_rule("(CRegType)",
                           tl::codegen::GetMMARegisterType(dtype_c_enum));
    replacer.register_rule("(A_ptr)", a_ref);
    replacer.register_rule("(A_offset)", a_bias);
    replacer.register_rule("(B_ptr)", b_ref);
    replacer.register_rule("(B_offset)", b_bias);
    replacer.register_rule("(C_ptr)", c_ref);
    replacer.register_rule("(C_offset)", c_bias);
    this->stream << replacer.rewrite(mma_call);
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
  } else if (op->op.same_as(tl::ptx_mma_sm70())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16
    // arg 4: B precision: fp16
    // arg 5: C precision: fp16, fp32
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index
    // arg 12: saturate
    ICHECK_EQ(op->args.size(), 12U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
    auto dtype_a_enum = tl::codegen::ptx::DTypeFromString(A_dtype);
    auto dtype_b_enum = tl::codegen::ptx::DTypeFromString(B_dtype);
    auto dtype_c_enum = tl::codegen::ptx::DTypeFromString(C_dtype);
    auto [m, n, k] = tl::codegen::ptx::ParseMMAShape(shape);

    need_mma_sm70_instruction_h_ = true;
    this->PrintIndent();
    std::string mma_call =
        "tl::mma_sync_sm70<(AType), (BType), (CType), (M), (N), (K), (TransA), "
        "(TransB)>(reinterpret_cast<(CRegType)*>((C_ptr) + (C_offset)), "
        "reinterpret_cast<const (ARegType)*>((A_ptr) + (A_offset)), "
        "reinterpret_cast<const (BRegType)*>((B_ptr) + (B_offset)));\n";
    tl::codegen::Replacer replacer;

    replacer.register_rule("(AType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_a_enum));
    replacer.register_rule("(BType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_b_enum));
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_c_enum));
    replacer.register_rule("(M)", std::to_string(m));
    replacer.register_rule("(N)", std::to_string(n));
    replacer.register_rule("(K)", std::to_string(k));
    replacer.register_rule("(TransA)", A_layout == "row" ? "false" : "true");
    replacer.register_rule("(TransB)", B_layout == "row" ? "false" : "true");
    replacer.register_rule("(ARegType)",
                           tl::codegen::GetMMARegisterType(dtype_a_enum));
    replacer.register_rule("(BRegType)",
                           tl::codegen::GetMMARegisterType(dtype_b_enum));
    replacer.register_rule("(CRegType)",
                           tl::codegen::GetMMARegisterType(dtype_c_enum));
    replacer.register_rule("(A_ptr)", a_ref);
    replacer.register_rule("(A_offset)", a_bias);
    replacer.register_rule("(B_ptr)", b_ref);
    replacer.register_rule("(B_offset)", b_bias);
    replacer.register_rule("(C_ptr)", c_ref);
    replacer.register_rule("(C_offset)", c_bias);
    this->stream << replacer.rewrite(mma_call);
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
  } else if (op->op.same_as(builtin::ptx_mma_sp())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp32, ...
    // arg 4: B precision: fp16, fp32, ...
    // arg 5: C precision: fp16, fp32, ...
    // arg 6: A multiplicand pointer
    // arg 7: A multiplicand index
    // arg 8: B multiplicand pointer
    // arg 9: B multiplicand index
    // arg 10: C accumulator pointer
    // arg 11: C accumulator index
    // arg 12: metadata
    // arg 13: metadata index
    // arg 14: sparse_selector
    // arg 15: saturate
    ICHECK_EQ(op->args.size(), 16U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_offset = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_offset = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_offset = this->PrintExpr(op->args[11]);
    std::string metadata = this->PrintExpr(op->args[12]);
    std::string metadata_offset = this->PrintExpr(op->args[13]);
    std::string sparse_selector = this->PrintExpr(op->args[14]);
    bool saturate = Downcast<Bool>(op->args[15])->value;
1896
    this->PrintIndent();
1897
    std::string asm_code = PrintMMAAssembly(
1898
1899
1900
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_offset,
        b_ref, b_offset, c_ref, c_offset, metadata, metadata_offset,
        sparse_selector, "", true, saturate);
1901
    this->stream << asm_code;
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
  } else if (op->op.same_as(tl::ptx_wgmma_ss())) {
    // arg 0: dtype
    // arg 1: shape
    // arg 2: A_layout
    // arg 3: B_layout
    // arg 4: A_dtype
    // arg 5: B_dtype
    // arg 6: C_dtype
    // arg 7: multiplicand_a
    // arg 8: multiplicand_b
    // arg 9: accumulator
    // arg 10: saturate
    ICHECK_EQ(op->args.size(), 15U) << "ptx_wgmma_ss args is " << op->args;
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    bool a_is_k_major = Downcast<Bool>(op->args[1])->value;
    bool b_is_k_major = Downcast<Bool>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_desc = this->PrintExpr(op->args[6]);
    std::string A_offset = this->PrintExpr(op->args[7]);
    std::string b_desc = this->PrintExpr(op->args[8]);
    std::string B_offset = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_offset = this->PrintExpr(op->args[11]);
1927
    std::string scale_out = this->PrintExpr(op->args[12]);
1928
1929
1930
1931
1932
1933
    bool scale_in_a = Downcast<Bool>(op->args[13])->value;
    bool scale_in_b = Downcast<Bool>(op->args[14])->value;

    const bool a_is_shared = true;
    this->PrintIndent();
    auto [m, n, k] = tl::codegen::ptx::ParseMMAShape(shape);
1934
    need_wgmma_instruction_h_ = true;
1935
1936
1937
1938
1939
1940
    std::string wgmma_asm_code =
        "tl::wgmma_ss<(AType), (BType), (CType), (M), (N), (K), (tnspA), "
        "(tnspB), (scaleA), (scaleB)>(uint64_t((desc_a) + (A_offset)), "
        "uint64_t((desc_b) + (B_offset)), ((uint32_t*)((C))), (scale_out));\n";
    // replace patterns
    tl::codegen::Replacer replacer;
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952

    std::string AType = tl::codegen::ptx::DTypeEnumToString(A_dtype);
    if (AType == "tl::DataType::kFloat32") {
      AType = "tl::DataType::kTensorFloat32";
    }
    std::string BType = tl::codegen::ptx::DTypeEnumToString(B_dtype);
    if (BType == "tl::DataType::kFloat32") {
      BType = "tl::DataType::kTensorFloat32";
    }

    replacer.register_rule("(AType)", AType);
    replacer.register_rule("(BType)", BType);
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(C_dtype));
    replacer.register_rule("(M)", std::to_string(m));
    replacer.register_rule("(N)", std::to_string(n));
    replacer.register_rule("(K)", std::to_string(k));
    replacer.register_rule("(tnspA)", a_is_k_major ? "false" : "true");
    replacer.register_rule("(tnspB)", b_is_k_major ? "false" : "true");
    replacer.register_rule("(scaleA)", scale_in_a ? "1" : "-1");
    replacer.register_rule("(scaleB)", scale_in_b ? "1" : "-1");
    replacer.register_rule("(desc_a)", a_desc);
    replacer.register_rule("(A_offset)", A_offset);
    replacer.register_rule("(desc_b)", b_desc);
    replacer.register_rule("(B_offset)", B_offset);
    replacer.register_rule("(C)", c_ref + " + " + c_offset);
1967
    replacer.register_rule("(scale_out)", scale_out);
1968
1969
1970
    wgmma_asm_code = replacer.rewrite(wgmma_asm_code);
    this->stream << wgmma_asm_code;
  } else if (op->op.same_as(tl::ptx_wgmma_rs())) {
1971
1972
1973
1974
1975
1976
1977
1978
1979
    // arg 0: shape
    // arg 1: B_layout
    // arg 2: A_dtype
    // arg 3: B_dtype
    // arg 4: C_dtype
    // arg 5: multiplicand_a
    // arg 6: multiplicand_a offset
    // arg 7: multiplicand_b descriptor
    // arg 8: multiplicand_b offset
1980
    // arg 9: accumulator
1981
1982
1983
1984
1985
    // arg 10: accumulator offset
    // arg 11: scale_out
    // arg 12: scale_in_a
    // arg 13: scale_in_b
    ICHECK_EQ(op->args.size(), 14U) << "ptx_wgmma_rs args is " << op->args;
1986
    std::string shape = Downcast<StringImm>(op->args[0])->value;
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
    bool b_is_k_major = Downcast<Bool>(op->args[1])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[2])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string a_ref = this->PrintExpr(op->args[5]);
    std::string A_offset = this->PrintExpr(op->args[6]);
    std::string b_desc = this->PrintExpr(op->args[7]);
    std::string B_offset = this->PrintExpr(op->args[8]);
    std::string c_ref = this->PrintExpr(op->args[9]);
    std::string c_offset = this->PrintExpr(op->args[10]);
1997
    std::string scale_out = this->PrintExpr(op->args[11]);
1998
1999
2000
2001
2002
2003
2004
    bool scale_in_a = Downcast<Bool>(op->args[12])->value;
    bool scale_in_b = Downcast<Bool>(op->args[13])->value;

    auto dtype_a_enum = tl::codegen::ptx::DTypeFromString(A_dtype);
    auto dtype_b_enum = tl::codegen::ptx::DTypeFromString(B_dtype);
    auto dtype_c_enum = tl::codegen::ptx::DTypeFromString(C_dtype);
    auto [m, n, k] = tl::codegen::ptx::ParseMMAShape(shape);
2005

2006
    need_wgmma_instruction_h_ = true;
2007
    this->PrintIndent();
2008
2009
2010
2011
2012
2013
2014
2015
2016
    std::string wgmma_call =
        "tl::wgmma_rs<(AType), (BType), (CType), (M), (N), (K), (tnspA), "
        "(tnspB), (scaleA), (scaleB)>(reinterpret_cast<const "
        "uint32_t*>((A_ptr) + (A_offset)), "
        "uint64_t((desc_b) + (B_offset)), "
        "reinterpret_cast<uint32_t*>((C_ptr) + (C_offset)), "
        "(scale_out));\n";

    tl::codegen::Replacer replacer;
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
    std::string AType = tl::codegen::ptx::DTypeEnumToString(A_dtype);
    if (AType == "tl::DataType::kFloat32") {
      AType = "tl::DataType::kTensorFloat32";
    }
    std::string BType = tl::codegen::ptx::DTypeEnumToString(B_dtype);
    if (BType == "tl::DataType::kFloat32") {
      BType = "tl::DataType::kTensorFloat32";
    }

    replacer.register_rule("(AType)", AType);
    replacer.register_rule("(BType)", BType);
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_c_enum));
    replacer.register_rule("(M)", std::to_string(m));
    replacer.register_rule("(N)", std::to_string(n));
    replacer.register_rule("(K)", std::to_string(k));
    replacer.register_rule("(tnspA)", "false");
    replacer.register_rule("(tnspB)", b_is_k_major ? "false" : "true");
    replacer.register_rule("(scaleA)", scale_in_a ? "1" : "-1");
    replacer.register_rule("(scaleB)", scale_in_b ? "1" : "-1");
    replacer.register_rule("(A_ptr)", a_ref);
    replacer.register_rule("(A_offset)", A_offset);
    replacer.register_rule("(desc_b)", b_desc);
    replacer.register_rule("(B_offset)", B_offset);
    replacer.register_rule("(C_ptr)", c_ref);
    replacer.register_rule("(C_offset)", c_offset);
2043
    replacer.register_rule("(scale_out)", scale_out);
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
    wgmma_call = replacer.rewrite(wgmma_call);
    this->stream << wgmma_call;
  } else if (op->op.same_as(tl::ptx_tcgen05_mma_ss())) {
    ICHECK_EQ(op->args.size(), 14U)
        << "ptx_tcgen05_mma_ss args is " << op->args;
    std::string C_dtype = Downcast<StringImm>(op->args[0])->value;
    std::string a_desc = this->PrintExpr(op->args[1]);
    std::string A_offset = this->PrintExpr(op->args[2]);
    std::string b_desc = this->PrintExpr(op->args[3]);
    std::string B_offset = this->PrintExpr(op->args[4]);
    std::string c_ref = this->PrintExpr(op->args[5]);
    std::string c_offset = this->PrintExpr(op->args[6]);
    PrimExpr desc_expr = op->args[7];
    std::string scale_out = this->PrintExpr(op->args[8]);
    std::string mask0 = this->PrintExpr(op->args[9]);
    std::string mask1 = this->PrintExpr(op->args[10]);
    std::string mask2 = this->PrintExpr(op->args[11]);
    std::string mask3 = this->PrintExpr(op->args[12]);
    bool enable_ws = Downcast<Bool>(op->args[13])->value;

    auto dtype_c_enum = tl::codegen::ptx::DTypeFromString(C_dtype);

    need_tcgen05mma_instruction_h_ = true;
    this->PrintIndent();
    std::string tcgen05_call =
        "tl::(tcgen05_name)<(CType)>(uint64_t((desc_a) + (A_offset)), "
        "uint64_t((desc_b) + (B_offset)), (*reinterpret_cast<uint32_t*>((C))) "
        "+ (C_offset), "
        "(scale_out), static_cast<uint32_t>((desc_val)), (mask0), (mask1), "
        "(mask2), (mask3));\n";
    tl::codegen::Replacer replacer;
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_c_enum));
    replacer.register_rule("(desc_a)", a_desc);
    replacer.register_rule("(A_offset)", A_offset);
    replacer.register_rule("(desc_b)", b_desc);
    replacer.register_rule("(B_offset)", B_offset);
    replacer.register_rule("(C)", c_ref);
    replacer.register_rule("(C_offset)", c_offset);
    replacer.register_rule("(tcgen05_name)",
                           enable_ws ? "tcgen05mma_ws_ss" : "tcgen05mma_ss");
    replacer.register_rule("(scale_out)", scale_out);
    replacer.register_rule("(desc_val)", this->PrintExpr(desc_expr));
    replacer.register_rule("(mask0)", mask0);
    replacer.register_rule("(mask1)", mask1);
    replacer.register_rule("(mask2)", mask2);
    replacer.register_rule("(mask3)", mask3);
    tcgen05_call = replacer.rewrite(tcgen05_call);
    this->stream << tcgen05_call;
  } else if (op->op.same_as(tl::ptx_tcgen05_mma_ts())) {
    // TS: A from TMEM, B from SMEM (desc)
    ICHECK_EQ(op->args.size(), 13U)
        << "ptx_tcgen05_mma_ts args is " << op->args;
    std::string kind_dtype = Downcast<StringImm>(op->args[0])->value;
    std::string a_ref = this->PrintExpr(op->args[1]);
    std::string A_offset = this->PrintExpr(op->args[2]);
    std::string b_desc = this->PrintExpr(op->args[3]);
    std::string B_offset = this->PrintExpr(op->args[4]);
    std::string c_ref = this->PrintExpr(op->args[5]);
    std::string c_offset = this->PrintExpr(op->args[6]);
    PrimExpr desc_expr = op->args[7];
    std::string scale_out = this->PrintExpr(op->args[8]);
    std::string mask0 = this->PrintExpr(op->args[9]);
    std::string mask1 = this->PrintExpr(op->args[10]);
    std::string mask2 = this->PrintExpr(op->args[11]);
    std::string mask3 = this->PrintExpr(op->args[12]);

    auto dtype_enum = tl::codegen::ptx::DTypeFromString(kind_dtype);

    need_tcgen05mma_instruction_h_ = true;
    this->PrintIndent();
    std::string tcgen05_call =
        "tl::tcgen05mma_ts<(CType)>( (*reinterpret_cast<uint32_t*>((A))) + "
        "(A_offset), "
        "uint64_t((desc_b) + (B_offset)), (*reinterpret_cast<uint32_t*>((C))) "
        "+ (C_offset), "
        "(scale_out), static_cast<uint32_t>((desc_val)), (mask0), (mask1), "
        "(mask2), (mask3));\n";
    tl::codegen::Replacer replacer;
    replacer.register_rule("(CType)",
                           tl::codegen::ptx::DTypeEnumToString(dtype_enum));
    replacer.register_rule("(A)", a_ref);
    replacer.register_rule("(A_offset)", A_offset);
    replacer.register_rule("(desc_b)", b_desc);
    replacer.register_rule("(B_offset)", B_offset);
    replacer.register_rule("(C)", c_ref);
    replacer.register_rule("(C_offset)", c_offset);
    replacer.register_rule("(scale_out)", scale_out);
    replacer.register_rule("(desc_val)", this->PrintExpr(desc_expr));
    replacer.register_rule("(mask0)", mask0);
    replacer.register_rule("(mask1)", mask1);
    replacer.register_rule("(mask2)", mask2);
    replacer.register_rule("(mask3)", mask3);
    tcgen05_call = replacer.rewrite(tcgen05_call);
    this->stream << tcgen05_call;
  } else if (op->op.same_as(tl::tcgen05_mma_arrive())) {
    ICHECK_EQ(op->args.size(), 1U) << "tcgen05_mma_arrive expects 1 argument";
    need_tcgen05_common_h_ = true;
    this->PrintIndent();
    this->stream << "tl::tcgen05_mma_arrive(" << this->PrintExpr(op->args[0])
                 << ");\n";
2145
2146
2147
2148
2149
2150
2151
  } else if (op->op.same_as(builtin::ptx_ldmatrix())) {
    // arg 0: whether the matrix is loaded in column major format or not.
    // arg 1: number of matrices to load.
    // arg 2: The data type in the matrix, .b16 is the only accepted data type.
    // arg 3: pointer to local buffer.
    // arg 4: The offset of the element to store in the local buffer.
    // arg 5: pointer to the shared memory buffer to load.
2152
2153
    // arg 6: The offset of the start element of the row to load in shared
    // memory.
2154
2155
2156
2157
2158
2159
2160
2161
    ICHECK_EQ(op->args.size(), 7U);
    bool trans = Downcast<Bool>(op->args[0])->value;
    int num = Downcast<Integer>(op->args[1])->value;
    std::string type = Downcast<StringImm>(op->args[2])->value;
    std::string local_ptr = this->PrintExpr(op->args[3]);
    std::string local_elem_offset = this->PrintExpr(op->args[4]);
    std::string smem_ptr = this->PrintExpr(op->args[5]);
    if (trans && op->dtype.bits() == 8) {
2162
2163
      // Since ldmatrix assumes that a matrix element is 16 bit, it cannot
      // properly transpose an int8 matrix.
2164
2165
2166
2167
      std::string smem_stride = this->PrintExpr(op->args[6]);
      ICHECK(num == 4);
      os << "for (int i = 0; i < 16; ++i) {\n";
      os << local_ptr << "[" + local_elem_offset + " + i] = " << smem_ptr
2168
2169
2170
2171
         << "[(i % 8) / 4 * " + smem_stride +
                " * 16 + (threadIdx.x % 4) * 4 * " + smem_stride +
                "+ (i % 4) * " + smem_stride +
                " + threadIdx.x / 4 +  (i / 8) * 8];\n";
2172
2173
2174
      os << "}\n";
    } else {
      std::string smem_elem_offset = this->PrintExpr(op->args[6]);
2175
2176
2177
2178
2179
2180
      std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
      if (trans == 1)
        func_name += "_trans";
      this->PrintIndent();
      this->stream << func_name << "(" << smem_ptr << " + " << smem_elem_offset
                   << ", " << local_ptr << " + " << local_elem_offset << ");\n";
2181
2182
2183
2184
2185
2186
2187
2188
2189
    }
  } else if (op->op.same_as(builtin::mma_store())) {
    int m = Downcast<Integer>(op->args[0])->value;
    int n = Downcast<Integer>(op->args[1])->value;
    std::string dst = this->PrintExpr(op->args[2]);
    std::string src = this->PrintExpr(op->args[3]);
    std::string src_offset = this->PrintExpr(op->args[4]);
    PrimExpr stride = op->args[5];

2190
2191
    ICHECK(m == 16 && n == 16)
        << "Only m == 16 && n == 16 case supported for now";
2192

2193
2194
2195
2196
2197
    // Each thread in a warp holds a certain number of elements of an MMA
    // output. For example, if we compute a 16x16 tile using MMA, each thread
    // holds 8 elements in its registers. So conceptually, a warp memory is
    // organized as a 32x8 block. A map from a 16x16 tile to a 32x8 block of
    // memory is specified by the index map below.
2198

2199
2200
    // To store the 32x8 output back to a 16x16 tile in shared or global memory,
    // we invert this map to determine the output location for each 8 element.
2201

2202
2203
    const auto index_map_func = ffi::Function::GetGlobal(
        "tir.index_map.shared_16x16_to_mma_32x8_layout");
2204

2205
2206
2207
    IndexMap index_map;
    if (!index_map_func) {
      Var i, j;
2208

2209
      // The index map is defined as follows:
2210
2211
2212
2213
2214
      index_map = IndexMap(
          {i, j}, {4 * FloorMod(i, 8) + FloorDiv(FloorMod(j, 8), 2),
                   4 * FloorDiv(j, 8) + FloorDiv(i, 8) * 2 + FloorMod(j, 2)});
    } else {
      index_map = IndexMap::FromFunc(2, *index_map_func);
2215
2216
2217
2218
2219
2220
2221
    }

    arith::Analyzer analyzer;
    auto inverse_index_map =
        index_map.Inverse({Range(0, m), Range(0, n)}, &analyzer);
    auto indices_16x16 = inverse_index_map->final_indices;

2222
2223
2224
    // "//" and "%" in the index map are translated to FloorDiv/Mod, but the
    // plain Div/Mod are fine. FloorDiv/Mod are supposed to be lowered before
    // they reach codegen, so manually replace them to the plain ones here.
2225
    class LowerFloorDivMod : public ExprMutator {
2226
2227
    public:
      PrimExpr VisitExpr_(const FloorDivNode *op) {
2228
2229
        return tir::Div(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
2230
      PrimExpr VisitExpr_(const FloorModNode *op) {
2231
2232
2233
2234
        return tir::Mod(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
    };

2235
2236
    auto dst_ind =
        LowerFloorDivMod()(indices_16x16[0] * stride + indices_16x16[1]);
2237
2238
2239
2240
2241
2242
2243
2244
2245

    var_idmap_[inverse_index_map->initial_indices[0].get()] = "threadIdx.x";
    var_idmap_[inverse_index_map->initial_indices[1].get()] = "local_id";
    if (op->dtype.bits() == 16) {
      os << "for (int local_id = 0; local_id < 8; local_id+=2) {\n";
      os << "*((uint *)&" << dst << "[" + this->PrintExpr(dst_ind) + "])"
         << " = "
         << "*((uint *)&" << src << "[" << src_offset << " + local_id]);\n";
      os << "}\n";
2246
    } else {
2247
      os << "for (int local_id = 0; local_id < 8; ++local_id) {\n";
2248
2249
      os << dst << "[" + this->PrintExpr(dst_ind) + "]" << " = " << src << "["
         << src_offset << " + local_id];\n";
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
      os << "}\n";
    }

  } else if (op->op.same_as(builtin::mma_fill())) {
    std::string num_elem = this->PrintExpr(op->args[0]);
    std::string dst = this->PrintExpr(op->args[1]);
    std::string dst_offset = this->PrintExpr(op->args[2]);

    os << "for (int i = 0; i < " << num_elem << "; ++i) {\n";
    os << dst << "[" << dst_offset << " + i] = 0.0;";
    os << "}\n";
  } else if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    need_cast_smem_ptr_to_int_ = true;
2268
2269
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
2270
    if (op->args.size() == 5) {
2271
2272
      this->stream << PrintCpAsyncAssembly(dst, dst_offset, src, src_offset,
                                           size);
2273
    } else {
2274
2275
      this->stream << PrintPredicatedCpAsyncAssembly(
          dst, dst_offset, src, src_offset, size, this->PrintExpr(op->args[5]));
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
    }
  } else if (op->op.same_as(builtin::ptx_cp_async_bulk())) {
    need_cast_smem_ptr_to_int_ = true;
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    int barrier_id = Downcast<IntImm>(op->args[5])->value;
    CHECK(barrier_id < barrier_count_);
2286
2287
2288
2289
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
    this->stream << PrintCpAsyncBulkAsm(dst, dst_offset, src, src_offset, size,
                                        barrier);
2290
2291
2292
2293
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    this->stream << "__asm__ __volatile__(\"cp.async.commit_group;\");\n\n";
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
2294
2295
    this->stream << "__asm__ __volatile__(\"cp.async.wait_group " << n
                 << ";\");\n\n";
2296
2297
2298
2299
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
2300
2301
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
2302
2303
2304
2305
2306
2307
    std::string thread_count = this->PrintExpr(op->args[1]);
    this->stream << PrintInitBarrierThreadCountAsm(barrier, thread_count);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
2308
2309
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
2310
2311
2312
2313
2314
    this->stream << PrintArriveBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
2315
2316
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
2317
2318
2319
2320
2321
2322
    std::string byte_count = this->PrintExpr(op->args[1]);
    this->stream << PrintArriveBarrierExpectTxAsm(barrier, byte_count);
  } else if (op->op.same_as(builtin::ptx_wait_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
2323
2324
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
    this->stream << PrintWaitBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_ldg32())) {
    /*
    asm volatile (
        "{.reg .pred p;\n"
        " setp.ne.b32 p, %2, 0;\n"
        // " @p ld.global.nc.f32 %0, [%1];}\n"t
        " @p ld.global.nc.L2::128B.f32 %0, [%1];}\n"
        : "=f"(reg)
        : "l"(addr), "r"((int)guard)
    );
    */

    // get local
    std::string reg = this->PrintExpr(op->args[0]);
    // get guard
    std::string guard = this->PrintExpr(op->args[1]);
2342
    const BufferLoadNode *addr_buffer = op->args[2].as<BufferLoadNode>();
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
    std::string global_addr = this->PrintExpr(addr_buffer->indices[0]);
    std::string global_buffer = this->PrintExpr(addr_buffer->buffer->data);
    std::string local_addr = this->PrintExpr(op->args[3]);
    this->stream << "asm volatile (\n";
    this->stream << "\"{.reg .pred p;\\n\"\n";
    this->stream << "\" setp.ne.b32 p, %2, 0;\\n\"\n";
    this->stream << "\" @!p mov.b32 %0, 0;\\n\"\n";
    this->stream << "\" @p ld.global.nc.f32 %0, [%1];}\\n\"\n";
    // stream << "\" @p ld.global.nc.L2::128B.f32 %0, [%1];}\\n\"\n" ;
    stream << ": \"=f\"(" << reg << "[" << local_addr << "]"
           << ")\n";
2354
2355
    stream << ": \"l\"((void*)(" << global_buffer << "+" << global_addr
           << ")), \"r\"((int)" << guard << ")\n";
2356
    stream << ");\n";
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
  } else if (op->op.same_as(builtin::reinterpret())) {
    DataType tgt_dtype = op->dtype;
    DataType src_dtype = op->args[0]->dtype;
    PrimExpr value = op->args[0];

    // Handle float4_e2m1fn reinterpret
    if (!src_dtype.is_float4_e2m1fn() && !tgt_dtype.is_float4_e2m1fn()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    if (src_dtype == tgt_dtype || tgt_dtype.lanes() * tgt_dtype.bits() ==
                                      src_dtype.lanes() * src_dtype.bits()) {
      return CodeGenC::VisitExpr_(op, os);
    }
    CHECK_EQ(tgt_dtype.lanes(), src_dtype.lanes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of lanes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;
    CHECK_EQ(tgt_dtype.bytes(), src_dtype.bytes())
        << "E2M1 float4 reinterpret expects source and target to have the same "
           "number of bytes. "
        << "Source dtype: " << src_dtype << ", Target dtype: " << tgt_dtype;

    int lanes = tgt_dtype.lanes();

    int ssa_scope = BeginScope();
    if (lanes == 1) {
      // The case of lane=1 is same as the normal reinterpret,
      // except that we allow the src and dst dtype to have different number of
      // bits.
      std::string rhs = SSAGetID(PrintExpr(value), src_dtype);
      os << "(*(";
      this->PrintType(tgt_dtype, os);
      os << " *)(&(" << rhs << ")))";
    } else if (lanes == 2) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint16, and then extract bits of two fp4
        // numbers, and finally reinterpret the result as fp4x2.
        value =
            tir::Call(DataType::UInt(16), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     tir::Cast(DataType::UInt(8),
                               (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                                   ((temp_var >> 4) &
                                    IntImm(DataType::UInt(16), 0xF0))));
      } else {
        value = tir::Cast(
            DataType::UInt(16),
            tir::Call(DataType::UInt(8), tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(16));
        value =
            tir::Let(temp_var, value,
                     (temp_var & IntImm(DataType::UInt(16), 0xF)) |
                         ((temp_var & IntImm(DataType::UInt(16), 0xF0)) << 4));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else if (lanes == 4) {
      if (tgt_dtype.is_float4_e2m1fn()) {
        // We view the source as an uint32, and then extract bits of four fp4
        // numbers, and finally reinterpret the result as fp4x4.
        value =
            tir::Call(DataType::UInt(32), tir::builtin::reinterpret(), {value});
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            tir::Cast(
                DataType::UInt(16),
                (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                    ((temp_var >> 4) & IntImm(DataType::UInt(32), 0xF0)) |
                    ((temp_var >> 8) & IntImm(DataType::UInt(32), 0xF00)) |
                    ((temp_var >> 12) & IntImm(DataType::UInt(32), 0xF000))));
      } else {
        value = tir::Cast(DataType::UInt(32),
                          tir::Call(DataType::UInt(16),
                                    tir::builtin::reinterpret(), {value}));
        tir::Var temp_var("temp_var", DataType::UInt(32));
        value = tir::Let(
            temp_var, value,
            (temp_var & IntImm(DataType::UInt(32), 0xF)) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF0)) << 4) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF00)) << 8) |
                ((temp_var & IntImm(DataType::UInt(32), 0xF000)) << 12));
      }
      os << PrintExpr(
          tir::Call(tgt_dtype, tir::builtin::reinterpret(), {value}));
    } else {
      LOG(FATAL) << "Invalid number of lanes for float4_e2m1fn reinterpret: "
                 << lanes;
    }
    EndScope(ssa_scope);
  } else if (op->op.same_as(builtin::thread_return())) {
    os << "return";
2451
2452
2453
2454
2455
  } else if (op->op.same_as(tl::tl_gemm())) {
    ICHECK(op->args.size() == 4) << "tl_gemm expects 4 arguments <op_instance, "
                                    "A_ptr, B_ptr, C_ptr>, but got "
                                 << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
2456
2457
    this->PrintCallExtern(GetType(tvm::ffi::GetRef<PrimExpr>(op)),
                          op_instance->value, op->args, true, os);
2458
2459
2460
2461
2462
2463
2464
  } else if (op->op.same_as(tl::tl_gemm_sp())) {
    ICHECK(op->args.size() == 5)
        << "tl_gemm_sp expects 5 arguments <op_instance, A_ptr, B_ptr, C_ptr, "
           "E_ptr>, but got "
        << op->args.size();
    auto op_instance = Downcast<StringImm>(op->args[0]);
    enable_sparse_gemm_ = true;
2465
2466
    this->PrintCallExtern(GetType(tvm::ffi::GetRef<PrimExpr>(op)),
                          op_instance->value, op->args, true, os);
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
  } else if (op->op.same_as(tl::get_lane_idx())) {
    ICHECK_LE(op->args.size(), 1)
        << "tl.get_lane_idx expects at most one argument <warp_size>.";
    os << "tl::get_lane_idx(";
    if (!op->args.empty()) {
      os << PrintExpr(op->args[0]);
    }
    os << ")";
  } else if (op->op.same_as(tl::get_warp_idx_sync())) {
    ICHECK_LE(op->args.size(), 1)
        << "tl.get_warp_idx_sync expects at most one argument <warp_size>.";
    os << "tl::get_warp_idx_sync(";
    if (!op->args.empty()) {
      os << PrintExpr(op->args[0]);
    }
    os << ")";
  } else if (op->op.same_as(tl::get_warp_idx())) {
    ICHECK_LE(op->args.size(), 1)
        << "tl.get_warp_idx expects at most one argument <warp_size>.";
    os << "tl::get_warp_idx(";
    if (!op->args.empty()) {
      os << PrintExpr(op->args[0]);
    }
    os << ")";
  } else if (op->op.same_as(tl::get_warp_group_idx())) {
    ICHECK_LE(op->args.size(), 2)
        << "tl.get_warp_group_idx expects <warp_size, warps_per_group>.";
    os << "tl::get_warp_group_idx(";
    for (size_t i = 0; i < op->args.size(); ++i) {
      if (i != 0) {
        os << ", ";
      }
      os << PrintExpr(op->args[i]);
    }
    os << ")";
2502
2503
  } else if (op->op.same_as(tl::tl_shuffle_elect())) {
    os << "tl::tl_shuffle_elect<" << PrintExpr(op->args[0]) << ">()";
2504
  } else if (op->op.same_as(tl::initialize_wgmma_descriptor())) {
2505
    ICHECK(op->args.size() == 5)
2506
        << "tl_initialize_wgmma_descriptor expects 5 arguments but got "
2507
2508
2509
2510
2511
2512
        << op->args.size();
    auto descriptor = op->args[0];
    auto start_address = op->args[1];
    auto layout_type = op->args[2];
    auto leading_byte_offset = op->args[3];
    auto stride_byte_offset = op->args[4];
2513
    os << "tl::initialize_wgmma_descriptor<" << PrintExpr(layout_type) << ", "
2514
2515
2516
       << PrintExpr(leading_byte_offset) << ", "
       << PrintExpr(stride_byte_offset) << ">(" << PrintExpr(descriptor) << ", "
       << PrintExpr(start_address) << ")";
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
  } else if (op->op.same_as(tl::initialize_tcgen05_descriptor())) {
    ICHECK(op->args.size() == 7)
        << "tl_initialize_tcgen05_descriptor expects 7 arguments but got "
        << op->args.size();
    auto descriptor = op->args[0];
    auto start_address = op->args[1];
    auto leading_byte_offset = op->args[2];
    auto stride_byte_offset = op->args[3];
    auto base_offset = op->args[4];
    auto leading_abs = op->args[5];
    auto swizzle_mode = op->args[6];
    os << "tl::initialize_tcgen05_descriptor(" << PrintExpr(descriptor) << ", "
       << PrintExpr(start_address) << ", " << PrintExpr(leading_byte_offset)
       << ", " << PrintExpr(stride_byte_offset) << ", "
       << PrintExpr(base_offset) << ", " << PrintExpr(leading_abs) << ", "
       << PrintExpr(swizzle_mode) << ")";
2533
2534
2535
2536
2537
2538
2539
2540
  } else if (op->op.same_as(tl::increase_descriptor_offset())) {
    ICHECK(op->args.size() == 2)
        << "tl_increase_descriptor_offset expects 2 arguments but got "
        << op->args.size();
    auto descriptor = op->args[0];
    auto offset = op->args[1];
    os << "tl::increase_descriptor_offset<int>(" << PrintExpr(descriptor)
       << ", " << PrintExpr(offset) << ")";
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
  } else if (op->op.same_as(tl::__exp())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "exp");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__exp10())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "exp10");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__log())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "log");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__log2())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "log2");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__log10())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "log10");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__tan())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "tan");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__cos())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "cos");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::__sin())) {
    CUDAFastMath math_func;
    std::string func_name = math_func(op->dtype, "sin");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
  } else if (op->op.same_as(tl::ieee_add())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fadd", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
  } else if (op->op.same_as(tl::ieee_sub())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fsub", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
  } else if (op->op.same_as(tl::ieee_mul())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fmul", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
  } else if (op->op.same_as(tl::ieee_fmaf())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[3])->value;
    std::string func_name = math_func(op->dtype, "fmaf", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ", " << PrintExpr(op->args[2]) << ")";
  } else if (op->op.same_as(tl::ieee_frcp())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[1])->value;
    std::string func_name = math_func(op->dtype, "frcp", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::ieee_fsqrt())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[1])->value;
    std::string func_name = math_func(op->dtype, "fsqrt", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::ieee_frsqrt())) {
    CUDAIEEEMath math_func;
    std::string func_name = math_func(op->dtype, "frsqrt", "rn");
    os << func_name << "(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::ieee_fdiv())) {
    CUDAIEEEMath math_func;
    std::string rounding_mode = Downcast<StringImm>(op->args[2])->value;
    std::string func_name = math_func(op->dtype, "fdiv", rounding_mode);
    os << func_name << "(" << PrintExpr(op->args[0]) << ", "
       << PrintExpr(op->args[1]) << ")";
Tong WU's avatar
Tong WU committed
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
  } else if (op->op.same_as(tl::warp_reduce_sum())) {
    os << "tl::warp_reduce_sum(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::warp_reduce_max())) {
    os << "tl::warp_reduce_max(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::warp_reduce_min())) {
    os << "tl::warp_reduce_min(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::warp_reduce_bitand())) {
    os << "tl::warp_reduce_bitand(" << PrintExpr(op->args[0]) << ")";
  } else if (op->op.same_as(tl::warp_reduce_bitor())) {
    os << "tl::warp_reduce_bitor(" << PrintExpr(op->args[0]) << ")";
2627
2628
2629
2630
2631
  } else {
    CodeGenC::VisitExpr_(op, os);
  }
}

2632
void CodeGenTileLangCUDA::VisitStmt_(const AttrStmtNode *op) {
2633
  if (op->attr_key == tir::attr::fragment_shape) {
2634
2635
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *shape_str = op->value.as<StringImmNode>();
2636
2637
    fragment_shapes[buffer] = shape_str->value;
  } else if (op->attr_key == tir::attr::fragment_layout) {
2638
2639
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *layout_str = op->value.as<StringImmNode>();
2640
2641
    fragment_layouts[buffer] = layout_str->value;
  } else if (op->attr_key == tir::attr::async_commit_queue_scope) {
2642
2643
2644
    const IntImmNode *queue_id = op->value.as<IntImmNode>();
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
2645
2646
2647
2648
2649
2650
2651
    this->VisitStmt(op->body);
    auto commit_group = Call(DataType::Void(), builtin::ptx_commit_group(), {});
    this->VisitExpr(commit_group, this->stream);
    return;
  } else if (op->attr_key == tir::attr::async_wait_queue_scope) {
    auto wait_attrs = GetAsyncWaitAttributes(op);
    auto queue_id = wait_attrs.first.as<IntImmNode>();
2652
2653
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
2654
    auto wait_cnt = wait_attrs.second;
2655
2656
    auto wait_group =
        Call(DataType::Void(), builtin::ptx_wait_group(), {wait_cnt});
2657
2658
2659
2660
2661
2662
2663
    this->VisitExpr(wait_group, this->stream);
    auto inner = op->body.as<AttrStmtNode>();
    ICHECK(inner);
    this->VisitStmt(inner->body);
    return;
  } else if (op->attr_key == "threadblock_swizzle_pattern") {
    this->PrintIndent();
2664
    const StringImmNode *pattern = op->value.as<StringImmNode>();
2665
2666
2667
2668
    ICHECK(pattern);
    this->stream << "const dim3 blockIdx = " << pattern->value << "();\n";
    this->VisitStmt(op->body);
    return;
2669
2670
2671
2672
  } else if (op->attr_key == "pragma_unroll_factor") {
    const IntImmNode *factor = op->value.as<IntImmNode>();
    ICHECK(factor);
    unroll_factor[op->node.as<VarNode>()] = Downcast<IntImm>(factor);
2673
  }
2674

2675
2676
2677
  CodeGenC::VisitStmt_(op);
}

2678
void CodeGenTileLangCUDA::VisitStmt_(const AllocateNode *op) {
2679
2680
2681
2682
  ICHECK(!is_zero(op->condition));
  std::string vid = AllocVarID(op->buffer_var.get());
  this->PrintIndent();
  std::string scope = GetPtrStorageScope(op->buffer_var);
2683
  const VarNode *buffer = op->buffer_var.as<VarNode>();
2684
2685
  if (scope.find("wmma.") == 0) {
    if (scope == "wmma.matrix_a" || scope == "wmma.matrix_b") {
2686
2687
2688
2689
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Int(8) || op->dtype == DataType::UInt(8) ||
             op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
             op->dtype == DataType::Int(1) || op->dtype == DataType::BFloat(16))
2690
2691
2692
          << "Matrix_a and matrix_b only support half or char or unsigned char "
          << "or uint4 or int4 or int1 type for now";
    } else {
2693
2694
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Float(32) || op->dtype == DataType::Int(32))
2695
2696
2697
          << "Accumulator only support half, float and int type for now";
    }
    PrintWmmaScope(scope, op->dtype, buffer, stream);
2698
  } else if (scope == "local.descriptor.wgmma") {
2699
    stream << "tl::GmmaDescriptor " << vid << ";\n";
2700
2701
2702
2703
  } else if (scope == "local.descriptor.tcgen05_smem") {
    stream << "tl::Tcgen05SMemDescriptor " << vid << ";\n";
  } else if (scope == "local.descriptor.tcgen05_instr") {
    stream << "tl::Tcgen05InstrDescriptor " << vid << ";\n";
2704
  } else {
2705
2706
2707
2708
2709
2710
2711
2712
    PrintStorageScope(scope, stream);
    PrintType(op->dtype, stream);
  }

  if (scope == "shared.dyn") {
    stream << ' ' << vid << "[];\n";
  } else {
    size_t constant_size = op->ConstantAllocationSize();
2713
    ICHECK_GT(constant_size, 0)
2714
2715
        << "Can only handle constant size stack allocation for now, but get "
        << constant_size << " for " << op->buffer_var->name_hint;
2716
2717
2718
2719
2720
2721
2722
2723
    if (scope.find("wmma.") == 0) {
      constant_size = GetWmmaFragmentSize(scope, buffer, constant_size);
    }
    if ((op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
         op->dtype == DataType::Int(1)) &&
        scope == "shared") {
      constant_size = constant_size / (32 / op->dtype.bits());
    }
2724
2725
    if (scope == "shared") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
2726
2727
2728
2729
2730
2731
    } else if (scope == "shared.barrier") {
      auto v_id_mem = vid + "_mem";
      stream << ' ' << v_id_mem << "[" << constant_size << "];\n";
      PrintIndent();
      stream << "auto " << vid << " = reinterpret_cast<" << mbarrier_dtype_
             << "*>(" << v_id_mem << ");\n";
2732
2733
2734
    } else if (scope == "local") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
    } else if (scope == "local.var") {
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
      PrimExpr init = tir::make_const(op->dtype, 0);
      auto init_it = op->annotations.find(tl::attr::kLocalVarInit);
      if (init_it != op->annotations.end()) {
        PrimExpr user_init = Downcast<PrimExpr>((*init_it).second);
        if (!user_init.dtype().is_void() && user_init.dtype() != op->dtype) {
          user_init = tir::Cast(op->dtype, user_init);
        }
        init = user_init;
      }
      stream << ' ' << vid << " = " << PrintExpr(init) << ";\n";
2745
    } else if (scope.find("local.descriptor") != 0) {
2746
2747
      ICHECK(false) << "Unsupported scope: " << scope;
    }
2748
2749
2750
2751
2752
2753
  }

  RegisterHandleType(op->buffer_var.get(), op->dtype);
  this->PrintStmt(op->body);
}

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
void CodeGenTileLangCUDA::VisitStmt_(const EvaluateNode *op) {
  if (is_const_int(op->value))
    return;
  const CallNode *call = op->value.as<CallNode>();
  if (call && call->op.same_as(builtin::tvm_global_barrier_kinit())) {
    PrintIndent();
    stream << "__shared__ unsigned " << vid_global_barrier_expect_ << ";\n";
    PrintIndent();
    stream << "if (threadIdx.x == 0) {\n";
    PrintIndent();
    stream << "  " << vid_global_barrier_expect_ << " = 0;\n";
    PrintIndent();
    stream << "}\n";
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
  }
  if (call && (call->op.same_as(tvm::tl::device_assert()))) {
    std::string cond = PrintExpr(call->args[0]);
    this->PrintIndent();
    stream << "device_assert(" << cond << ");\n";
  } else if (call && call->op.same_as(tvm::tl::device_assert_with_msg())) {
    std::string cond = PrintExpr(call->args[0]);
    std::string msg_expr = PrintExpr(call->args[1]);
    this->PrintIndent();
    stream << "device_assert_with_msg(" << cond << ", " << msg_expr << ");\n";
2777
2778
2779
2780
2781
  } else {
    CodeGenC::VisitStmt_(op);
  }
}

2782
void CodeGenTileLangCUDA::VisitExpr_(const RampNode *op, std::ostream &os) {
2783
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
2784
2785
  CHECK_LE(lanes, 4) << "Translate Ramp Node " << tvm::ffi::GetRef<Ramp>(op)
                     << " with " << lanes << " lanes is not allowed.";
2786
2787
2788
2789
2790
2791
  os << "(make_";
  PrintType(op->dtype, os);
  os << "(";
  for (int i = 0; i < lanes; i++) {
    os << "(" << PrintExpr(op->base) << ")"
       << "+(" << PrintExpr(op->stride) << "*" << i << ")";
2792
2793
    if (i != lanes - 1)
      os << ", ";
2794
2795
2796
2797
  }
  os << "))";
}

2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
void CodeGenTileLangCUDA::VisitExpr_(const BufferLoadNode *op,
                                     std::ostream &os) { // NOLINT(*)
  ICHECK_EQ(op->indices.size(), 1)
      << "Load from non-flat memory not supported.";
  ICHECK(!op->predicate.defined())
      << "Predicated buffer load is not supported.";

  DataType value_dtype = op->dtype;
  PrimExpr index = op->indices[0];
  Var buffer_var = op->buffer->data;
  DataType element_dtype = op->buffer->dtype;

  int lanes = op->dtype.lanes();
2811
  // declare type.
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
  if (value_dtype.lanes() == element_dtype.lanes()) {
    std::string ref = GetBufferRef(op->dtype, op->buffer.get(), index);
    HandleVolatileLoads(ref, op, os);
  } else {
    bool can_vector_load = false;
    arith::PVar<PrimExpr> base;
    if (arith::ramp(base, 1, op->dtype.lanes()).Match(index)) {
      const RampNode *ramp = index.as<RampNode>();
      ICHECK(ramp);
      can_vector_load = true;
      // arith::ModularSet me = arith::Analyzer().modular_set(ramp->base);
      // The condition: {k * coeff + base} divisible by the alignment for any k
      // if (me->coeff % op->dtype.lanes() == 0 && me->base % op->dtype.lanes()
      // == 0) {
      //   can_vector_load = true;
      // }
    }

    if (value_dtype.is_float4_e2m1fn() && lanes != 1) {
      // A float4_e2m1fn element has 4 bits, which is an incomplete byte.
      // So we cannot vector load it.
      can_vector_load = false;
    }
    if (can_vector_load) {
      std::string ref = GetVecLoad(op->dtype, op->buffer.get(), base.Eval());
      HandleVolatileLoads(ref, op, os);
    } else {
      std::ostringstream svalue_expr;
      std::string sindex = SSAGetID(PrintExpr(index), index.dtype());
      std::string vid = GetVarID(buffer_var.get());
      DataType elem_type = op->dtype.element_of();
      for (int i = 0; i < lanes; ++i) {
        std::ostringstream value_temp;
        if (!HandleTypeMatch(buffer_var.get(), elem_type)) {
          value_temp << "((";
          if (buffer_var.get()->dtype.is_handle()) {
            auto it = alloc_storage_scope_.find(buffer_var.get());
            if (it != alloc_storage_scope_.end()) {
              PrintStorageScope(it->second, value_temp);
            }
          }
          PrintType(elem_type, value_temp);
          value_temp << "*)" << vid << ')';
        } else {
          value_temp << vid;
        }
        value_temp << '[';
        PrintVecElemLoad(sindex, index.dtype(), i, value_temp);
        value_temp << ']';
        PrintVecElemLoadExpr(op->dtype, i, value_temp.str(), svalue_expr);
      }
      os << svalue_expr.str();
    }
  }
}

2868
2869
void CodeGenTileLangCUDA::VisitExpr_(const BroadcastNode *op,
                                     std::ostream &os) { // NOLINT(*)
2870
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 8) {
    if (lanes == 4) {
      // make_int8x4
      const int64_t *p = as_const_int(op->value);
      ICHECK(p);
      int64_t v = *p & 0xFF;
      v = (v << 24) | (v << 16) | (v << 8) | v;
      if (op->dtype.is_uint()) {
        os << "(uint)" << v;
      } else {
        os << "(int)" << v;
      }
      return;
    } else if (lanes == 32) {
      // make_int8x32
      const int64_t *p = as_const_int(op->value);
      ICHECK(p);
      int64_t v = *p & 0xFF;
      v = (v << 24) | (v << 16) | (v << 8) | v;
      if (op->dtype.is_uint()) {
        os << "make_ulonglong4(" << v << ", " << v << ", " << v << ", " << v
           << ")";
      } else {
        os << "make_longlong4(" << v << ", " << v << ", " << v << ", " << v
           << ")";
      }
      return;
2898
2899
2900
2901
2902
2903
2904
2905
    }
  }

  if (op->dtype.is_float16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
    if (lanes <= 8) {
      for (int i = 0; i < lanes / 2; ++i) {
        if (i != 0)
          os << ", ";
        os << "__pack_half2(" << v << ", " << v << ")";
      }
    } else {
      for (int i = 0; i < lanes / 4; ++i) {
        if (i != 0)
          os << ", ";
        os << "tl::pack_float16x4(" << v << ", " << v << ", " << v << ", " << v
           << ")";
      }
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
    }
    os << ')';
    return;
  }

  if (op->dtype.is_bfloat16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
    if (lanes <= 8) {
      for (int i = 0; i < lanes / 2; ++i) {
        if (i != 0)
          os << ", ";
        os << "__pack_nv_bfloat162(" << v << ", " << v << ")";
      }
    } else {
      for (int i = 0; i < lanes / 4; ++i) {
        if (i != 0)
          os << ", ";
        os << "tl::pack_bfloat16x4(" << v << ", " << v << ", " << v << ", " << v
           << ")";
      }
2942
2943
2944
2945
2946
    }
    os << ')';
    return;
  }

2947
2948
  if (op->dtype.is_float() && op->dtype.bits() == 32 &&
      op->dtype.lanes() == 8) {
2949
2950
2951
    std::string v = PrintExpr(op->value);
    os << "make_ulonglong4(";
    for (int i = 0; i < 4; ++i) {
2952
2953
      if (i != 0)
        os << ", ";
2954
2955
2956
2957
2958
2959
2960
2961
      os << "*(unsigned long long*)&make_float2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 4) {
    bool fail = false;
2962
    const int64_t *p = as_const_int(op->value);
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
    ICHECK(p);
    int64_t v = *p & 0xF;

    if (lanes == 4) {
      v = (v << 12) | (v << 8) | (v << 4) | v;
      if (op->dtype.is_uint()) {
        os << "(uint16_t)" << v;
      } else {
        os << "(int16_t)" << v;
      }
    } else {
2974
2975
      v = (v << 28) | (v << 24) | (v << 20) | (v << 16) | (v << 12) | (v << 8) |
          (v << 4) | v;
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
      if (lanes == 8) {
        if (op->dtype.is_uint()) {
          os << "(uint)" << v;
        } else {
          os << "(int)" << v;
        }
      } else if (lanes == 16 || lanes == 32) {
        os << "make_";
        PrintType(op->dtype, os);
        os << '(';
        for (int i = 0; i < lanes / 8; ++i) {
2987
2988
          if (i != 0)
            os << ", ";
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
          if (op->dtype.is_uint()) {
            os << "(uint)" << v;
          } else {
            os << "(int)" << v;
          }
        }
        os << ')';
      } else {
        fail = true;
      }
    }

    if (!fail) {
      return;
    }
  }

  std::string v = PrintExpr(op->value);
  os << "make_";
  PrintType(op->dtype, os);
  os << '(';
  for (int i = 0; i < lanes; ++i) {
3011
3012
    if (i != 0)
      os << ", ";
3013
3014
3015
3016
3017
    os << v;
  }
  os << ')';
}

3018
3019
inline void PrintConst(const FloatImmNode *op, std::ostream &os,
                       CodeGenTileLangCUDA *p) { // NOLINT(*)
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
  // Type code is kBFloat/kFloat16
  // which is indeed CUTLASS supported types currently
  if (op->dtype.is_bfloat16() || op->dtype.is_float16()) {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
      }
      temp << "std::numeric_limits<";
      p->PrintType(op->dtype, temp);
      temp << ">::infinity()";
    } else if (std::isnan(op->value)) {
      temp << "std::numeric_limits<";
      p->PrintType(op->dtype, temp);
      temp << ">::quiet_NaN()";
    } else {
      p->PrintType(op->dtype, temp);
      temp << '(' << std::hexfloat << op->value << 'f';
      temp << "/*" << std::scientific << op->value << "*/";
      temp << ')';
    }
    p->MarkConst(temp.str());
    os << temp.str();
3043
3044
    return;
  }
3045
3046
3047
  // Type code is kFloat8_e5m2 or kE4M4Float
  if (op->dtype.is_float8() || op->dtype.is_float4()) {
    p->PrintType(op->dtype, os);
3048
3049
3050
    os << '(' << std::hexfloat << op->value << 'f';
    os << "/*" << std::scientific << op->value << "*/";
    os << ')';
3051
3052
    return;
  }
3053
  // Type code is kFloat64/kFloat32 (kFloat16 is handled above)
3054
  switch (op->dtype.bits()) {
3055
3056
3057
3058
3059
3060
  case 64:
  case 32: {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
3061
      }
3062
      temp << ((op->dtype.bits() == 32) ? "CUDART_INF_F" : "CUDART_INF");
3063
      p->need_math_constants_h_ = true;
3064
3065
    } else if (std::isnan(op->value)) {
      temp << ((op->dtype.bits() == 32) ? "CUDART_NAN_F" : "CUDART_NAN");
3066
      p->need_math_constants_h_ = true;
3067
    } else {
3068
      temp << std::hexfloat << op->value;
3069
3070
      if (op->dtype.bits() == 32)
        temp << 'f';
3071
      temp << "/*" << std::scientific << op->value << "*/";
3072
    }
3073
3074
3075
3076
3077
3078
    p->MarkConst(temp.str());
    os << temp.str();
    break;
  }
  default:
    LOG(FATAL) << "Bad bit-width for float: " << op->dtype << "\n";
3079
3080
3081
  }
}

3082
3083
void CodeGenTileLangCUDA::VisitExpr_(const FloatImmNode *op,
                                     std::ostream &os) { // NOLINT(*)
3084
3085
3086
  PrintConst(op, os, this);
}

3087
3088
3089
void CodeGenTileLangCUDA::PrintWmmaScope(const std::string &scope, DataType t,
                                         const VarNode *variable,
                                         std::ostream &os) {
3090
3091
  std::stringstream type;
  PrintType(t, type);
3092
3093
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
  std::string shape_str = fragment_shapes.at(variable);
  if ((t.is_int() || t.is_uint()) && t.bits() < 8 && t.lanes() == 1) {
    type.str(std::string());
    if (t.is_int()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::s4";
      } else if (t.bits() == 1) {
        type << "nvcuda::wmma::experimental::precision::b1";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    } else if (t.is_uint()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::u4";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    }
  }
  if (scope == "wmma.matrix_a") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_a";
3116
3117
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
3118
3119
3120
  } else if (scope == "wmma.matrix_b") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_b";
3121
3122
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
3123
  } else if (scope == "wmma.accumulator") {
3124
3125
    os << "nvcuda::wmma::fragment<nvcuda::wmma::accumulator, " << shape_str
       << ", " << type.str() << ">";
3126
3127
3128
  }
}

3129
3130
int32_t CodeGenTileLangCUDA::GetWmmaFragmentSize(const std::string &scope,
                                                 const VarNode *variable,
3131
                                                 int32_t size) {
3132
3133
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
3134
3135
3136
3137
3138
3139
3140
3141
  std::string shape_str = fragment_shapes.at(variable);
  std::pair<int32_t, int32_t> dim = GetWmmaFragmentDimSize(shape_str, scope);
  if (dim.first * dim.second != 0)
    return size / dim.first / dim.second;
  else
    return 0;
}

3142
3143
3144
void CodeGenTileLangCUDA::HandleVolatileLoads(const std::string &value,
                                              const BufferLoadNode *op,
                                              std::ostream &os) {
3145
3146
3147
  // Cast away volatile qualifier for fp16 types. That is, only loads and
  // stores are volatile. The loaded objects are not marked as volatile.
  //
3148
3149
  if ((op->dtype.is_float16() || op->dtype.is_bfloat16()) &&
      IsVolatile(op->buffer->data.get())) {
3150
3151
3152
3153
3154
3155
3156
3157
    os << "(";
    PrintType(op->dtype, os);
    os << ")(" << value << ")";
  } else {
    os << value;
  }
}

3158
3159
3160
void CodeGenTileLangCUDA::PrintVecElemLoadExpr(DataType t, int i,
                                               const std::string &value,
                                               std::ostream &os) {
3161
3162
3163
3164
3165
3166
  ICHECK_GT(t.lanes(), 1);
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (!(t.lanes() == 2 || t.lanes() == 3)) {
      if (i != 0) {
        os << "|";
      }
3167
3168
      os << "((0x000000ff << " << i * 8 << ") & (" << value << " << " << i * 8
         << "))";
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
      return;
    }
  }

  if (t.is_float16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_half2(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (t.is_bfloat16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_bfloat162(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (i == 0) {
    os << "make_";
    PrintType(t, os);
    os << "(";
  }
  os << value;
  if (i != t.lanes() - 1) {
    os << ",";
  } else {
    os << ")";
  }
  return;
}

3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
void CodeGenTileLangCUDA::PrintFunctionSignature(const String &function_name,
                                                 const PrimFunc &func,
                                                 std::ostream &os) {
  PrintFuncPrefix(os);
  CodeGenC::PrintType(func->ret_type, os);
  CodeGenC::PrintExtraAttrs(func, os);
  bool no_alias = func->HasNonzeroAttr(tir::attr::kNoAlias);
  os << " " << function_name << "(";
  for (size_t i = 0; i < func->params.size(); ++i) {
    tir::Var v = func->params[i];
    std::string vid = AllocVarID(v.get());

    if (i > 0) {
      os << ", ";
    }

    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (ptr->storage_scope == "grid_constant") {
          os << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, os);
          os << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, os);
      }

      CodeGenC::PrintType(GetType(v), os);
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, os);
      }
    } else {
      CodeGenC::PrintType(GetType(v), os);
    }
    os << ' ' << vid;
  }
  os << ")";

  // Register handle data type
  // TODO(tvm-team): consider simply keep type info in the
  // type annotation(via a normalizing rewriting).
  for (const auto &param : func->params) {
    if (auto *ptr = param->type_annotation.as<PointerTypeNode>()) {
      if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
        RegisterHandleType(param.get(), prim->dtype);
      }
    }
  }
}

void CodeGenTileLangCUDA::AddFunction(const GlobalVar &gvar,
                                      const PrimFunc &f) {
  // If the function has already been forward-declared, this is a
  // no-op.
  CodeGenC::DeclareFunction(gvar, f);
3291
3292
3293
3294
3295
3296
  // clear previous generated state.
  this->InitFuncState(f);
  // reserve keywords
  ReserveKeywordsAsUnique();

  auto global_symbol = f->GetAttr<String>(tvm::attr::kGlobalSymbol);
3297
  ICHECK(global_symbol)
3298
3299
3300
3301
3302
      << "CodeGenC: Expect PrimFunc to have the global_symbol attribute";
  bool no_alias = f->HasNonzeroAttr(tir::attr::kNoAlias);

  this->PrintFuncPrefix(stream);
  CodeGenC::PrintType(f->ret_type, stream);
3303
3304
  this->PrintExtraAttrs(f);

3305
3306
3307
3308
3309
  this->stream << " " << static_cast<std::string>(global_symbol.value()) << "(";

  for (size_t i = 0; i < f->params.size(); ++i) {
    tir::Var v = f->params[i];
    std::string vid = AllocVarID(v.get());
3310
3311
    if (i != 0)
      stream << ", ";
3312
3313
    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
3314
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
        if (ptr->storage_scope == "grid_constant") {
          stream << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, stream);
          stream << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, stream);
      }

      CodeGenC::PrintType(GetType(v), stream);
3329
3330
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, stream);
      }
    } else {
      CodeGenC::PrintType(GetType(v), stream);
    }
    stream << ' ' << vid;
  }
  stream << ") {\n";
  this->PreFunctionBody(f);
  int func_scope = this->BeginScope();
  this->PrintStmt(f->body);
  this->EndScope(func_scope);
  this->PrintIndent();
  this->stream << "}\n\n";
}

3352
3353
} // namespace codegen
} // namespace tvm