codegen_cuda.cc 61.1 KB
Newer Older
1
2
3
4
5
6
7
/*!
 * \file target/codegen.cc
 */

#include "codegen_cuda.h"
#include <tvm/arith/analyzer.h>
#include <tvm/runtime/registry.h>
8
#include <tvm/tir/index_map.h>
9
10
11
12
13
14
15
16
17
#include <tvm/tir/op.h>

#include <cmath>
#include <string>
#include <utility>
#include <vector>

#include "../op/builtin.h"
#include "../op/bulk_copy.h"
18
#include "arith/pattern_match.h"
19
20
21
22
23
#include "target/source/ptx.h"

namespace tvm {
namespace codegen {

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
static std::string GetFP8Type(DataType type) {
  std::stringstream stream;
  int32_t lanes = type.lanes();
  std::string vec;
  if (type.is_scalar()) {
    vec = "";
  } else if (lanes == 2) {
    vec = "_2";
  } else if (lanes == 4) {
    vec = "_4";
  } else if (lanes == 8) {
    vec = "_8";
  } else if (lanes == 16) {
    vec = "_16";
  } else {
    LOG(FATAL) << "Only support scalar and vector types of width (2, 4, 8, 16) "
                  "for FP8";
  }
42
  if (type.code() == DataType::kFloat8_e4m3fn) {
43
    stream << "fp8_e4" << vec << "_t";
44
  } else if (type.code() == DataType::kFloat8_e5m2) {
45
46
47
48
49
50
51
    stream << "fp8_e5" << vec << "_t";
  } else {
    LOG(FATAL) << "Unsupported FP8 type in CUDA codegen";
  }
  return stream.str();
}

52
53
54
CodeGenTileLangCUDA::CodeGenTileLangCUDA() {
  restrict_keyword_ = "__restrict__";
}
55

56
57
58
void CodeGenTileLangCUDA::PrintFuncPrefix(std::ostream &os) {
  os << "extern \"C\" __global__ ";
}
59
60

class LaunchConfigExtractor : public tir::StmtVisitor {
61
62
private:
  void VisitStmt_(const AttrStmtNode *op) final {
63
64
    if (op->attr_key == tir::attr::thread_extent) {
      IterVar iv = Downcast<IterVar>(op->node);
65
66
      if (iv->var->name_hint == "threadIdx.x" ||
          iv->thread_tag == "threadIdx.x") {
67
        threadIdx_x_ext = op->value;
68
69
      } else if (iv->var->name_hint == "threadIdx.y" ||
                 iv->thread_tag == "threadIdx.y") {
70
        threadIdx_y_ext = op->value;
71
72
      } else if (iv->var->name_hint == "threadIdx.z" ||
                 iv->thread_tag == "threadIdx.z") {
73
74
75
76
77
78
        threadIdx_z_ext = op->value;
      }
    }
    StmtVisitor::VisitStmt_(op);
  }

79
public:
80
81
82
83
84
  PrimExpr threadIdx_x_ext = Integer(1);
  PrimExpr threadIdx_y_ext = Integer(1);
  PrimExpr threadIdx_z_ext = Integer(1);
};

85
void CodeGenTileLangCUDA::PrintExtraAttrs(const PrimFunc &f) {
86
87
88
  LaunchConfigExtractor extractor;
  extractor(f->body);
  arith::Analyzer analyzer;
89
90
91
92
93
  PrimExpr threadIdx_ext =
      analyzer.Simplify(extractor.threadIdx_x_ext * extractor.threadIdx_y_ext *
                        extractor.threadIdx_z_ext);
  if (const IntImmNode *const threadIdx_ext_int =
          threadIdx_ext.as<IntImmNode>()) {
94
    if (threadIdx_ext_int->value == 1) {
95
96
      // unable to extract the number of threads per block, hence directly
      // return
97
98
      return;
    }
99
    stream << " __launch_bounds__(" << threadIdx_ext_int->value << ", 1)";
100
101
102
103
104
105
106
  }
}

std::string CodeGenTileLangCUDA::Finish() {
  if (need_mma_h_) {
    decl_stream << "#include <mma.h>\n";
  }
107
108
109
110
111
112
113
114
  if (enable_fp8_) {
    decl_stream << "#include <tl_templates/cuda/cuda_fp8.h>\n";
  }

  if (need_math_constants_h_) {
    decl_stream << "#include <math_constants.h>\n";
  }

115
116
117
118
119
  decl_stream << "#include <tl_templates/cuda/gemm.h>\n";
  decl_stream << "#include <tl_templates/cuda/copy.h>\n";
  decl_stream << "#include <tl_templates/cuda/reduce.h>\n";
  decl_stream << "#include <tl_templates/cuda/ldsm.h>\n";
  decl_stream << "#include <tl_templates/cuda/threadblock_swizzle.h>\n";
120
  decl_stream << "#include <tl_templates/cuda/debug.h>\n";
121
122
123
124
  decl_stream << "\n";
  return CodeGenC::Finish();
}

125
void CodeGenTileLangCUDA::VisitStmt_(const tir::ForNode *op) {
126
127
128
129
  if (op->kind == tir::ForKind::kUnrolled) {
    PrintIndent();
    stream << "#pragma unroll\n";
  }
130
131
  std::string extent =
      PrintExpr(arith::Analyzer().Simplify(op->extent + op->min));
132
133
134
135
136
  PrintIndent();
  std::string vid = AllocVarID(op->loop_var.get());
  std::string start = PrintExpr(op->min);
  stream << "for (";
  PrintType(op->loop_var.dtype(), stream);
137
138
  stream << ' ' << vid << " = " << start << "; " << vid << " < " << extent
         << "; ++" << vid << ") {\n";
139
140
141
142
143
144
145
  int for_scope = BeginScope();
  PrintStmt(op->body);
  this->EndScope(for_scope);
  PrintIndent();
  stream << "}\n";
}

146
void CodeGenTileLangCUDA::BindThreadIndex(const IterVar &iv) {
147
  ICHECK(!var_idmap_.count(iv->var.get()));
148
149
  var_idmap_[iv->var.get()] =
      CastFromTo(iv->thread_tag, DataType::UInt(32), iv->var.dtype());
150
151
}

152
void CodeGenTileLangCUDA::PrintType(DataType t, std::ostream &os) { // NOLINT(*)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
  int lanes = t.lanes();
  if (t.is_handle()) {
    ICHECK(t.is_scalar()) << "do not yet support vector types";
    os << "void*";
    return;
  }

  if (t.is_void()) {
    os << "void";
    return;
  }

  if (t == tl::cuTensorMapType()) {
    os << "CUtensorMap";
    return;
  }

  bool fail = false;
  if (t.is_float()) {
    switch (t.bits()) {
173
    case 16:
174
      enable_fp16_ = true;
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
      if (t.is_scalar()) {
        os << "half_t";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp16 vector elements.
        //
        // half4 is stored as uint2
        //
        // h4.x is emitted as *(half2*)(&(u2.x)).x
        // h4.y is emitted as *(half2*)(&(u2.x)).y
        // h4.z is emitted as *(half2*)(&(u2.y)).x
        // h4.w is emitted as *(half2*)(&(u2.y)).y
        //
        ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
        os << "uint" << lanes / 2;
      } else {
190
        fail = true;
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
      }
      break;
    case 32:
      if (lanes <= 4) {
        os << "float";
      } else if (lanes <= 8) {
        // Emit CUDA code to access fp32 vector elements for 4 < lanes <= 8.
        //
        // float8 is stored as ulonglong4
        //
        // f8.v1 is emitted as *(float2*)(&(ul4.x)).x
        // f8.v2 is emitted as *(float2*)(&(ul4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for float type with lanes > 4";
        os << "ulonglong" << lanes / 2;
      } else {
        fail = true;
      }
      break;
    case 64:
      os << "double";
      break;
    default:
      fail = true;
      break;
217
    }
218
219
220
221
    if (!fail && (t.is_scalar() || t.bits() == 16))
      return;
    if (!fail && (lanes > 4 && lanes <= 8 && t.bits() == 32))
      return;
222
223
224
225
226
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  } else if (t.is_bfloat16()) {
227
    enable_bf16_ = true;
228
229
230
231
232
233
234
235
    if (t.is_scalar()) {
      os << "bfloat16_t";
    } else if (lanes <= 8) {
      ICHECK_EQ(lanes % 2, 0) << "only support even lane for half type";
      os << "uint" << lanes / 2;
    } else {
      fail = true;
    }
236
237
    if (!fail)
      return;
238
  } else if (t.is_float8()) {
239
240
241
    enable_fp8_ = true;
    os << GetFP8Type(t);
    return;
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
  } else if (t == DataType::Bool()) {
    os << "bool";
    return;
  } else if (t.is_vector_bool()) {
    // CUDA does not support bool vectors.
    // Use ushort vectors to represent instead.
    int n = t.lanes();
    if (n <= 4) {
      os << "ushort" << n;
      return;
    }
  } else if (t.is_uint() || t.is_int()) {
    if (t.is_uint()) {
      os << "u";
    }
    switch (t.bits()) {
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    case 1: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 8) {
        os << "int8_t";
        return;
      } else if (t.lanes() == 16) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 32) {
        os << "int";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
273
      }
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    }
    case 4: {
      if (t.is_scalar()) {
        os << "int";
        return;
      } else if (t.lanes() == 4) {
        os << "int16_t";
        return;
      } else if (t.lanes() == 8) {
        // directly 8 4-bit int in integer.
        os << "int";
        return;
      } else if (t.lanes() == 16) {
        os << "int2";
        return;
      } else if (t.lanes() == 32) {
        os << "int4";
        return;
      } else if (t.lanes() == 64) {
        os << "int8";
        return;
      } else {
        LOG(FATAL) << "Cannot convert type " << t << " to CUDA type!";
297
      }
298
299
300
301
    }
    case 8: {
      if (t.lanes() == 4) {
        // directly 4 8 bit int in integer.
302
        enable_int8_ = true;
303
304
305
306
307
308
309

        // We use int for int8x4 instead of char4 because using char4 is
        // likely to produce extra instructions to pack four int8 elements
        // into 32-bit data.
        os << "int";
        return;
      } else if (t.lanes() == 8) {
310
        enable_int8_ = true;
311
312
313
        os << "int2";
        return;
      } else if (t.lanes() == 16) {
314
        enable_int8_ = true;
315
316
317
318
        os << "int4";
        return;
      } else if (!t.is_uint() && t.is_scalar()) {
        os << "signed char";
319
        break;
320
321
      } else {
        os << "char";
322
323
        break;
      }
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
    }
    case 16: {
      if (t.is_scalar()) {
        os << "short";
      } else if (t.lanes() <= 4) {
        os << "short" << lanes;
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int16 vector elements.
        //
        // short4 is stored as int2
        //
        // s4.x is emitted as *(short2*)(&(i2.x)).x
        // s4.y is emitted as *(short2*)(&(i2.x)).y
        // s4.z is emitted as *(short2*)(&(i2.y)).x
        // s4.w is emitted as *(short2*)(&(i2.y)).y
        //
        ICHECK_EQ(t.lanes() % 2, 0)
            << "only support even lane for shorT type with lanes > 4";
        os << "int" << t.lanes() / 2;
      } else {
        fail = true;
      }
      if (!fail) {
347
348
        return;
      }
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
      break;
    }
    case 32: {
      if (t.is_scalar()) {
        os << "int";
      } else if (t.lanes() <= 4) {
        os << "int" << t.lanes();
      } else if (t.lanes() <= 8) {
        // Emit CUDA code to access int32 vector elements for 4 < lanes <= 8.
        //
        // int8 is stored as longlong4
        //
        // i8.v1 is emitted as *(int2*)(&(l4.x)).x
        // i8.v2 is emitted as *(int2*)(&(l4.x)).y
        //
        ICHECK_EQ(lanes % 2, 0)
            << "only support even lane for int32 type with lanes > 4";
        os << "longlong" << lanes / 2;
      } else {
368
        fail = true;
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
      }
      if (!fail) {
        return;
      }
      break;
    }
    case 64: {
      if (t.is_scalar()) {
        os << "int64_t";
      } else if (t.lanes() == 2) {
        os << "longlong2";
      } else if (t.lanes() == 3) {
        os << "longlong3";
      } else if (t.lanes() == 4) {
        os << "longlong4";
      }
      return;
    }
    default:
      fail = true;
      break;
390
391
392
393
394
395
396
397
398
399
400
401
    }
    if (!fail && lanes == 1) {
      return;
    }
    if (!fail && (lanes >= 2 && lanes <= 4)) {
      os << lanes;
      return;
    }
  }
  LOG(FATAL) << "Cannot convert type " << t << " to CUDA type";
}

402
403
404
void CodeGenTileLangCUDA::PrintVecBinaryOp(const std::string &op, DataType t,
                                           PrimExpr lhs, PrimExpr rhs,
                                           std::ostream &os) { // NOLINT(*)
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
  // Declare the result.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(t, stream);
  stream << ' ' << sret << ";\n";
  int ssa_scope = BeginScope();
  {
    // Unpack into individual ops.
    std::string vlhs = SSAGetID(PrintExpr(lhs), lhs.dtype());
    std::string vrhs = SSAGetID(PrintExpr(rhs), rhs.dtype());

    for (int i = 0, lanes = t.lanes(); i < lanes; ++i) {
      std::ostringstream value_temp;
      if (isalpha(op[0])) {
        value_temp << op << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << ", ";
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      } else {
        value_temp << "(";
        PrintVecElemLoad(vlhs, lhs.dtype(), i, value_temp);
        value_temp << op;
        PrintVecElemLoad(vrhs, rhs.dtype(), i, value_temp);
        value_temp << ")";
      }
      PrintVecElemStore(sret, t, i, value_temp.str());
    }
  }
  EndScope(ssa_scope);
  os << sret;
}

438
439
440
void CodeGenTileLangCUDA::PrintVecElemLoad(const std::string &vec, DataType t,
                                           int i,
                                           std::ostream &os) { // NOLINT(*)
441
442
443
444
445
446
  if (t.is_scalar()) {
    os << vec;
    return;
  }

  static const char access[] = {'x', 'y', 'z', 'w'};
447
448
449
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
450
451
452
453
454
455
456
457
458
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    std::string type_name = t.is_int() ? "char" : "unsigned char";
    if (t.lanes() == 2 || t.lanes() == 3) {
      os << vec << "." << access[i % t.lanes()];
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      os << "((" << type_name << ")(" << ac << " >> " << i % 4 * 8 << "))";
    }
  } else if (t.is_float16()) {
459
460
    os << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
461
  } else if (t.is_bfloat16()) {
462
463
    os << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
       << access[i % 2];
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
482
483
    os << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
       << ")))->" << access[i % 2];
484
485
486
487
488
  } else {
    os << vec << "." << access[i];
  }
}

489
490
void CodeGenTileLangCUDA::PrintVecElemStore(const std::string &vec, DataType t,
                                            int i, const std::string &value) {
491
492
  this->PrintIndent();
  static const char access[] = {'x', 'y', 'z', 'w'};
493
494
495
  ICHECK(i >= 0 && i < (t.bits() == 8                        ? 16
                        : (t.bits() == 16 || t.bits() == 32) ? 8
                                                             : 4));
496
497
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (t.lanes() == 2 || t.lanes() == 3) {
498
499
      stream << vec << '.' << access[i % t.lanes()] << "="
             << "(" << value << ");\n";
500
501
502
503
504
505
506
507
508
509
    } else {
      std::string ac = t.lanes() == 4 ? vec : (vec + "." + access[i / 4]);
      stream << ac << "=";
      // Do not read the first undef lane.
      if (i != 0) {
        stream << ac << " & ~(0x000000ff << " << i % 4 * 8 << ") |";
      }
      stream << "(" << value << " << " << i % 4 * 8 << ");\n";
    }
  } else if (t.is_float16()) {
510
511
    stream << "((half2*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
512
  } else if (t.is_bfloat16()) {
513
514
    stream << "((nv_bfloat162*)(&(" << vec << "." << access[i / 2] << ")))->"
           << access[i % 2] << " = " << value << ";\n";
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
  } else if (t.lanes() > 4 && t.lanes() <= 8) {
    std::string type_name;
    if (t.bits() == 16) {
      if (t.is_int()) {
        type_name = "short";
      } else if (t.is_uint()) {
        type_name = "ushort";
      }
    } else if (t.bits() == 32) {
      if (t.is_int()) {
        type_name = "int";
      } else if (t.is_uint()) {
        type_name = "uint";
      } else if (t.is_float()) {
        type_name = "float";
      }
    }
    ICHECK(!type_name.empty());
533
534
    stream << "((" << type_name << "2*)(&(" << vec << "." << access[i / 2]
           << ")))->" << access[i % 2] << " = " << value << ";\n";
535
536
537
538
539
  } else {
    stream << vec << "." << access[i] << " = " << value << ";\n";
  }
}

540
541
void CodeGenTileLangCUDA::PrintStorageSync(const CallNode *op) {
  const std::string &sync = op->args[0].as<StringImmNode>()->value;
542
543
544
545
546
  if (sync == "warp") {
    // DO nothing.
  } else if (sync == "shared" || sync == "shared.dyn") {
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
  } else if (sync == "global") {
    if (!need_global_barrier_) {
      need_global_barrier_ = true;
      this->decl_stream << "extern \"C\" __device__ unsigned "
                        << vid_global_barrier_state_ << ";\n";
    }
    // global synchronizer
    std::string is_load = PrintExpr(op->args[1]);
    std::string num_blocks = PrintExpr(op->args[2]);
    this->PrintIndent();
    // In theory only threadfence is needed
    // but we observed problems with only threadfence
    this->stream << "__threadfence_system();\n";
    this->PrintIndent();
    this->stream << "if (" << is_load << ") {\n";
    int wb = this->BeginScope();
    this->PrintIndent();
    this->stream << "atomicAdd(&" << vid_global_barrier_state_ << ", 1);\n";
    this->PrintIndent();
    std::string ptr = name_supply_->FreshName("pf");
    this->stream << "volatile unsigned* " << ptr << " = &"
                 << vid_global_barrier_state_ << ";\n";
    this->PrintIndent();
    this->stream << vid_global_barrier_expect_ << " += " << num_blocks << ";\n";
    this->PrintIndent();
    this->stream << "while (" << ptr << "[0] < " << vid_global_barrier_expect_
                 << ");\n";
    this->EndScope(wb);
    this->PrintIndent();
    this->stream << "}\n";
    this->PrintIndent();
    this->stream << "__syncthreads();\n";
579
580
581
  }
}

582
583
584
585
586
void CodeGenTileLangCUDA::PrintStorageScope(const std::string &scope,
                                            std::ostream &os) { // NOLINT(*)
  ICHECK_NE(scope, "global")
      << "Cannot allocate global memory when targeting CUDA. You must pass "
         "all global arrays as input instead";
587
588
589
590
591
592
593
  if (scope == "shared") {
    os << "__shared__ ";
  } else if (scope == "shared.dyn") {
    os << "extern __shared__ __align__(1024) ";
  }
}

594
595
596
597
std::string CodeGenTileLangCUDA::CastFromTo(std::string value, DataType from,
                                            DataType target) {
  if (from == target)
    return value;
598
599
600
601
  std::ostringstream os;
  os << "((";
  this->PrintType(target, os);
  os << ")";
602
603
  if (from.is_float16() && (target.is_int() || target.is_uint()) &&
      target.bits() == 8) {
604
605
606
607
608
609
610
611
612
613
    os << "(";
    if (target.is_uint()) {
      os << "u";
    }
    os << "int)";
  }
  os << value << ")";
  return os.str();
}

614
void CodeGenTileLangCUDA::VisitExpr_(const CastNode *op, std::ostream &os) {
615
616
617
618
619
  DataType from_ty = op->value.dtype();
  DataType target_ty = op->dtype;
  ICHECK_EQ(target_ty.lanes(), from_ty.lanes());

  // Emit simple C-style type conversion.
620
621
  if (from_ty.is_scalar())
    return CodeGenC::VisitExpr_(op, os);
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643

  // We could emit make_float4 like calls, but the emitted code looks
  // too compact to read. Emit this as vectorized unary ops.
  std::string sret = name_supply_->FreshName("_");
  this->PrintIndent();
  this->PrintType(target_ty, stream);
  stream << ' ' << sret << ";\n";
  {
    std::string src = SSAGetID(PrintExpr(op->value), from_ty);
    for (int i = 0, lanes = from_ty.lanes(); i < lanes; ++i) {
      std::ostringstream val;
      val << "(";
      PrintType(target_ty.element_of(), val);
      val << ")(";
      PrintVecElemLoad(src, from_ty, i, val);
      val << ")";
      PrintVecElemStore(sret, target_ty, i, val.str());
    }
  }
  os << sret;
}

644
645
646
647
void CodeGenTileLangCUDA::PrintCallExtern(Type ret_type, String global_symbol,
                                          const Array<PrimExpr> &args,
                                          bool skip_first_arg,
                                          std::ostream &os) { // NOLINT(*)
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
  DataType ret_dtype = GetRuntimeDataType(ret_type);
  if (ret_dtype.is_vector()) {
    //
    // Emit an unsupported vector call
    //
    // v = intrin_f((float4*)A[0], (float4*)B[0])
    //
    // as
    //
    // float4 __ret;
    // {
    //   float4 __arg0 = ((float4*)A)[0];
    //   float4 __arg1 = ((float4*)B)[0];
    //   __ret.x = intrin_f(__arg0.x, __arg1.x);
    //   __ret.y = intrin_f(__arg0.y, __arg1.y);
    //   __ret.z = intrin_f(__arg0.z, __arg1.z);
    //   __ret.w = intrin_f(__arg0.w, __arg1.w);
    // }
    // v = __ret;
    //
    // Declare the result vector.
    std::string sret = name_supply_->FreshName("_");
    this->PrintIndent();
    this->PrintType(ret_dtype, stream);
    stream << ' ' << sret << ";\n";
    {
      // Load arguments.
      std::vector<std::string> sargs;
      size_t arg_begin = static_cast<size_t>(skip_first_arg);
      for (size_t i = arg_begin; i < args.size(); ++i) {
        std::string val = SSAGetID(PrintExpr(args[i]), args[i].dtype());
        sargs.push_back(std::move(val));
      }

      // Emit a scalar call for each lane.
      for (int i = 0; i < ret_dtype.lanes(); ++i) {
        std::ostringstream scall;
        scall << global_symbol << "(";
        for (size_t j = 0; j < sargs.size(); ++j) {
687
688
          if (j > 0)
            scall << ", ";
689
690
691
692
693
694
695
696
          PrintVecElemLoad(sargs[j], args[arg_begin + j].dtype(), i, scall);
        }
        scall << ")";
        PrintVecElemStore(sret, ret_dtype, i, scall.str());
      }
    }
    os << sret;
  } else {
697
698
    CodeGenC::PrintCallExtern(ret_type, global_symbol, args, skip_first_arg,
                              os);
699
700
701
702
  }
}

// Print a reference expression to a buffer.
703
704
705
706
std::string CodeGenTileLangCUDA::GetBufferRef(DataType t,
                                              const BufferNode *buffer,
                                              PrimExpr index) {
  const VarNode *buffer_var = buffer->data.get();
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
  std::ostringstream os;
  std::string vid = GetVarID(buffer_var);
  std::string scope;
  if (alloc_storage_scope_.count(buffer_var)) {
    scope = alloc_storage_scope_.at(buffer_var);
  }
  // bool is_vol = IsVolatile(buffer_var);
  // always false for tl cutlass backend.
  bool is_vol = false;

  auto ptr_cast = [this, is_vol, scope](DataType pointed_to) {
    std::ostringstream ptr_os;
    ptr_os << "(";
    if (is_vol) {
      ptr_os << "volatile ";
    }
    if (!scope.empty() && IsScopePartOfType()) {
      PrintStorageScope(scope, ptr_os);
    }
    PrintType(pointed_to, ptr_os);
    ptr_os << "*)";
    return ptr_os.str();
  };

  DataType buffer_element_dtype = buffer->dtype;

  std::string buffer_str = vid;
  if (!HandleTypeMatch(buffer_var, buffer_element_dtype) || is_vol) {
    std::stringstream temp;
    temp << "(" << ptr_cast(buffer_element_dtype) << vid << ")";
    buffer_str = temp.str();
  }
739
740
741
742
743
744
745
  if (scope.empty()) {
    scope = GetPtrStorageScope(buffer->data);
  }
  if (scope == "local.var") {
    os << vid;
    return os.str();
  }
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
  std::string index_str = PrintExpr(index);
  if (t.bits() == 4 || (t.bits() == 1 && t.is_int())) {
    // This is a special case, because CodegenCUDA::PrintType()
    // returns "int" for bool and for 4-bit integers. In most cases,
    // we divide by the number of lanes to determine the index.
    // However, the backing type for scalar int4 and scalar bool is
    // int32.  Therefore, we need to divide by the ratio of their
    // sizes in that case.
    int div_factor = (t.lanes() == 1) ? (32 / t.bits()) : t.lanes();

    os << "*("
       << "(" << ptr_cast(t) << vid << ")"
       << " + " << index_str << " / " << div_factor << ")";
  } else if (t == buffer_element_dtype) {
    os << buffer_str << "[" << index_str << "]";
  } else {
    os << "*" << ptr_cast(t) << "(" << buffer_str << " + " << index_str << ")";
  }

  return os.str();
}

768
void CodeGenTileLangCUDA::VisitExpr_(const CallNode *op, std::ostream &os) {
769
770
771
772
  auto print_extern_call_stmt = [&](std::string name, size_t offset = 0) {
    this->PrintIndent();
    this->stream << name << "(";
    for (size_t i = offset; i < op->args.size(); i++) {
773
774
      if (i > offset)
        this->stream << ", ";
775
776
777
778
779
780
781
782
783
784
      this->stream << this->PrintExpr(op->args[i]);
    }
    this->stream << ");\n";
  };
  if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
785
786
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
787
788
    if (op->args.size() == 5) {
      this->PrintIndent();
789
790
      this->stream << "tl::cp_async_gs<" << size << ">(" << dst << "+"
                   << dst_offset << ", " << src << "+" << src_offset << ");\n";
791
792
793
    } else {
      std::string condition = this->PrintExpr(op->args[5]);
      this->PrintIndent();
794
795
796
      this->stream << "tl::cp_async_gs_conditional<" << size << ">(" << dst
                   << "+" << dst_offset << ", " << src << "+" << src_offset
                   << ", " << condition << ");\n";
797
798
799
800
801
802
803
804
805
806
807
    }
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    print_extern_call_stmt("tl::cp_async_commit");
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
    std::string func_name = "tl::cp_async_wait<" + std::to_string(n) + ">";
    print_extern_call_stmt(func_name, 1);
  } else if (op->op.same_as(builtin::create_barriers())) {
    this->PrintIndent();
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
    std::string barrier_name = "_mbarrier";
808
809
    this->stream << "__shared__ uint64_t " << barrier_name << "["
                 << barrier_count << "];\n";
810
  } else if (op->op.same_as(tl::get_mbarrier())) {
811
812
813
814
815
816
817
818
819
820
821
    std::string barrier_name = "_mbarrier";
    std::string barrier_id = this->PrintExpr(op->args[0]);
    os << barrier_name + "[" + barrier_id + "]";
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    print_extern_call_stmt("tl::mbarrier_arrive");
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    print_extern_call_stmt("tl::mbarrier_init");
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    print_extern_call_stmt("tl::mbarrier_arrive_expect_tx");
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    print_extern_call_stmt("tl::mbarrier_cp_async_arrive");
822
  } else if (op->op.same_as(tl::mbarrier_expect_tx())) {
823
    print_extern_call_stmt("tl::mbarrier_expect_tx");
824
  } else if (op->op.same_as(tl::mbarrier_wait_parity())) {
825
    print_extern_call_stmt("tl::mbarrier_wait");
826
  } else if (op->op.same_as(tl::sync_thread_partial())) {
827
    print_extern_call_stmt("tl::syncthreads_partial");
828
  } else if (op->op.same_as(tl::tma_load())) {
829
    print_extern_call_stmt("tl::tma_load");
830
  } else if (op->op.same_as(tl::tma_load_im2col())) {
831
    print_extern_call_stmt("tl::tma_load_im2col");
832
  } else if (op->op.same_as(tl::tma_store())) {
833
    print_extern_call_stmt("tl::tma_store");
834
  } else if (op->op.same_as(tl::ptx_ldmatirx())) {
835
836
837
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_ldmatrix_x" + std::to_string(num);
838
839
    if (trans == 1)
      func_name += "_trans";
840
    print_extern_call_stmt(func_name, 2);
841
  } else if (op->op.same_as(tl::ptx_stmatirx())) {
842
843
844
    int trans = Downcast<IntImm>(op->args[0])->value;
    int num = Downcast<IntImm>(op->args[1])->value;
    std::string func_name = "tl::ptx_stmatrix_x" + std::to_string(num);
845
846
    if (trans == 1)
      func_name += "_trans";
847
    print_extern_call_stmt(func_name, 2);
848
  } else if (op->op.same_as(tl::fence_proxy_async())) {
849
    print_extern_call_stmt("tl::fence_proxy_async");
850
  } else if (op->op.same_as(tl::tma_store_arrive())) {
851
    print_extern_call_stmt("tl::tma_store_arrive");
852
  } else if (op->op.same_as(tl::tma_store_wait())) {
853
    print_extern_call_stmt("tl::tma_store_wait<0>");
854
  } else if (op->op.same_as(tl::set_max_nreg())) {
855
856
857
    this->PrintIndent();
    int nreg = Downcast<IntImm>(op->args[0])->value;
    int is_inc = Downcast<IntImm>(op->args[1])->value;
858
859
    std::string func_name =
        is_inc ? "tl::warpgroup_reg_alloc" : "tl::warpgroup_reg_dealloc";
860
    this->stream << func_name << "<" << std::to_string(nreg) << ">();\n";
861
  } else if (op->op.same_as(tl::wait_wgmma())) {
862
863
864
    this->PrintIndent();
    int num_mma = Downcast<IntImm>(op->args[0])->value;
    this->stream << "tl::wait_wgmma<" << std::to_string(num_mma) << ">();\n";
865
  } else if (op->op.same_as(tl::pack_b16())) {
866
867
    os << "__pack_half2(" << this->PrintExpr(op->args[0]) << ", "
       << this->PrintExpr(op->args[1]) << ")";
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
  } else if (op->op.same_as(builtin::tvm_fill_fragment())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 6U);
    os << "nvcuda::wmma::fill_fragment(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_load_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::load_matrix_sync(";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[6], os);
    os << ")";
  } else if (op->op.same_as(builtin::tvm_store_matrix_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::store_matrix_sync(";
    this->PrintExpr(op->args[5], os);
    os << ", ";
    this->PrintExpr(op->args[0], os);
    os << "[";
    this->PrintExpr(op->args[4], os);
    os << "], ";
    this->PrintExpr(op->args[6], os);
901
    if (const StringImmNode *str = op->args[7].as<StringImmNode>()) {
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
      os << ", nvcuda::wmma::mem_" << str->value;
    } else {
      LOG(FATAL) << "Invalid parameters";
    }
    os << ")";
  } else if (op->op.same_as(builtin::tvm_mma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::mma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::tvm_bmma_sync())) {
    need_mma_h_ = true;
    ICHECK_EQ(op->args.size(), 8U);
    os << "nvcuda::wmma::bmma_sync(";
    for (int i = 0; i < 4; ++i) {
      this->PrintExpr(op->args[i * 2], os);
      os << "[";
      this->PrintExpr(op->args[i * 2 + 1], os);
      os << "]" << ((i < 3) ? ", " : ")");
    }
  } else if (op->op.same_as(builtin::ptx_mma())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp64, ...
    // arg 4: B precision: fp16, fp64, ...
    // arg 5: C precision: fp32, fp64, ...
    // arg 6: A multiplicand
    // arg 7: A multiplicand index
    // arg 8: B multiplicand
    // arg 9: B multiplicand index
    // arg 10: C accumulator
    // arg 11: C accumulator index
    // arg 12: saturate
    // arg 13: (optional) 1-bit operator (xor or and)
    ICHECK(op->args.size() == 13U || op->args.size() == 14U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_bias = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_bias = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_bias = this->PrintExpr(op->args[11]);
    bool saturate = Downcast<Bool>(op->args[12])->value;
956
957
958
959
960
    std::string bit_op =
        op->args.size() > 13 ? Downcast<StringImm>(op->args[13])->value : "";
    std::string asm_code = PrintMMAAssembly(
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_bias,
        b_ref, b_bias, c_ref, c_bias, "", "", "", bit_op, false, saturate);
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

    this->stream << asm_code;
  } else if (op->op.same_as(builtin::ptx_mma_sp())) {
    // arg 0: shape: mXnXkX
    // arg 1: A layout: row/col
    // arg 2: B layout: row/col
    // arg 3: A precision: fp16, fp32, ...
    // arg 4: B precision: fp16, fp32, ...
    // arg 5: C precision: fp16, fp32, ...
    // arg 6: A multiplicand pointer
    // arg 7: A multiplicand index
    // arg 8: B multiplicand pointer
    // arg 9: B multiplicand index
    // arg 10: C accumulator pointer
    // arg 11: C accumulator index
    // arg 12: metadata
    // arg 13: metadata index
    // arg 14: sparse_selector
    // arg 15: saturate
    ICHECK_EQ(op->args.size(), 16U);
    std::string shape = Downcast<StringImm>(op->args[0])->value;
    std::string A_layout = Downcast<StringImm>(op->args[1])->value;
    std::string B_layout = Downcast<StringImm>(op->args[2])->value;
    std::string A_dtype = Downcast<StringImm>(op->args[3])->value;
    std::string B_dtype = Downcast<StringImm>(op->args[4])->value;
    std::string C_dtype = Downcast<StringImm>(op->args[5])->value;
    std::string a_ref = this->PrintExpr(op->args[6]);
    std::string a_offset = this->PrintExpr(op->args[7]);
    std::string b_ref = this->PrintExpr(op->args[8]);
    std::string b_offset = this->PrintExpr(op->args[9]);
    std::string c_ref = this->PrintExpr(op->args[10]);
    std::string c_offset = this->PrintExpr(op->args[11]);
    std::string metadata = this->PrintExpr(op->args[12]);
    std::string metadata_offset = this->PrintExpr(op->args[13]);
    std::string sparse_selector = this->PrintExpr(op->args[14]);
    bool saturate = Downcast<Bool>(op->args[15])->value;
    std::string asm_code = PrintMMAAssembly(
998
999
1000
        shape, A_layout, B_layout, A_dtype, B_dtype, C_dtype, a_ref, a_offset,
        b_ref, b_offset, c_ref, c_offset, metadata, metadata_offset,
        sparse_selector, "", true, saturate);
1001
1002
1003
1004
1005
1006
1007
1008
    this->stream << asm_code;
  } else if (op->op.same_as(builtin::ptx_ldmatrix())) {
    // arg 0: whether the matrix is loaded in column major format or not.
    // arg 1: number of matrices to load.
    // arg 2: The data type in the matrix, .b16 is the only accepted data type.
    // arg 3: pointer to local buffer.
    // arg 4: The offset of the element to store in the local buffer.
    // arg 5: pointer to the shared memory buffer to load.
1009
1010
    // arg 6: The offset of the start element of the row to load in shared
    // memory.
1011
1012
1013
1014
1015
1016
1017
1018
    ICHECK_EQ(op->args.size(), 7U);
    bool trans = Downcast<Bool>(op->args[0])->value;
    int num = Downcast<Integer>(op->args[1])->value;
    std::string type = Downcast<StringImm>(op->args[2])->value;
    std::string local_ptr = this->PrintExpr(op->args[3]);
    std::string local_elem_offset = this->PrintExpr(op->args[4]);
    std::string smem_ptr = this->PrintExpr(op->args[5]);
    if (trans && op->dtype.bits() == 8) {
1019
1020
      // Since ldmatrix assumes that a matrix element is 16 bit, it cannot
      // properly transpose an int8 matrix.
1021
1022
1023
1024
      std::string smem_stride = this->PrintExpr(op->args[6]);
      ICHECK(num == 4);
      os << "for (int i = 0; i < 16; ++i) {\n";
      os << local_ptr << "[" + local_elem_offset + " + i] = " << smem_ptr
1025
1026
1027
1028
         << "[(i % 8) / 4 * " + smem_stride +
                " * 16 + (threadIdx.x % 4) * 4 * " + smem_stride +
                "+ (i % 4) * " + smem_stride +
                " + threadIdx.x / 4 +  (i / 8) * 8];\n";
1029
1030
1031
1032
      os << "}\n";
    } else {
      std::string smem_elem_offset = this->PrintExpr(op->args[6]);
      need_cast_smem_ptr_to_int_ = true;
1033
1034
1035
      this->stream << PrintLoadMatrixAssembly(trans, num, type, local_ptr,
                                              local_elem_offset, smem_ptr,
                                              smem_elem_offset);
1036
1037
1038
1039
1040
1041
1042
1043
1044
    }
  } else if (op->op.same_as(builtin::mma_store())) {
    int m = Downcast<Integer>(op->args[0])->value;
    int n = Downcast<Integer>(op->args[1])->value;
    std::string dst = this->PrintExpr(op->args[2]);
    std::string src = this->PrintExpr(op->args[3]);
    std::string src_offset = this->PrintExpr(op->args[4]);
    PrimExpr stride = op->args[5];

1045
1046
    ICHECK(m == 16 && n == 16)
        << "Only m == 16 && n == 16 case supported for now";
1047

1048
1049
1050
1051
1052
    // Each thread in a warp holds a certain number of elements of an MMA
    // output. For example, if we compute a 16x16 tile using MMA, each thread
    // holds 8 elements in its registers. So conceptually, a warp memory is
    // organized as a 32x8 block. A map from a 16x16 tile to a 32x8 block of
    // memory is specified by the index map below.
1053

1054
1055
    // To store the 32x8 output back to a 16x16 tile in shared or global memory,
    // we invert this map to determine the output location for each 8 element.
1056

1057
    const auto *index_map_func =
1058
        runtime::Registry::Get("tir.index_map.shared_16x16_to_mma_32x8_layout");
1059

1060
1061
1062
    IndexMap index_map;
    if (!index_map_func) {
      Var i, j;
1063

1064
      // The index map is defined as follows:
1065
1066
1067
1068
1069
      index_map = IndexMap(
          {i, j}, {4 * FloorMod(i, 8) + FloorDiv(FloorMod(j, 8), 2),
                   4 * FloorDiv(j, 8) + FloorDiv(i, 8) * 2 + FloorMod(j, 2)});
    } else {
      index_map = IndexMap::FromFunc(2, *index_map_func);
1070
1071
1072
1073
1074
1075
1076
    }

    arith::Analyzer analyzer;
    auto inverse_index_map =
        index_map.Inverse({Range(0, m), Range(0, n)}, &analyzer);
    auto indices_16x16 = inverse_index_map->final_indices;

1077
1078
1079
    // "//" and "%" in the index map are translated to FloorDiv/Mod, but the
    // plain Div/Mod are fine. FloorDiv/Mod are supposed to be lowered before
    // they reach codegen, so manually replace them to the plain ones here.
1080
    class LowerFloorDivMod : public ExprMutator {
1081
1082
    public:
      PrimExpr VisitExpr_(const FloorDivNode *op) {
1083
1084
        return tir::Div(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
1085
      PrimExpr VisitExpr_(const FloorModNode *op) {
1086
1087
1088
1089
        return tir::Mod(this->VisitExpr(op->a), this->VisitExpr(op->b));
      }
    };

1090
1091
    auto dst_ind =
        LowerFloorDivMod()(indices_16x16[0] * stride + indices_16x16[1]);
1092
1093
1094
1095
1096
1097
1098
1099
1100

    var_idmap_[inverse_index_map->initial_indices[0].get()] = "threadIdx.x";
    var_idmap_[inverse_index_map->initial_indices[1].get()] = "local_id";
    if (op->dtype.bits() == 16) {
      os << "for (int local_id = 0; local_id < 8; local_id+=2) {\n";
      os << "*((uint *)&" << dst << "[" + this->PrintExpr(dst_ind) + "])"
         << " = "
         << "*((uint *)&" << src << "[" << src_offset << " + local_id]);\n";
      os << "}\n";
1101
    } else {
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
      os << "for (int local_id = 0; local_id < 8; ++local_id) {\n";
      os << dst << "[" + this->PrintExpr(dst_ind) + "]"
         << " = " << src << "[" << src_offset << " + local_id];\n";
      os << "}\n";
    }

  } else if (op->op.same_as(builtin::mma_fill())) {
    std::string num_elem = this->PrintExpr(op->args[0]);
    std::string dst = this->PrintExpr(op->args[1]);
    std::string dst_offset = this->PrintExpr(op->args[2]);

    os << "for (int i = 0; i < " << num_elem << "; ++i) {\n";
    os << dst << "[" << dst_offset << " + i] = 0.0;";
    os << "}\n";
  } else if (op->op.same_as(builtin::ptx_cp_async())) {
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    need_cast_smem_ptr_to_int_ = true;
1123
1124
    // use size of argument list to indicate whether or not to use predicated
    // cp.async
1125
    if (op->args.size() == 5) {
1126
1127
      this->stream << PrintCpAsyncAssembly(dst, dst_offset, src, src_offset,
                                           size);
1128
    } else {
1129
1130
      this->stream << PrintPredicatedCpAsyncAssembly(
          dst, dst_offset, src, src_offset, size, this->PrintExpr(op->args[5]));
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
    }
  } else if (op->op.same_as(builtin::ptx_cp_async_bulk())) {
    need_cast_smem_ptr_to_int_ = true;
    std::string dst = this->PrintExpr(op->args[0]);
    std::string dst_offset = this->PrintExpr(op->args[1]);
    std::string src = this->PrintExpr(op->args[2]);
    std::string src_offset = this->PrintExpr(op->args[3]);
    std::string size = this->PrintExpr(op->args[4]);
    int barrier_id = Downcast<IntImm>(op->args[5])->value;
    CHECK(barrier_id < barrier_count_);
1141
1142
1143
1144
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
    this->stream << PrintCpAsyncBulkAsm(dst, dst_offset, src, src_offset, size,
                                        barrier);
1145
1146
1147
1148
  } else if (op->op.same_as(builtin::ptx_commit_group())) {
    this->stream << "__asm__ __volatile__(\"cp.async.commit_group;\");\n\n";
  } else if (op->op.same_as(builtin::ptx_wait_group())) {
    int n = Downcast<IntImm>(op->args[0])->value;
1149
1150
    this->stream << "__asm__ __volatile__(\"cp.async.wait_group " << n
                 << ";\");\n\n";
1151
1152
1153
1154
  } else if (op->op.same_as(builtin::ptx_cp_async_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1155
1156
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1157
1158
1159
1160
1161
    this->stream << PrintCpAsyncBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_init_barrier_thread_count())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1162
1163
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1164
1165
1166
1167
1168
1169
    std::string thread_count = this->PrintExpr(op->args[1]);
    this->stream << PrintInitBarrierThreadCountAsm(barrier, thread_count);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1170
1171
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1172
1173
1174
1175
1176
    this->stream << PrintArriveBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::ptx_arrive_barrier_expect_tx())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1177
1178
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1179
1180
1181
1182
1183
1184
    std::string byte_count = this->PrintExpr(op->args[1]);
    this->stream << PrintArriveBarrierExpectTxAsm(barrier, byte_count);
  } else if (op->op.same_as(builtin::ptx_wait_barrier())) {
    need_cast_smem_ptr_to_int_ = true;
    int barrier_id = Downcast<IntImm>(op->args[0])->value;
    CHECK(barrier_id < barrier_count_);
1185
1186
    std::string barrier =
        barrier_name_ + "[" + std::to_string(barrier_id) + "]";
1187
1188
1189
1190
1191
1192
1193
1194
    this->stream << PrintWaitBarrierAsm(barrier);
  } else if (op->op.same_as(builtin::create_barriers())) {
    CHECK_EQ(barrier_count_, -1);
    int barrier_count = Downcast<IntImm>(op->args[0])->value;
    // pad barrier alignment to avoid runtime alignment errors
    CHECK_EQ(barrier_alignment_bytes_ % sizeof(uint64_t), 0);
    int barrier_alignment_count = barrier_alignment_bytes_ / sizeof(uint64_t);
    if (barrier_count % barrier_alignment_count != 0) {
1195
1196
      barrier_count = ((barrier_count / barrier_alignment_count) + 1) *
                      barrier_alignment_count;
1197
1198
    }
    barrier_count_ = barrier_count;
1199
1200
1201
1202
1203
    this->stream << "__shared__ __align__(" << barrier_alignment_bytes_
                 << ") uint64_t " << barrier_name_ << "[" << barrier_count
                 << "];\n";
    this->stream << "for (int i = 0; i < " << barrier_count << "; ++i) { "
                 << barrier_name_ << "[i] = 0; }\n";
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
  } else if (op->op.same_as(builtin::ptx_ldg32())) {
    /*
    asm volatile (
        "{.reg .pred p;\n"
        " setp.ne.b32 p, %2, 0;\n"
        // " @p ld.global.nc.f32 %0, [%1];}\n"t
        " @p ld.global.nc.L2::128B.f32 %0, [%1];}\n"
        : "=f"(reg)
        : "l"(addr), "r"((int)guard)
    );
    */

    // get local
    std::string reg = this->PrintExpr(op->args[0]);
    // get guard
    std::string guard = this->PrintExpr(op->args[1]);
1220
    const BufferLoadNode *addr_buffer = op->args[2].as<BufferLoadNode>();
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
    std::string global_addr = this->PrintExpr(addr_buffer->indices[0]);
    std::string global_buffer = this->PrintExpr(addr_buffer->buffer->data);
    std::string local_addr = this->PrintExpr(op->args[3]);
    this->stream << "asm volatile (\n";
    this->stream << "\"{.reg .pred p;\\n\"\n";
    this->stream << "\" setp.ne.b32 p, %2, 0;\\n\"\n";
    this->stream << "\" @!p mov.b32 %0, 0;\\n\"\n";
    this->stream << "\" @p ld.global.nc.f32 %0, [%1];}\\n\"\n";
    // stream << "\" @p ld.global.nc.L2::128B.f32 %0, [%1];}\\n\"\n" ;
    stream << ": \"=f\"(" << reg << "[" << local_addr << "]"
           << ")\n";
1232
1233
    stream << ": \"l\"((void*)(" << global_buffer << "+" << global_addr
           << ")), \"r\"((int)" << guard << ")\n";
1234
1235
1236
1237
1238
1239
    stream << ");\n";
  } else {
    CodeGenC::VisitExpr_(op, os);
  }
}

1240
void CodeGenTileLangCUDA::VisitStmt_(const AttrStmtNode *op) {
1241
  if (op->attr_key == tir::attr::fragment_shape) {
1242
1243
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *shape_str = op->value.as<StringImmNode>();
1244
1245
    fragment_shapes[buffer] = shape_str->value;
  } else if (op->attr_key == tir::attr::fragment_layout) {
1246
1247
    const VarNode *buffer = op->node.as<VarNode>();
    const StringImmNode *layout_str = op->value.as<StringImmNode>();
1248
1249
    fragment_layouts[buffer] = layout_str->value;
  } else if (op->attr_key == tir::attr::async_commit_queue_scope) {
1250
1251
1252
    const IntImmNode *queue_id = op->value.as<IntImmNode>();
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
1253
1254
1255
1256
1257
1258
1259
    this->VisitStmt(op->body);
    auto commit_group = Call(DataType::Void(), builtin::ptx_commit_group(), {});
    this->VisitExpr(commit_group, this->stream);
    return;
  } else if (op->attr_key == tir::attr::async_wait_queue_scope) {
    auto wait_attrs = GetAsyncWaitAttributes(op);
    auto queue_id = wait_attrs.first.as<IntImmNode>();
1260
1261
    ICHECK(queue_id && queue_id->value == 0)
        << "For CUDA, the index of an async queue must be 0.";
1262
    auto wait_cnt = wait_attrs.second;
1263
1264
    auto wait_group =
        Call(DataType::Void(), builtin::ptx_wait_group(), {wait_cnt});
1265
1266
1267
1268
1269
1270
1271
    this->VisitExpr(wait_group, this->stream);
    auto inner = op->body.as<AttrStmtNode>();
    ICHECK(inner);
    this->VisitStmt(inner->body);
    return;
  } else if (op->attr_key == "threadblock_swizzle_pattern") {
    this->PrintIndent();
1272
    const StringImmNode *pattern = op->value.as<StringImmNode>();
1273
1274
1275
1276
1277
1278
1279
1280
    ICHECK(pattern);
    this->stream << "const dim3 blockIdx = " << pattern->value << "();\n";
    this->VisitStmt(op->body);
    return;
  }
  CodeGenC::VisitStmt_(op);
}

1281
void CodeGenTileLangCUDA::VisitStmt_(const AllocateNode *op) {
1282
1283
1284
1285
  ICHECK(!is_zero(op->condition));
  std::string vid = AllocVarID(op->buffer_var.get());
  this->PrintIndent();
  std::string scope = GetPtrStorageScope(op->buffer_var);
1286
  const VarNode *buffer = op->buffer_var.as<VarNode>();
1287
1288
  if (scope.find("wmma.") == 0) {
    if (scope == "wmma.matrix_a" || scope == "wmma.matrix_b") {
1289
1290
1291
1292
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Int(8) || op->dtype == DataType::UInt(8) ||
             op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
             op->dtype == DataType::Int(1) || op->dtype == DataType::BFloat(16))
1293
1294
1295
          << "Matrix_a and matrix_b only support half or char or unsigned char "
          << "or uint4 or int4 or int1 type for now";
    } else {
1296
1297
      ICHECK(op->dtype == DataType::Float(16) ||
             op->dtype == DataType::Float(32) || op->dtype == DataType::Int(32))
1298
1299
1300
          << "Accumulator only support half, float and int type for now";
    }
    PrintWmmaScope(scope, op->dtype, buffer, stream);
1301
  } else {
1302
1303
1304
1305
1306
1307
1308
1309
    PrintStorageScope(scope, stream);
    PrintType(op->dtype, stream);
  }

  if (scope == "shared.dyn") {
    stream << ' ' << vid << "[];\n";
  } else {
    size_t constant_size = op->ConstantAllocationSize();
1310
    ICHECK_GT(constant_size, 0)
1311
1312
        << "Can only handle constant size stack allocation for now, but get "
        << constant_size << " for " << op->buffer_var->name_hint;
1313
1314
1315
1316
1317
1318
1319
1320
    if (scope.find("wmma.") == 0) {
      constant_size = GetWmmaFragmentSize(scope, buffer, constant_size);
    }
    if ((op->dtype == DataType::Int(4) || op->dtype == DataType::UInt(4) ||
         op->dtype == DataType::Int(1)) &&
        scope == "shared") {
      constant_size = constant_size / (32 / op->dtype.bits());
    }
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
    if (scope == "shared") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
    } else if (scope == "local") {
      stream << ' ' << vid << '[' << constant_size << "];\n";
    } else if (scope == "local.var") {
      stream << ' ' << vid << " = " << PrintExpr(tir::make_const(op->dtype, 0))
             << ";\n";
    } else {
      ICHECK(false) << "Unsupported scope: " << scope;
    }
1331
1332
1333
1334
1335
1336
  }

  RegisterHandleType(op->buffer_var.get(), op->dtype);
  this->PrintStmt(op->body);
}

1337
void CodeGenTileLangCUDA::VisitExpr_(const RampNode *op, std::ostream &os) {
1338
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1339
1340
  CHECK_LE(lanes, 4) << "Translate Ramp Node " << GetRef<Ramp>(op) << " with "
                     << lanes << " lanes is not allowed.";
1341
1342
1343
1344
1345
1346
  os << "(make_";
  PrintType(op->dtype, os);
  os << "(";
  for (int i = 0; i < lanes; i++) {
    os << "(" << PrintExpr(op->base) << ")"
       << "+(" << PrintExpr(op->stride) << "*" << i << ")";
1347
1348
    if (i != lanes - 1)
      os << ", ";
1349
1350
1351
1352
  }
  os << "))";
}

1353
1354
void CodeGenTileLangCUDA::VisitExpr_(const BroadcastNode *op,
                                     std::ostream &os) { // NOLINT(*)
1355
  int lanes = static_cast<int>(Downcast<IntImm>(op->lanes)->value);
1356
1357
  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 8 &&
      lanes == 4) {
1358
    // make_int8x4
1359
    const int64_t *p = as_const_int(op->value);
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
    ICHECK(p);
    int64_t v = *p & 0xFF;
    v = (v << 24) | (v << 16) | (v << 8) | v;
    if (op->dtype.is_uint()) {
      os << "(uint)" << v;
    } else {
      os << "(int)" << v;
    }
    return;
  }

  if (op->dtype.is_float16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1377
1378
      if (i != 0)
        os << ", ";
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
      os << "__pack_half2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if (op->dtype.is_bfloat16()) {
    std::string v = PrintExpr(op->value);
    os << "make_";
    PrintType(op->dtype, os);
    os << '(';
    for (int i = 0; i < lanes / 2; ++i) {
1391
1392
      if (i != 0)
        os << ", ";
1393
1394
1395
1396
1397
1398
      os << "__pack_nv_bfloat162(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

1399
1400
  if (op->dtype.is_float() && op->dtype.bits() == 32 &&
      op->dtype.lanes() == 8) {
1401
1402
1403
    std::string v = PrintExpr(op->value);
    os << "make_ulonglong4(";
    for (int i = 0; i < 4; ++i) {
1404
1405
      if (i != 0)
        os << ", ";
1406
1407
1408
1409
1410
1411
1412
1413
      os << "*(unsigned long long*)&make_float2(" << v << ", " << v << ")";
    }
    os << ')';
    return;
  }

  if ((op->dtype.is_int() || op->dtype.is_uint()) && op->dtype.bits() == 4) {
    bool fail = false;
1414
    const int64_t *p = as_const_int(op->value);
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
    ICHECK(p);
    int64_t v = *p & 0xF;

    if (lanes == 4) {
      v = (v << 12) | (v << 8) | (v << 4) | v;
      if (op->dtype.is_uint()) {
        os << "(uint16_t)" << v;
      } else {
        os << "(int16_t)" << v;
      }
    } else {
1426
1427
      v = (v << 28) | (v << 24) | (v << 20) | (v << 16) | (v << 12) | (v << 8) |
          (v << 4) | v;
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
      if (lanes == 8) {
        if (op->dtype.is_uint()) {
          os << "(uint)" << v;
        } else {
          os << "(int)" << v;
        }
      } else if (lanes == 16 || lanes == 32) {
        os << "make_";
        PrintType(op->dtype, os);
        os << '(';
        for (int i = 0; i < lanes / 8; ++i) {
1439
1440
          if (i != 0)
            os << ", ";
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
          if (op->dtype.is_uint()) {
            os << "(uint)" << v;
          } else {
            os << "(int)" << v;
          }
        }
        os << ')';
      } else {
        fail = true;
      }
    }

    if (!fail) {
      return;
    }
  }

  std::string v = PrintExpr(op->value);
  os << "make_";
  PrintType(op->dtype, os);
  os << '(';
  for (int i = 0; i < lanes; ++i) {
1463
1464
    if (i != 0)
      os << ", ";
1465
1466
1467
1468
1469
    os << v;
  }
  os << ')';
}

1470
1471
inline void PrintConst(const FloatImmNode *op, std::ostream &os,
                       CodeGenTileLangCUDA *p) { // NOLINT(*)
1472
1473
1474
1475
1476
1477
  // Type code is kBFloat
  if (op->dtype.is_bfloat16()) {
    os << "bfloat16_t";
    os << '(' << std::scientific << op->value << 'f' << ')';
    return;
  }
1478
1479
1480
1481
1482
1483
  // Type code is kFloat8_e5m2 or kE4M4Float
  if (op->dtype.is_float8() || op->dtype.is_float4()) {
    p->PrintType(op->dtype, os);
    os << '(' << std::scientific << op->value << 'f' << ')';
    return;
  }
1484
1485
  // Type code is kFloat
  switch (op->dtype.bits()) {
1486
1487
1488
1489
1490
1491
  case 64:
  case 32: {
    std::ostringstream temp;
    if (std::isinf(op->value)) {
      if (op->value < 0) {
        temp << "-";
1492
      }
1493
      temp << ((op->dtype.bits() == 32) ? "CUDART_INF_F" : "CUDART_INF");
1494
      p->need_math_constants_h_ = true;
1495
1496
    } else if (std::isnan(op->value)) {
      temp << ((op->dtype.bits() == 32) ? "CUDART_NAN_F" : "CUDART_NAN");
1497
      p->need_math_constants_h_ = true;
1498
1499
1500
1501
    } else {
      temp << std::scientific << op->value;
      if (op->dtype.bits() == 32)
        temp << 'f';
1502
    }
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
    p->MarkConst(temp.str());
    os << temp.str();
    break;
  }
  case 16: {
    os << "half_t" << '(';
    FloatImm const_f32 = FloatImm(DataType::Float(32), op->value);
    PrintConst(const_f32.get(), os, p);
    os << ')';
    break;
  }
  default:
    LOG(FATAL) << "Bad bit-width for float: " << op->dtype << "\n";
1516
1517
1518
  }
}

1519
1520
void CodeGenTileLangCUDA::VisitExpr_(const FloatImmNode *op,
                                     std::ostream &os) { // NOLINT(*)
1521
1522
1523
  PrintConst(op, os, this);
}

1524
1525
1526
void CodeGenTileLangCUDA::PrintWmmaScope(const std::string &scope, DataType t,
                                         const VarNode *variable,
                                         std::ostream &os) {
1527
1528
  std::stringstream type;
  PrintType(t, type);
1529
1530
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
  std::string shape_str = fragment_shapes.at(variable);
  if ((t.is_int() || t.is_uint()) && t.bits() < 8 && t.lanes() == 1) {
    type.str(std::string());
    if (t.is_int()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::s4";
      } else if (t.bits() == 1) {
        type << "nvcuda::wmma::experimental::precision::b1";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    } else if (t.is_uint()) {
      if (t.bits() == 4) {
        type << "nvcuda::wmma::experimental::precision::u4";
      } else {
        LOG(FATAL) << "Unhandled integer type for wmma fragment!";
      }
    }
  }
  if (scope == "wmma.matrix_a") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_a";
1553
1554
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
1555
1556
1557
  } else if (scope == "wmma.matrix_b") {
    std::string layout_str = fragment_layouts[variable];
    ICHECK_NE(layout_str, "") << "Layout must be defined for matrix_b";
1558
1559
    os << "nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, " << shape_str << ", "
       << type.str() << ", nvcuda::wmma::" << layout_str << ">";
1560
  } else if (scope == "wmma.accumulator") {
1561
1562
    os << "nvcuda::wmma::fragment<nvcuda::wmma::accumulator, " << shape_str
       << ", " << type.str() << ">";
1563
1564
1565
  }
}

1566
1567
int32_t CodeGenTileLangCUDA::GetWmmaFragmentSize(const std::string &scope,
                                                 const VarNode *variable,
1568
                                                 int32_t size) {
1569
1570
  ICHECK(fragment_shapes.count(variable))
      << "Cannot find shape of the wmma fragment " << variable->name_hint;
1571
1572
1573
1574
1575
1576
1577
1578
  std::string shape_str = fragment_shapes.at(variable);
  std::pair<int32_t, int32_t> dim = GetWmmaFragmentDimSize(shape_str, scope);
  if (dim.first * dim.second != 0)
    return size / dim.first / dim.second;
  else
    return 0;
}

1579
1580
1581
void CodeGenTileLangCUDA::HandleVolatileLoads(const std::string &value,
                                              const BufferLoadNode *op,
                                              std::ostream &os) {
1582
1583
1584
  // Cast away volatile qualifier for fp16 types. That is, only loads and
  // stores are volatile. The loaded objects are not marked as volatile.
  //
1585
1586
  if ((op->dtype.is_float16() || op->dtype.is_bfloat16()) &&
      IsVolatile(op->buffer->data.get())) {
1587
1588
1589
1590
1591
1592
1593
1594
    os << "(";
    PrintType(op->dtype, os);
    os << ")(" << value << ")";
  } else {
    os << value;
  }
}

1595
1596
1597
void CodeGenTileLangCUDA::PrintVecElemLoadExpr(DataType t, int i,
                                               const std::string &value,
                                               std::ostream &os) {
1598
1599
1600
1601
1602
1603
  ICHECK_GT(t.lanes(), 1);
  if (t.bits() == 8 && (t.is_int() || t.is_uint())) {
    if (!(t.lanes() == 2 || t.lanes() == 3)) {
      if (i != 0) {
        os << "|";
      }
1604
1605
      os << "((0x000000ff << " << i * 8 << ") & (" << value << " << " << i * 8
         << "))";
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
      return;
    }
  }

  if (t.is_float16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_half2(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (t.is_bfloat16()) {
    if (i == 0) {
      os << "make_";
      PrintType(t, os);
      os << '(';
    }
    if (i % 2 == 0) {
      os << "__pack_bfloat162(" << value;
    } else {
      os << "," << value << ")";
      if (i != t.lanes() - 1) {
        os << ",";
      } else {
        os << ")";
      }
    }
    return;
  }

  if (i == 0) {
    os << "make_";
    PrintType(t, os);
    os << "(";
  }
  os << value;
  if (i != t.lanes() - 1) {
    os << ",";
  } else {
    os << ")";
  }
  return;
}

1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
void CodeGenTileLangCUDA::PrintFunctionSignature(const String &function_name,
                                                 const PrimFunc &func,
                                                 std::ostream &os) {
  PrintFuncPrefix(os);
  CodeGenC::PrintType(func->ret_type, os);
  CodeGenC::PrintExtraAttrs(func, os);
  bool no_alias = func->HasNonzeroAttr(tir::attr::kNoAlias);
  os << " " << function_name << "(";
  for (size_t i = 0; i < func->params.size(); ++i) {
    tir::Var v = func->params[i];
    std::string vid = AllocVarID(v.get());

    if (i > 0) {
      os << ", ";
    }

    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (ptr->storage_scope == "grid_constant") {
          os << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, os);
          os << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, os);
      }

      CodeGenC::PrintType(GetType(v), os);
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, os);
      }
    } else {
      CodeGenC::PrintType(GetType(v), os);
    }
    os << ' ' << vid;
  }
  os << ")";

  // Register handle data type
  // TODO(tvm-team): consider simply keep type info in the
  // type annotation(via a normalizing rewriting).
  for (const auto &param : func->params) {
    if (auto *ptr = param->type_annotation.as<PointerTypeNode>()) {
      if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
        RegisterHandleType(param.get(), prim->dtype);
      }
    }
  }
}

void CodeGenTileLangCUDA::AddFunction(const GlobalVar &gvar,
                                      const PrimFunc &f) {
  // If the function has already been forward-declared, this is a
  // no-op.
  CodeGenC::DeclareFunction(gvar, f);
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
  // clear previous generated state.
  this->InitFuncState(f);
  // reserve keywords
  ReserveKeywordsAsUnique();

  auto global_symbol = f->GetAttr<String>(tvm::attr::kGlobalSymbol);
  ICHECK(global_symbol.defined())
      << "CodeGenC: Expect PrimFunc to have the global_symbol attribute";
  bool no_alias = f->HasNonzeroAttr(tir::attr::kNoAlias);

  this->PrintFuncPrefix(stream);
  CodeGenC::PrintType(f->ret_type, stream);
1740
1741
  this->PrintExtraAttrs(f);

1742
1743
1744
1745
1746
  this->stream << " " << static_cast<std::string>(global_symbol.value()) << "(";

  for (size_t i = 0; i < f->params.size(); ++i) {
    tir::Var v = f->params[i];
    std::string vid = AllocVarID(v.get());
1747
1748
    if (i != 0)
      stream << ", ";
1749
1750
    if (v.dtype().is_handle()) {
      // work around for grid constant parameters.
1751
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
        if (ptr->storage_scope == "grid_constant") {
          stream << "__grid_constant__ const ";
          CodeGenC::PrintType(ptr->element_type, stream);
          stream << ' ' << vid;
          continue;
        }
      }

      auto it = alloc_storage_scope_.find(v.get());
      if (it != alloc_storage_scope_.end()) {
        PrintStorageScope(it->second, stream);
      }

      CodeGenC::PrintType(GetType(v), stream);
1766
1767
      if (auto *ptr = v->type_annotation.as<PointerTypeNode>()) {
        if (auto *prim = ptr->element_type.as<PrimTypeNode>()) {
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
          RegisterHandleType(v.get(), prim->dtype);
        }
      }

      if (no_alias) {
        PrintRestrict(v, stream);
      }
    } else {
      CodeGenC::PrintType(GetType(v), stream);
    }
    stream << ' ' << vid;
  }
  stream << ") {\n";
  this->PreFunctionBody(f);
  int func_scope = this->BeginScope();
  this->PrintStmt(f->body);
  this->EndScope(func_scope);
  this->PrintIndent();
  this->stream << "}\n\n";
}

1789
1790
} // namespace codegen
} // namespace tvm