README.md 9.21 KB
Newer Older
1
2
<div align="center">

3
4
![image](https://github.com/huggingface/text-generation-inference/assets/3841370/38ba1531-ea0d-4851-b31a-a6d4ddc944b0)

5
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
6

7
8
9
10
11
12
13
14
15
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://github.com/huggingface/text-generation-inference/blob/main/LICENSE">
  <img alt="License" src="https://img.shields.io/github/license/huggingface/text-generation-inference">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
16
17
</div>

18
19
20
21
22
23
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co) 
to power LLMs api-inference widgets.

## Table of contents

- [Features](#features)
24
- [Optimized Architectures](#optimized-architectures)
25
26
- [Get Started](#get-started)
  - [Docker](#docker)
27
  - [API Documentation](#api-documentation)
OlivierDehaene's avatar
OlivierDehaene committed
28
  - [Using a private or gated model](#using-a-private-or-gated-model)
29
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
30
  - [Distributed Tracing](#distributed-tracing)
31
32
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
OlivierDehaene's avatar
OlivierDehaene committed
33
- [Run Falcon](#run-falcon)
34
35
36
37
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
38

39
## Features
Olivier Dehaene's avatar
Olivier Dehaene committed
40

OlivierDehaene's avatar
OlivierDehaene committed
41
42
- Serve the most popular Large Language Models with a simple launcher
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
43
- Token streaming using Server-Sent Events (SSE)
OlivierDehaene's avatar
v0.8.0  
OlivierDehaene committed
44
- [Continuous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput
45
46
- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
47
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
48
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
49
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
50
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
51
- Log probabilities
OlivierDehaene's avatar
OlivierDehaene committed
52
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
53

54
## Optimized architectures
Olivier Dehaene's avatar
Olivier Dehaene committed
55

OlivierDehaene's avatar
OlivierDehaene committed
56
- [BLOOM](https://huggingface.co/bigscience/bloom)
57
- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
58
- [Galactica](https://huggingface.co/facebook/galactica-120b)
59
60
- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
- [Llama](https://github.com/facebookresearch/llama)
61
62
- [OPT](https://huggingface.co/facebook/opt-66b)
- [SantaCoder](https://huggingface.co/bigcode/santacoder)
OlivierDehaene's avatar
v0.8.0  
OlivierDehaene committed
63
64
65
- [Starcoder](https://huggingface.co/bigcode/starcoder)
- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
OlivierDehaene's avatar
OlivierDehaene committed
66
67
- [MPT](https://huggingface.co/mosaicml/mpt-30b)
- [Llama V2](https://huggingface.co/meta-llama)
68

69
Other architectures are supported on a best effort basis using:
70
71
72
73
74
75
76

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`

77
78
79
## Get started

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
80

81
82
83
The easiest way of getting started is using the official Docker container:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
84
model=tiiuae/falcon-7b-instruct
85
86
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

OlivierDehaene's avatar
OlivierDehaene committed
87
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.3 --model-id $model
88
```
89
**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
Olivier Dehaene's avatar
Olivier Dehaene committed
90

91
92
93
94
95
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli:
```
text-generation-launcher --help
```

96
You can then query the model using either the `/generate` or `/generate_stream` routes:
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
97

98
99
100
```shell
curl 127.0.0.1:8080/generate \
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
101
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
102
103
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
104
105

```shell
106
107
curl 127.0.0.1:8080/generate_stream \
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
108
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
109
    -H 'Content-Type: application/json'
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
110
111
```

OlivierDehaene's avatar
OlivierDehaene committed
112
113
114
or from Python:

```shell
115
pip install text-generation
OlivierDehaene's avatar
OlivierDehaene committed
116
117
```

118
119
```python
from text_generation import Client
OlivierDehaene's avatar
OlivierDehaene committed
120

121
client = Client("http://127.0.0.1:8080")
OlivierDehaene's avatar
OlivierDehaene committed
122
print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)
OlivierDehaene's avatar
OlivierDehaene committed
123

124
text = ""
OlivierDehaene's avatar
OlivierDehaene committed
125
for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
126
127
128
129
    if not response.token.special:
        text += response.token.text
print(text)
```
OlivierDehaene's avatar
OlivierDehaene committed
130

131
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
132

133
134
135
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
136
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
137

OlivierDehaene's avatar
OlivierDehaene committed
138
139
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by 
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
140

OlivierDehaene's avatar
OlivierDehaene committed
141
For example, if you want to serve the gated Llama V2 model variants:
142

OlivierDehaene's avatar
OlivierDehaene committed
143
144
145
146
147
148
149
150
151
152
153
154
155
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`

or with Docker:

```shell 
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.3 --model-id $model
```
156

157
158
### A note on Shared Memory (shm)

159
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

180
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
181
182
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
183
184
185
186
187
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

188
189
### Local install

190
You can also opt to install `text-generation-inference` locally.
191

192
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
193
194
195
196
197
198
199
200
201
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

conda create -n text-generation-inference python=3.9 
conda activate text-generation-inference
```

202
203
204
205
206
207
208
209
210
211
212
213
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

214
On MacOS, using Homebrew:
215
216
217
218
219

```shell
brew install protobuf
```

220
Then run:
221

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
222
```shell
223
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
OlivierDehaene's avatar
OlivierDehaene committed
224
make run-falcon-7b-instruct 
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
225
226
```

227
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
228
229

```shell
230
sudo apt-get install libssl-dev gcc -y
231
232
```

233
234
235
### CUDA Kernels

The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove 
Nicolas Patry's avatar
Nicolas Patry committed
236
the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
237
238
239

Be aware that the official Docker image has them enabled by default.

OlivierDehaene's avatar
OlivierDehaene committed
240
## Run Falcon
241

242
243
### Run

244
```shell
OlivierDehaene's avatar
OlivierDehaene committed
245
make run-falcon-7b-instruct 
246
247
```

248
249
### Quantization

250
251
252
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
253
make run-falcon-7b-instruct-quantize
254
255
```

256
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
257

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
258
```shell
259
260
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
261
262
```

263
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
264
265

```shell
266
267
268
269
# python
make python-server-tests
make python-client-tests
# or both server and client tests
270
make python-tests
271
# rust cargo tests
272
273
make rust-tests
# integration tests
274
make integration-tests
275
```