README.md 11.8 KB
Newer Older
1
<div align="center">
OlivierDehaene's avatar
OlivierDehaene committed
2

Nicolas Patry's avatar
Nicolas Patry committed
3
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
Nicolas Patry's avatar
Nicolas Patry committed
4
  <img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
Nicolas Patry's avatar
Nicolas Patry committed
5
</a>
6

7
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
8

9
10
11
12
13
14
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
A Rust, Python and gRPC server for text generation inference. Used in production at [Hugging Face](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
20
21
22

## Table of contents

vinkamath's avatar
vinkamath committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  - [Get Started](#get-started)
    - [Docker](#docker)
    - [API documentation](#api-documentation)
    - [Using a private or gated model](#using-a-private-or-gated-model)
    - [A note on Shared Memory (shm)](#a-note-on-shared-memory-shm)
    - [Distributed Tracing](#distributed-tracing)
    - [Architecture](#architecture)
    - [Local install](#local-install)
  - [Optimized architectures](#optimized-architectures)
  - [Run locally](#run-locally)
    - [Run](#run)
    - [Quantization](#quantization)
  - [Develop](#develop)
  - [Testing](#testing)
37

38
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
Olivier Dehaene's avatar
Olivier Dehaene committed
39

40
41
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
OlivierDehaene's avatar
OlivierDehaene committed
42
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
43
- Token streaming using Server-Sent Events (SSE)
44
- Continuous batching of incoming requests for increased total throughput
45
- [Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) compatible with Open AI Chat Completion API
46
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
Nicolas Patry's avatar
Nicolas Patry committed
47
48
49
50
51
- Quantization with :
  - [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
  - [GPT-Q](https://arxiv.org/abs/2210.17323)
  - [EETQ](https://github.com/NetEase-FuXi/EETQ)
  - [AWQ](https://github.com/casper-hansen/AutoAWQ)
52
  - [Marlin](https://github.com/IST-DASLab/marlin)
53
  - [fp8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/)
54
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
55
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
56
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
57
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
58
- Log probabilities
Nicolas Patry's avatar
Nicolas Patry committed
59
60
- [Speculation](https://huggingface.co/docs/text-generation-inference/conceptual/speculation) ~2x latency
- [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs..
61
62
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
63

Nicolas Patry's avatar
Nicolas Patry committed
64
65
66
67
68
69
70
### Hardware support

- [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference)
- [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm)
- [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference)
- [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475)
- [Gaudi](https://github.com/huggingface/tgi-gaudi)
71
- [Google TPU](https://huggingface.co/docs/optimum-tpu/howto/serving)
Nicolas Patry's avatar
Nicolas Patry committed
72

73

74
## Get Started
75
76

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
77

78
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
79
80

```shell
Nicolas Patry's avatar
Nicolas Patry committed
81
model=HuggingFaceH4/zephyr-7b-beta
Nicolas Patry's avatar
Nicolas Patry committed
82
83
# share a volume with the Docker container to avoid downloading weights every run
volume=$PWD/data
84

Nicolas Patry's avatar
Nicolas Patry committed
85
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
86
    ghcr.io/huggingface/text-generation-inference:2.4.0 --model-id $model
87
```
88

89
And then you can make requests like
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
90

91
```bash
92
curl 127.0.0.1:8080/generate_stream \
93
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
94
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
95
96
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
97

98
99
100
You can also use [TGI's Messages API](https://huggingface.co/docs/text-generation-inference/en/messages_api) to obtain Open AI Chat Completion API compatible responses.

```bash
101
curl localhost:8080/v1/chat/completions \
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    -X POST \
    -d '{
  "model": "tgi",
  "messages": [
    {
      "role": "system",
      "content": "You are a helpful assistant."
    },
    {
      "role": "user",
      "content": "What is deep learning?"
    }
  ],
  "stream": true,
  "max_tokens": 20
}' \
    -H 'Content-Type: application/json'
```

121
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
fxmarty's avatar
fxmarty committed
122

123
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.4.0-rocm --model-id $model` instead of the command above.
OlivierDehaene's avatar
OlivierDehaene committed
124

125
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
OlivierDehaene's avatar
OlivierDehaene committed
126
```
127
text-generation-launcher --help
128
```
OlivierDehaene's avatar
OlivierDehaene committed
129

130
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
131

132
133
134
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
135
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
136

137
You have the option to utilize the `HF_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
138
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
139

OlivierDehaene's avatar
OlivierDehaene committed
140
For example, if you want to serve the gated Llama V2 model variants:
141

OlivierDehaene's avatar
OlivierDehaene committed
142
143
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
144
3. Export `HF_TOKEN=<your cli READ token>`
OlivierDehaene's avatar
OlivierDehaene committed
145
146
147

or with Docker:

148
```shell
149
model=meta-llama/Meta-Llama-3.1-8B-Instruct
OlivierDehaene's avatar
OlivierDehaene committed
150
151
152
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

153
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.4.0 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
154
```
155

156
157
### A note on Shared Memory (shm)

158
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

179
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
180
181
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
182
183
184
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
Nicolas Patry's avatar
Nicolas Patry committed
185
by setting the address to an OTLP collector with the `--otlp-endpoint` argument. The default service name can be
186
overridden with the `--otlp-service-name` argument
OlivierDehaene's avatar
OlivierDehaene committed
187

188
189
### Architecture

fxmarty's avatar
fxmarty committed
190
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
191

192
Detailed blogpost by Adyen on TGI inner workings: [LLM inference at scale with TGI (Martin Iglesias Goyanes - Adyen, 2024)](https://www.adyen.com/knowledge-hub/llm-inference-at-scale-with-tgi)
193

194
195
### Local install

196
You can also opt to install `text-generation-inference` locally.
197

198
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
199
200
201
202
203
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Nicolas Patry's avatar
Nicolas Patry committed
204
conda create -n text-generation-inference python=3.11
205
206
207
conda activate text-generation-inference
```

208
209
210
211
212
213
214
215
216
217
218
219
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

220
On MacOS, using Homebrew:
221
222
223
224
225

```shell
brew install protobuf
```

226
Then run:
227

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
228
```shell
229
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Nicolas Patry's avatar
Nicolas Patry committed
230
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
231
232
```

233
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
234
235

```shell
236
sudo apt-get install libssl-dev gcc -y
237
238
```

239
240
## Optimized architectures

Nicolas Patry's avatar
Nicolas Patry committed
241
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
242
243
244
245
246
247
248
249
250
251
252

Other architectures are supported on a best-effort basis using:

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`



Nicolas Patry's avatar
Nicolas Patry committed
253
## Run locally
254

255
256
### Run

257
```shell
Nicolas Patry's avatar
Nicolas Patry committed
258
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
259
260
```

261
262
### Quantization

263
You can also run pre-quantized weights (AWQ, GPTQ, Marlin) or on-the-fly quantize weights with bitsandbytes, EETQ, fp8, to reduce the VRAM requirement:
264
265

```shell
OlivierDehaene's avatar
OlivierDehaene committed
266
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
267
268
```

Nicolas Patry's avatar
Nicolas Patry committed
269
270
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

271
272
Read more about quantization in the [Quantization documentation](https://huggingface.co/docs/text-generation-inference/en/conceptual/quantization).

273
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
274

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
275
```shell
276
277
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
278
279
```

280
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
281
282

```shell
283
284
285
286
# python
make python-server-tests
make python-client-tests
# or both server and client tests
287
make python-tests
288
# rust cargo tests
289
290
make rust-tests
# integration tests
291
make integration-tests
292
```