"server/text_generation_server/models/flash_causal_lm.py" did not exist on "678b2f39000f638e0099af0d84a98d409feca428"
README.md 10.1 KB
Newer Older
1
<div align="center">
Nicolas Patry's avatar
Nicolas Patry committed
2
3
  
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
Nicolas Patry's avatar
Nicolas Patry committed
4
  <img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
Nicolas Patry's avatar
Nicolas Patry committed
5
</a>
6

7
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
8

9
10
11
12
13
14
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
20
21
22
23

## Table of contents

- [Get Started](#get-started)
24
  - [API Documentation](#api-documentation)
OlivierDehaene's avatar
OlivierDehaene committed
25
  - [Using a private or gated model](#using-a-private-or-gated-model)
26
  - [A note on Shared Memory](#a-note-on-shared-memory-shm)
27
  - [Distributed Tracing](#distributed-tracing)
28
29
  - [Local Install](#local-install)
  - [CUDA Kernels](#cuda-kernels)
30
- [Optimized architectures](#optimized-architectures)
Nicolas Patry's avatar
Nicolas Patry committed
31
- [Run Mistral](#run-a-model)
32
33
34
35
  - [Run](#run)
  - [Quantization](#quantization)
- [Develop](#develop)
- [Testing](#testing)
36

37
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
Olivier Dehaene's avatar
Olivier Dehaene committed
38

39
40
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
OlivierDehaene's avatar
OlivierDehaene committed
41
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
42
- Token streaming using Server-Sent Events (SSE)
43
44
- Continuous batching of incoming requests for increased total throughput
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
Nicolas Patry's avatar
Nicolas Patry committed
45
46
47
48
49
- Quantization with :
  - [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
  - [GPT-Q](https://arxiv.org/abs/2210.17323)
  - [EETQ](https://github.com/NetEase-FuXi/EETQ)
  - [AWQ](https://github.com/casper-hansen/AutoAWQ)
50
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
51
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
52
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
53
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
54
- Log probabilities
55
56
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
57

Nicolas Patry's avatar
Nicolas Patry committed
58
59
60
61
62
63
64
65
### Hardware support

- [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference)
- [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm)
- [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference)
- [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475)
- [Gaudi](https://github.com/huggingface/tgi-gaudi)

66

67
## Get Started
68
69

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
70

71
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
72
73

```shell
Nicolas Patry's avatar
Nicolas Patry committed
74
model=HuggingFaceH4/zephyr-7b-beta
75
76
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run

OlivierDehaene's avatar
OlivierDehaene committed
77
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4 --model-id $model
78
```
79

80
And then you can make requests like
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
81

82
```bash
83
84
curl 127.0.0.1:8080/generate \
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
85
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
86
87
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
88

89
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
fxmarty's avatar
fxmarty committed
90

OlivierDehaene's avatar
OlivierDehaene committed
91
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4-rocm --model-id $model` instead of the command above.
OlivierDehaene's avatar
OlivierDehaene committed
92

93
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
OlivierDehaene's avatar
OlivierDehaene committed
94
```
95
text-generation-launcher --help
96
```
OlivierDehaene's avatar
OlivierDehaene committed
97

98
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
99

100
101
102
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
103
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
104

105
You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
106
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
107

OlivierDehaene's avatar
OlivierDehaene committed
108
For example, if you want to serve the gated Llama V2 model variants:
109

OlivierDehaene's avatar
OlivierDehaene committed
110
111
112
113
114
115
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
3. Export `HUGGING_FACE_HUB_TOKEN=<your cli READ token>`

or with Docker:

116
```shell
OlivierDehaene's avatar
OlivierDehaene committed
117
118
119
120
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

OlivierDehaene's avatar
OlivierDehaene committed
121
docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.4 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
122
```
123

124
125
### A note on Shared Memory (shm)

126
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

147
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
148
149
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
150
151
152
153
154
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
by setting the address to an OTLP collector with the `--otlp-endpoint` argument.

155
156
### Architecture

fxmarty's avatar
fxmarty committed
157
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
158

159
160
### Local install

161
You can also opt to install `text-generation-inference` locally.
162

163
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
164
165
166
167
168
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Nicolas Patry's avatar
Nicolas Patry committed
169
conda create -n text-generation-inference python=3.11
170
171
172
conda activate text-generation-inference
```

173
174
175
176
177
178
179
180
181
182
183
184
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

185
On MacOS, using Homebrew:
186
187
188
189
190

```shell
brew install protobuf
```

191
Then run:
192

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
193
```shell
194
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Nicolas Patry's avatar
Nicolas Patry committed
195
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
196
197
```

198
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
199
200

```shell
201
sudo apt-get install libssl-dev gcc -y
202
203
```

204
205
## Optimized architectures

Nicolas Patry's avatar
Nicolas Patry committed
206
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
207
208
209
210
211
212
213
214
215
216
217

Other architectures are supported on a best-effort basis using:

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`



Nicolas Patry's avatar
Nicolas Patry committed
218
## Run locally
219

220
221
### Run

222
```shell
Nicolas Patry's avatar
Nicolas Patry committed
223
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
224
225
```

226
227
### Quantization

228
229
230
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
Nicolas Patry's avatar
Nicolas Patry committed
231
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize 
232
233
```

Nicolas Patry's avatar
Nicolas Patry committed
234
235
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

236
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
237

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
238
```shell
239
240
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
241
242
```

243
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
244
245

```shell
246
247
248
249
# python
make python-server-tests
make python-client-tests
# or both server and client tests
250
make python-tests
251
# rust cargo tests
252
253
make rust-tests
# integration tests
254
make integration-tests
255
```