README.md 10.6 KB
Newer Older
1
<div align="center">
OlivierDehaene's avatar
OlivierDehaene committed
2

Nicolas Patry's avatar
Nicolas Patry committed
3
<a href="https://www.youtube.com/watch?v=jlMAX2Oaht0">
Nicolas Patry's avatar
Nicolas Patry committed
4
  <img width=560 width=315 alt="Making TGI deployment optimal" src="https://huggingface.co/datasets/Narsil/tgi_assets/resolve/main/thumbnail.png">
Nicolas Patry's avatar
Nicolas Patry committed
5
</a>
6

7
# Text Generation Inference
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
8

9
10
11
12
13
14
<a href="https://github.com/huggingface/text-generation-inference">
  <img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/huggingface/text-generation-inference?style=social">
</a>
<a href="https://huggingface.github.io/text-generation-inference">
  <img alt="Swagger API documentation" src="https://img.shields.io/badge/API-Swagger-informational">
</a>
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
15

16
A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
to power Hugging Chat, the Inference API and Inference Endpoint.

</div>
20
21
22

## Table of contents

vinkamath's avatar
vinkamath committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
  - [Get Started](#get-started)
    - [Docker](#docker)
    - [API documentation](#api-documentation)
    - [Using a private or gated model](#using-a-private-or-gated-model)
    - [A note on Shared Memory (shm)](#a-note-on-shared-memory-shm)
    - [Distributed Tracing](#distributed-tracing)
    - [Architecture](#architecture)
    - [Local install](#local-install)
  - [Optimized architectures](#optimized-architectures)
  - [Run locally](#run-locally)
    - [Run](#run)
    - [Quantization](#quantization)
  - [Develop](#develop)
  - [Testing](#testing)
37

38
Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and [more](https://huggingface.co/docs/text-generation-inference/supported_models). TGI implements many features, such as:
Olivier Dehaene's avatar
Olivier Dehaene committed
39

40
41
- Simple launcher to serve most popular LLMs
- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
OlivierDehaene's avatar
OlivierDehaene committed
42
- Tensor Parallelism for faster inference on multiple GPUs
Yannic Kilcher's avatar
Yannic Kilcher committed
43
- Token streaming using Server-Sent Events (SSE)
44
45
- Continuous batching of incoming requests for increased total throughput
- Optimized transformers code for inference using [Flash Attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
Nicolas Patry's avatar
Nicolas Patry committed
46
47
48
49
50
- Quantization with :
  - [bitsandbytes](https://github.com/TimDettmers/bitsandbytes)
  - [GPT-Q](https://arxiv.org/abs/2210.17323)
  - [EETQ](https://github.com/NetEase-FuXi/EETQ)
  - [AWQ](https://github.com/casper-hansen/AutoAWQ)
51
52
  - [Marlin](https://github.com/IST-DASLab/marlin)
  - [fp8]()
53
- [Safetensors](https://github.com/huggingface/safetensors) weight loading
OlivierDehaene's avatar
OlivierDehaene committed
54
- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
55
- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
56
- Stop sequences
OlivierDehaene's avatar
OlivierDehaene committed
57
- Log probabilities
Nicolas Patry's avatar
Nicolas Patry committed
58
59
- [Speculation](https://huggingface.co/docs/text-generation-inference/conceptual/speculation) ~2x latency
- [Guidance/JSON](https://huggingface.co/docs/text-generation-inference/conceptual/guidance). Specify output format to speed up inference and make sure the output is valid according to some specs..
60
61
- Custom Prompt Generation: Easily generate text by providing custom prompts to guide the model's output
- Fine-tuning Support: Utilize fine-tuned models for specific tasks to achieve higher accuracy and performance
62

Nicolas Patry's avatar
Nicolas Patry committed
63
64
65
66
67
68
69
### Hardware support

- [Nvidia](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference)
- [AMD](https://github.com/huggingface/text-generation-inference/pkgs/container/text-generation-inference) (-rocm)
- [Inferentia](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference)
- [Intel GPU](https://github.com/huggingface/text-generation-inference/pull/1475)
- [Gaudi](https://github.com/huggingface/tgi-gaudi)
70
- [Google TPU](https://huggingface.co/docs/optimum-tpu/howto/serving)
Nicolas Patry's avatar
Nicolas Patry committed
71

72

73
## Get Started
74
75

### Docker
Olivier Dehaene's avatar
Olivier Dehaene committed
76

77
For a detailed starting guide, please see the [Quick Tour](https://huggingface.co/docs/text-generation-inference/quicktour). The easiest way of getting started is using the official Docker container:
78
79

```shell
Nicolas Patry's avatar
Nicolas Patry committed
80
model=HuggingFaceH4/zephyr-7b-beta
Nicolas Patry's avatar
Nicolas Patry committed
81
82
# share a volume with the Docker container to avoid downloading weights every run
volume=$PWD/data
83

Nicolas Patry's avatar
Nicolas Patry committed
84
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
Nicolas Patry's avatar
Nicolas Patry committed
85
    ghcr.io/huggingface/text-generation-inference:2.2.0 --model-id $model
86
```
87

88
And then you can make requests like
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
89

90
```bash
91
curl 127.0.0.1:8080/generate_stream \
92
    -X POST \
OlivierDehaene's avatar
OlivierDehaene committed
93
    -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
94
95
    -H 'Content-Type: application/json'
```
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
96

97
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
fxmarty's avatar
fxmarty committed
98

Nicolas Patry's avatar
Nicolas Patry committed
99
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.2.0-rocm --model-id $model` instead of the command above.
OlivierDehaene's avatar
OlivierDehaene committed
100

101
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
OlivierDehaene's avatar
OlivierDehaene committed
102
```
103
text-generation-launcher --help
104
```
OlivierDehaene's avatar
OlivierDehaene committed
105

106
### API documentation
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
107

108
109
110
You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).

OlivierDehaene's avatar
OlivierDehaene committed
111
### Using a private or gated model
Nicolas Patry's avatar
Nicolas Patry committed
112

113
You have the option to utilize the `HF_TOKEN` environment variable for configuring the token employed by
OlivierDehaene's avatar
OlivierDehaene committed
114
`text-generation-inference`. This allows you to gain access to protected resources.
Nicolas Patry's avatar
Nicolas Patry committed
115

OlivierDehaene's avatar
OlivierDehaene committed
116
For example, if you want to serve the gated Llama V2 model variants:
117

OlivierDehaene's avatar
OlivierDehaene committed
118
119
1. Go to https://huggingface.co/settings/tokens
2. Copy your cli READ token
120
3. Export `HF_TOKEN=<your cli READ token>`
OlivierDehaene's avatar
OlivierDehaene committed
121
122
123

or with Docker:

124
```shell
OlivierDehaene's avatar
OlivierDehaene committed
125
126
127
128
model=meta-llama/Llama-2-7b-chat-hf
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
token=<your cli READ token>

129
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
OlivierDehaene's avatar
OlivierDehaene committed
130
```
131

132
133
### A note on Shared Memory (shm)

134
[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
`PyTorch` to do distributed training/inference. `text-generation-inference` make
use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.

In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
peer-to-peer using NVLink or PCI is not possible.

To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.

If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
creating a volume with:

```yaml
- name: shm
  emptyDir:
   medium: Memory
   sizeLimit: 1Gi
```

and mounting it to `/dev/shm`.

155
Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
156
157
this will impact performance.

OlivierDehaene's avatar
OlivierDehaene committed
158
159
160
### Distributed Tracing

`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
Nicolas Patry's avatar
Nicolas Patry committed
161
by setting the address to an OTLP collector with the `--otlp-endpoint` argument. The default service name can be
162
overridden with the `--otlp-service-name` argument
OlivierDehaene's avatar
OlivierDehaene committed
163

164
165
### Architecture

fxmarty's avatar
fxmarty committed
166
![TGI architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/TGI.png)
167

168
169
### Local install

170
You can also opt to install `text-generation-inference` locally.
171

172
First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
173
174
175
176
177
Python 3.9, e.g. using `conda`:

```shell
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

Nicolas Patry's avatar
Nicolas Patry committed
178
conda create -n text-generation-inference python=3.11
179
180
181
conda activate text-generation-inference
```

182
183
184
185
186
187
188
189
190
191
192
193
You may also need to install Protoc.

On Linux:

```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
sudo unzip -o $PROTOC_ZIP -d /usr/local bin/protoc
sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```

194
On MacOS, using Homebrew:
195
196
197
198
199

```shell
brew install protobuf
```

200
Then run:
201

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
202
```shell
203
BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
Nicolas Patry's avatar
Nicolas Patry committed
204
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
205
206
```

207
**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
208
209

```shell
210
sudo apt-get install libssl-dev gcc -y
211
212
```

213
214
## Optimized architectures

Nicolas Patry's avatar
Nicolas Patry committed
215
TGI works out of the box to serve optimized models for all modern models. They can be found in [this list](https://huggingface.co/docs/text-generation-inference/supported_models).
216
217
218
219
220
221
222
223
224
225
226

Other architectures are supported on a best-effort basis using:

`AutoModelForCausalLM.from_pretrained(<model>, device_map="auto")`

or

`AutoModelForSeq2SeqLM.from_pretrained(<model>, device_map="auto")`



Nicolas Patry's avatar
Nicolas Patry committed
227
## Run locally
228

229
230
### Run

231
```shell
Nicolas Patry's avatar
Nicolas Patry committed
232
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2
233
234
```

235
236
### Quantization

237
238
239
You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:

```shell
OlivierDehaene's avatar
OlivierDehaene committed
240
text-generation-launcher --model-id mistralai/Mistral-7B-Instruct-v0.2 --quantize
241
242
```

Nicolas Patry's avatar
Nicolas Patry committed
243
244
4bit quantization is available using the [NF4 and FP4 data types from bitsandbytes](https://arxiv.org/pdf/2305.14314.pdf). It can be enabled by providing `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` as a command line argument to `text-generation-launcher`.

245
## Develop
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
246

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
247
```shell
248
249
make server-dev
make router-dev
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
250
251
```

252
## Testing
Nicolas Patry's avatar
Nicolas Patry committed
253
254

```shell
255
256
257
258
# python
make python-server-tests
make python-client-tests
# or both server and client tests
259
make python-tests
260
# rust cargo tests
261
262
make rust-tests
# integration tests
263
make integration-tests
264
```