server.rs 48.8 KB
Newer Older
1
/// HTTP Server logic
2
use crate::health::Health;
3
4
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
5
use crate::{
6
7
8
    BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk,
    ChatCompletionComplete, ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs,
    ChatCompletionTopLogprob, ChatRequest, CompatGenerateRequest, Details, ErrorResponse,
drbh's avatar
drbh committed
9
    FinishReason, GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
10
    HubTokenizerConfig, Infer, Info, Message, PrefillToken, SimpleToken, StreamDetails,
11
    StreamResponse, Token, TokenizeResponse, Usage, Validation, VertexRequest, VertexResponse,
12
};
drbh's avatar
drbh committed
13
use crate::{FunctionDefinition, FunctionRef, FunctionsMap, Properties, ToolCall, ToolType, Tools};
Olivier Dehaene's avatar
Olivier Dehaene committed
14
use axum::extract::Extension;
15
use axum::http::{HeaderMap, Method, StatusCode};
16
use axum::response::sse::{Event, KeepAlive, Sse};
17
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
18
use axum::routing::{get, post};
19
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
20
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
drbh's avatar
drbh committed
21
use futures::stream::FuturesUnordered;
22
use futures::stream::StreamExt;
23
use futures::Stream;
drbh's avatar
drbh committed
24
use futures::TryStreamExt;
25
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
drbh's avatar
drbh committed
26
27
use serde_json::Value;
use std::collections::HashMap;
28
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
29
use std::net::SocketAddr;
30
31
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
32
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
33
use tokenizers::Tokenizer;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
34
use tokio::signal;
Olivier Dehaene's avatar
Olivier Dehaene committed
35
use tokio::time::Instant;
36
use tower_http::cors::{AllowOrigin, CorsLayer};
37
use tracing::{info_span, instrument, Instrument};
38
39
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
40

41
42
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
62
)]
63
#[instrument(skip(infer, req))]
64
async fn compat_generate(
65
    Extension(default_return_full_text): Extension<bool>,
66
    infer: Extension<Infer>,
67
    compute_type: Extension<ComputeType>,
68
    Json(mut req): Json<CompatGenerateRequest>,
69
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
70
71
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
72
        req.parameters.return_full_text = Some(default_return_full_text)
73
74
    }

75
76
    // switch on stream
    if req.stream {
77
        Ok(generate_stream(infer, compute_type, Json(req.into()))
78
79
80
            .await
            .into_response())
    } else {
81
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
82
        // wrap generation inside a Vec to match api-inference
83
        Ok((headers, Json(vec![generation])).into_response())
84
85
86
    }
}

87
88
/// Text Generation Inference endpoint info
#[utoipa::path(
89
90
91
92
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
93
94
)]
#[instrument]
95
96
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
97
98
}

99
#[utoipa::path(
100
101
102
103
104
105
106
107
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
108
109
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
110
/// Health check method
111
112
113
114
115
116
117
118
119
120
121
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
122
123
}

124
125
/// Generate tokens
#[utoipa::path(
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
141
)]
142
#[instrument(
143
144
skip_all,
fields(
145
parameters = ? req.parameters,
146
147
148
149
150
151
152
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
153
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
154
async fn generate(
155
    infer: Extension<Infer>,
156
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
157
    Json(req): Json<GenerateRequest>,
158
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
159
    let span = tracing::Span::current();
160
    let start_time = Instant::now();
161
    metrics::increment_counter!("tgi_request_count");
162

163
    tracing::debug!("Input: {}", req.inputs);
164

165
    let compute_characters = req.inputs.chars().count();
166
    let mut add_prompt = None;
167
168
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
169
170
    }

Nicolas Patry's avatar
Nicolas Patry committed
171
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
172
173

    // Inference
174
    let (response, best_of_responses) = match req.parameters.best_of {
175
        Some(best_of) if best_of > 1 => {
176
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
177
178
            (response, Some(best_of_responses))
        }
179
        _ => (infer.generate(req).await?, None),
180
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
181

OlivierDehaene's avatar
OlivierDehaene committed
182
    // Token details
183
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
184
    let details = match details {
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
205
                            top_tokens: response.top_tokens,
206
207
208
209
210
211
212
213
214
215
216
217
218
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
219
                top_tokens: response.top_tokens,
220
221
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
222
223
224
        false => None,
    };

225
226
227
228
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
229
230
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
231

232
233
234
235
236
237
238
239
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

240
241
    // Headers
    let mut headers = HeaderMap::new();
242
    headers.insert("x-compute-type", compute_type.parse().unwrap());
243
244
    headers.insert(
        "x-compute-time",
Nicolas Patry's avatar
Nicolas Patry committed
245
        total_time.as_secs_f64().to_string().parse().unwrap(),
246
247
248
249
250
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
251
252
253
254
255
256
257
258
259
260
261
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
262
    );
263
264
265
266
267
268
269
270
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
271
272
273
274
275
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
276

277
278
    // Metrics
    metrics::increment_counter!("tgi_request_success");
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
293
294
295
296
297
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
298
    // Send response
299
300
301
302
303
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

304
305
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
306

307
    let response = GenerateResponse {
308
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
309
        details,
310
    };
311
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
312
313
}

Yannic Kilcher's avatar
Yannic Kilcher committed
314
/// Generate a stream of token using Server-Sent Events
315
#[utoipa::path(
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
336
)]
337
#[instrument(
338
339
skip_all,
fields(
340
parameters = ? req.parameters,
341
342
343
344
345
346
347
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
348
349
)]
async fn generate_stream(
350
    Extension(infer): Extension<Infer>,
351
    Extension(compute_type): Extension<ComputeType>,
352
    Json(req): Json<GenerateRequest>,
353
354
355
356
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
357
358
359
360
361
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
362
        generate_stream_internal(infer, compute_type, Json(req), on_message_callback).await;
363
364
365
366
367
368
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
369
    ComputeType(compute_type): ComputeType,
370
371
372
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
373
374
    let span = tracing::Span::current();
    let start_time = Instant::now();
375
    metrics::increment_counter!("tgi_request_count");
376

377
    tracing::debug!("Input: {}", req.inputs);
378

379
    let compute_characters = req.inputs.chars().count();
380
381

    let mut headers = HeaderMap::new();
382
    headers.insert("x-compute-type", compute_type.parse().unwrap());
383
384
385
386
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
387
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
388

389
390
391
392
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
393
394

        let mut add_prompt = None;
395
396
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
397
        }
398
        let details = req.parameters.details;
399

400
        let best_of = req.parameters.best_of.unwrap_or(1);
401
402
403
404
405
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
406
        } else if req.parameters.decoder_input_details {
407
408
409
410
411
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
412
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
413
                // Keep permit as long as generate_stream lives
414
                Ok((_permit, _input_length, mut response_stream)) => {
415
                    let mut index = 0;
416
417
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
418
                        index += 1;
419
420
421
422
423
424
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
425
426
427
428
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
429
430
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

431
432
                                        // StreamResponse
                                        let stream_token = StreamResponse {
433
                                            index,
434
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
435
                                            top_tokens,
436
437
438
                                            generated_text: None,
                                            details: None,
                                        };
439
440
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
441
                                    }
442
443
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
444
                                        token,
445
446
447
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
448
                                        top_tokens,
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
477
478
479
480
481
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
482
483
484
485
486
487
488
489
490
491
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

492
493
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
494

495
                                        let stream_token = StreamResponse {
496
                                            index,
497
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
498
                                            top_tokens,
499
500
501
502
                                            generated_text: Some(output_text),
                                            details
                                        };

503
504
505

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
506
507
                                        break;
                                    }
508
509
                                }
                            }
510
511
512
513
514
515
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
516
517
                        }
                    }
518
519
520
521
522
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
523
                }
524
525
526
527
528
529
530
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
531
                yield Ok(Event::from(err));
532
533
534
535
            }
        }
    };

536
537
538
539
540
541
542
543
544
545
    (headers, stream)
}

/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/chat/completions",
    request_body = ChatRequest,
    responses(
546
    (status = 200, description = "Generated Text", body = ChatCompletionChunk),
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn chat_completions(
    Extension(infer): Extension<Infer>,
571
    Extension(compute_type): Extension<ComputeType>,
572
573
574
575
576
577
578
579
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    let stream = req.stream;
    let max_new_tokens = req.max_tokens.or(Some(100));
    let repetition_penalty = req
580
581
        .presence_penalty
        // rescale repetition_penalty from (-2.0, 2.0) to (0.0, 4.0)
582
583
584
585
586
        .map(|x| x + 2.0);
    let logprobs = req.logprobs.unwrap_or(false);
    let seed = req.seed;

    // apply chat template to flatten the request into a single input
drbh's avatar
drbh committed
587
    let mut inputs = match infer.apply_chat_template(req.messages) {
588
589
590
591
592
593
594
595
596
597
598
599
600
601
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

drbh's avatar
drbh committed
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    let tool_grammar = if let Some((req_tools, tool_choice)) = req.tools.zip(req.tool_choice) {
        let tool_prompt = req.tool_prompt.unwrap_or_default();
        let tools_to_use = match tool_choice {
            ToolType::FunctionName(name) => {
                vec![req_tools
                    .iter()
                    .find(|tool| tool.function.name == *name)
                    .ok_or_else(|| {
                        (
                            StatusCode::UNPROCESSABLE_ENTITY,
                            Json(ErrorResponse {
                                error: "Tool choice not found in tool names".to_string(),
                                error_type: "Tool not found".to_string(),
                            }),
                        )
                    })?
                    .clone()]
            }
            ToolType::OneOf => req_tools.to_owned(),
        };

        let functions: HashMap<String, Value> = tools_to_use
            .iter()
            .map(|tool| {
                let func = tool.function.clone();
                (func.name, func.parameters)
            })
            .collect();

        let tools = Tools {
            functions_map: FunctionsMap { functions },
            properties: Properties {
                function: tools_to_use
                    .iter()
                    .map(|tool| FunctionRef {
                        ref_path: format!("#/$functions/{}", tool.function.name.clone()),
                    })
                    .collect(),
            },
        };

        let tools_str = serde_json::to_string(&tools).map_err(|e| {
            (
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: e.to_string(),
                    error_type: "Input validation error".to_string(),
                }),
            )
        })?;
        inputs = format!("{inputs}{tool_prompt}{tools_str}");
        Some(GrammarType::Json(serde_json::json!(tools)))
    } else {
        None
    };

658
659
660
661
662
    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
663
            temperature: req.temperature,
664
            repetition_penalty,
665
            frequency_penalty: req.frequency_penalty,
666
            top_k: None,
667
            top_p: req.top_p,
668
669
670
671
672
673
674
675
            typical_p: None,
            do_sample: true,
            max_new_tokens,
            return_full_text: None,
            stop: Vec::new(),
            truncate: None,
            watermark: false,
            details: true,
676
            decoder_input_details: !stream,
677
678
            seed,
            top_n_tokens: None,
drbh's avatar
drbh committed
679
            grammar: tool_grammar.clone(),
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

698
699
700
701
            let logprobs = logprobs.then(|| {
                ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
            });

drbh's avatar
drbh committed
702
703
704
705
706
707
708
            // replace the content with the tool calls if grammar is present
            let (content, tool_calls) = if tool_grammar.is_some() {
                (None, Some(vec![stream_token.token.text]))
            } else {
                (Some(stream_token.token.text), None)
            };

709
710
711
712
            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
drbh's avatar
drbh committed
713
714
                    content,
                    tool_calls,
715
716
                    current_time,
                    stream_token.index,
717
                    logprobs,
718
719
720
721
722
723
724
725
726
727
728
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
                .map_or_else(
                    |e| {
                        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                        Event::default()
                    },
                    |data| data,
                )
        };

729
730
731
732
733
734
735
        let (headers, response_stream) = generate_stream_internal(
            infer,
            compute_type,
            Json(generate_request),
            on_message_callback,
        )
        .await;
736
737
738
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
739
740
741
742
743
744
        let (headers, Json(generation)) = generate(
            Extension(infer),
            Extension(compute_type),
            Json(generate_request),
        )
        .await?;
745
746
747
748
749
750

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

drbh's avatar
drbh committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        let (tool_calls, output) = if tool_grammar.is_some() {
            // gen_text should be valid json
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
                    (
                        StatusCode::UNPROCESSABLE_ENTITY,
                        Json(ErrorResponse {
                            error: e.to_string(),
                            error_type: "Input validation error".to_string(),
                        }),
                    )
                })?;

            let tool_call = Some(ToolCall {
                id: 0,
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "tools".to_string(),
                    parameters: gen_text_value.get("function").map_or_else(
                        || {
                            serde_json::from_str(&generation.generated_text).map_err(|e| {
                                (
                                    StatusCode::UNPROCESSABLE_ENTITY,
                                    Json(ErrorResponse {
                                        error: e.to_string(),
                                        error_type: "Input validation error".to_string(),
                                    }),
                                )
                            })
                        },
                        |f| Ok(f.clone()),
                    )?,
                },
            });
            (tool_call, None)
        } else {
            (None, Some(generation.generated_text))
        };
790
791
792
793
        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
drbh's avatar
drbh committed
794
            output,
795
796
797
            current_time,
            generation.details.unwrap(),
            logprobs,
drbh's avatar
drbh committed
798
            tool_calls,
799
800
801
802
803
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
804
805
}

drbh's avatar
drbh committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
/// Generate tokens from Vertex request
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/vertex",
    request_body = VertexRequest,
    responses(
    (status = 200, description = "Generated Text", body = VertexResponse),
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
        total_time,
        validation_time,
        queue_time,
        inference_time,
        time_per_token,
        seed,
    )
)]
async fn vertex_compatibility(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<VertexRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    // check that theres at least one instance
    if req.instances.is_empty() {
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Input validation error".to_string(),
                error_type: "Input validation error".to_string(),
            }),
        ));
    }

    // Process all instances
    let predictions = req
        .instances
        .iter()
        .map(|instance| {
            let generate_request = GenerateRequest {
                inputs: instance.inputs.clone(),
                parameters: GenerateParameters {
                    do_sample: true,
                    max_new_tokens: instance.parameters.as_ref().and_then(|p| p.max_new_tokens),
                    seed: instance.parameters.as_ref().and_then(|p| p.seed),
                    details: true,
                    decoder_input_details: true,
                    ..Default::default()
                },
            };

            async {
                generate(
                    Extension(infer.clone()),
                    Extension(compute_type.clone()),
                    Json(generate_request),
                )
                .await
                .map(|(_, Json(generation))| generation.generated_text)
                .map_err(|_| {
                    (
                        StatusCode::INTERNAL_SERVER_ERROR,
                        Json(ErrorResponse {
                            error: "Incomplete generation".into(),
                            error_type: "Incomplete generation".into(),
                        }),
                    )
                })
            }
        })
        .collect::<FuturesUnordered<_>>()
        .try_collect::<Vec<_>>()
        .await?;

    let response = VertexResponse { predictions };
    Ok((HeaderMap::new(), Json(response)).into_response())
}

897
898
899
900
901
/// Tokenize inputs
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/tokenize",
902
    request_body = GenerateRequest,
903
904
905
906
907
908
909
910
911
912
    responses(
    (status = 200, description = "Tokenized ids", body = TokenizeResponse),
    (status = 404, description = "No tokenizer found", body = ErrorResponse,
    example = json ! ({"error": "No fast tokenizer available"})),
    )
    )]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
913
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text: String = input.chars().skip(start).take(stop - start).collect();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
931
        Ok(Json(TokenizeResponse(tokens)))
932
933
934
935
936
937
938
939
940
941
942
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

943
944
/// Prometheus metrics scrape endpoint
#[utoipa::path(
945
946
947
948
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
949
950
951
952
953
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

954
955
956
#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
957
958
959
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
960
961
    model_info: HubModelInfo,
    shard_info: ShardInfo,
962
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
963
    max_concurrent_requests: usize,
964
    max_best_of: usize,
965
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
966
    max_top_n_tokens: u32,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
967
    max_input_length: usize,
968
    max_total_tokens: usize,
969
    waiting_served_ratio: f32,
970
    max_batch_prefill_tokens: u32,
971
    max_batch_total_tokens: u32,
972
    max_waiting_tokens: usize,
973
    max_batch_size: Option<usize>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
974
    client: ShardedClient,
975
    tokenizer: Option<Tokenizer>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
976
977
    validation_workers: usize,
    addr: SocketAddr,
978
    allow_origin: Option<AllowOrigin>,
979
980
    ngrok: bool,
    ngrok_authtoken: Option<String>,
981
    ngrok_edge: Option<String>,
982
    tokenizer_config: HubTokenizerConfig,
983
    messages_api_enabled: bool,
drbh's avatar
drbh committed
984
    grammar_support: bool,
985
) -> Result<(), axum::BoxError> {
986
987
988
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
989
990
991
992
993
994
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
995
996
    chat_completions,
    tokenize,
997
998
999
1000
1001
1002
1003
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
1004
    GrammarType,
1005
1006
    ChatRequest,
    Message,
1007
    ChatCompletionComplete,
1008
1009
1010
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
1011
1012
1013
    ChatCompletionLogprob,
    ChatCompletionLogprobs,
    ChatCompletionTopLogprob,
1014
    ChatCompletion,
1015
1016
1017
1018
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
1019
1020
    TokenizeResponse,
    SimpleToken,
1021
1022
1023
1024
1025
1026
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
drbh's avatar
drbh committed
1027
    GrammarType,
1028
    Usage,
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
1041
1042
1043
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1044
    // Create state
1045
1046
1047
    let validation = Validation::new(
        validation_workers,
        tokenizer,
1048
        max_best_of,
1049
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
1050
        max_top_n_tokens,
1051
1052
        max_input_length,
        max_total_tokens,
drbh's avatar
drbh committed
1053
        grammar_support,
1054
    );
1055
1056
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
1057
1058
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1059
        validation,
1060
        waiting_served_ratio,
1061
        max_batch_prefill_tokens,
1062
        max_batch_total_tokens,
1063
        max_waiting_tokens,
1064
        max_batch_size,
1065
        max_concurrent_requests,
1066
        shard_info.requires_padding,
1067
        shard_info.window_size,
Nicolas Patry's avatar
Nicolas Patry committed
1068
        shard_info.speculate,
1069
        generation_health,
1070
        tokenizer_config,
1071
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1072

1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
1101
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
1102
1103
1104
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
1105

1106
    // Prometheus handler
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
1117
1118
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
1119
        .unwrap();
1120
1121
1122
1123
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

1124
1125
1126
1127
1128
1129
1130
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
1146
        max_batch_size,
1147
1148
1149
        validation_workers,
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
1150
        docker_label: option_env!("DOCKER_LABEL"),
1151
1152
    };

drbh's avatar
drbh committed
1153
1154
1155
1156
1157
    // Define VertextApiDoc conditionally only if the "google" feature is enabled
    let doc = {
        // avoid `mut` if possible
        #[cfg(feature = "google")]
        {
1158
1159
1160
1161
1162
1163
1164
1165
1166
            use crate::VertexInstance;

            #[derive(OpenApi)]
            #[openapi(
                paths(vertex_compatibility),
                components(schemas(VertexInstance, VertexRequest, VertexResponse))
            )]
            struct VertextApiDoc;

drbh's avatar
drbh committed
1167
            // limiting mutability to the smallest scope necessary
1168
            let mut doc = ApiDoc::openapi();
drbh's avatar
drbh committed
1169
1170
1171
1172
1173
1174
1175
            doc.merge(VertextApiDoc::openapi());
            doc
        }
        #[cfg(not(feature = "google"))]
        ApiDoc::openapi()
    };

1176
    // Configure Swagger UI
drbh's avatar
drbh committed
1177
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);
1178
1179
1180

    // Define base and health routes
    let base_routes = Router::new()
1181
        .route("/", post(compat_generate))
1182
        .route("/", get(health))
1183
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
1184
        .route("/generate", post(generate))
1185
        .route("/generate_stream", post(generate_stream))
1186
        .route("/v1/chat/completions", post(chat_completions))
drbh's avatar
drbh committed
1187
        .route("/vertex", post(vertex_compatibility))
1188
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1189
        .route("/health", get(health))
1190
        .route("/ping", get(health))
1191
1192
1193
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
1194
    let aws_sagemaker_route = if messages_api_enabled {
1195
1196
1197
1198
1199
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

1200
1201
    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
1202

1203
    // Combine routes and layers
drbh's avatar
drbh committed
1204
    let mut app = Router::new()
1205
1206
        .merge(swagger_ui)
        .merge(base_routes)
drbh's avatar
drbh committed
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
        .merge(aws_sagemaker_route);

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

    // add layers after routes
    app = app
1225
        .layer(Extension(info))
1226
        .layer(Extension(health_ext.clone()))
1227
1228
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
1229
        .layer(Extension(compute_type))
1230
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
1231
        .layer(OtelAxumLayer::default())
1232
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
1233

1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

1244
1245
1246
            let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");

            let tunnel = ngrok::Session::builder()
1247
1248
1249
1250
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
1251
1252
                .labeled_tunnel()
                .label("edge", edge);
1253
1254

            let listener = tunnel.listen().await.unwrap();
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269

            // Run prom metrics and health locally too
            tokio::spawn(
                axum::Server::bind(&addr)
                    .serve(
                        Router::new()
                            .route("/health", get(health))
                            .route("/metrics", get(metrics))
                            .layer(Extension(health_ext))
                            .layer(Extension(prom_handle))
                            .into_make_service(),
                    )
                    //Wait until all requests are finished to shut down
                    .with_graceful_shutdown(shutdown_signal()),
            );
1270
1271
1272
1273
1274
1275

            // Run server
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
1276
                .await?;
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
1293
            .await?;
1294
    }
1295
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1296
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1323
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1324
}
1325

1326
1327
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
1328
        let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
1329
1330
1331
1332
1333
1334
1335
1336
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

1337
1338
1339
1340
1341
1342
1343
1344
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1345
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1346
1347
1348
1349
1350
1351
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1352
                error_type: err.error_type().to_string(),
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1363
                error_type: err.error_type().to_string(),
1364
1365
1366
1367
            })
            .unwrap()
    }
}