layers.py 34.5 KB
Newer Older
1
import os
2
import torch
3
import torch.distributed
4
5

from torch import nn
6
from torch.nn import functional as F
7
from typing import List
8
9
from loguru import logger
from functools import lru_cache
10
11
12

HAS_BITS_AND_BYTES = True
try:
13
    import bitsandbytes as bnb
Nicolas Patry's avatar
Nicolas Patry committed
14
    from bitsandbytes.nn import Int8Params, Params4bit
15
except ImportError:
16
17
    HAS_BITS_AND_BYTES = False

18
19
from accelerate import init_empty_weights

20
from text_generation_server.utils.gptq.quant_linear import QuantLinear
OlivierDehaene's avatar
OlivierDehaene committed
21
from text_generation_server.utils.import_utils import IS_CUDA_SYSTEM, IS_ROCM_SYSTEM
22
23

HAS_AWQ = True
OlivierDehaene's avatar
OlivierDehaene committed
24
try:
25
26
27
28
    from text_generation_server.utils.awq.quantize.qmodule import WQLinear
except ImportError:
    HAS_AWQ = False

29
try:
30
31
32
    major, _minor = torch.cuda.get_device_capability()
except Exception:
    major = 1
Nicolas Patry's avatar
Nicolas Patry committed
33

34
35
HAS_EXLLAMA = False
CAN_EXLLAMA = major >= 8
Nicolas Patry's avatar
Nicolas Patry committed
36
37
V2 = os.getenv("EXLLAMA_VERSION", "2") == "2"
if V2 and int(os.getenv("WORLD_SIZE", "1")) > 1:
OlivierDehaene's avatar
OlivierDehaene committed
38
39
40
    logger.warning(
        "Disabling exllama v2 and using v1 instead because there are issues when sharding"
    )
Nicolas Patry's avatar
Nicolas Patry committed
41
42
    V2 = False

43
if os.getenv("DISABLE_EXLLAMA") == "True":
44
    HAS_EXLLAMA = False
45
elif CAN_EXLLAMA:
OlivierDehaene's avatar
OlivierDehaene committed
46
    try:
Nicolas Patry's avatar
Nicolas Patry committed
47
        if V2:
OlivierDehaene's avatar
OlivierDehaene committed
48
49
50
51
52
            from text_generation_server.utils.gptq.exllamav2 import (
                QuantLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
53

Nicolas Patry's avatar
Nicolas Patry committed
54
55
            HAS_EXLLAMA = "2"
        else:
OlivierDehaene's avatar
OlivierDehaene committed
56
57
58
59
60
            from text_generation_server.utils.gptq.exllama import (
                Ex4bitLinear as ExllamaQuantLinear,
                create_exllama_buffers,
                set_device,
            )
OlivierDehaene's avatar
OlivierDehaene committed
61

Nicolas Patry's avatar
Nicolas Patry committed
62
            HAS_EXLLAMA = "1"
OlivierDehaene's avatar
OlivierDehaene committed
63
64
65

    except ImportError:
        pass
66

67
from typing import Optional
68

69
70
71
HAS_EETQ = False
try:
    from EETQ import quant_weights, w8_a16_gemm
OlivierDehaene's avatar
OlivierDehaene committed
72

73
74
75
76
    HAS_EETQ = True
except ImportError:
    pass

77

78
79
80
81
82
83
84
85
86
87
88
89
90
# Monkey patching
@classmethod
def load_layer_norm(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = nn.Parameter(bias)
    return ln


91
92
93
94
95
96
97
98
99
100
@classmethod
def load_layer_norm_no_bias(cls, prefix, weights, eps):
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
        ln = cls(weight.shape, eps=eps)

    ln.weight = nn.Parameter(weight)
    ln.bias = None
    return ln

OlivierDehaene's avatar
OlivierDehaene committed
101

102
103
104
105
106
@classmethod
def load_conv2d(cls, prefix, weights, in_channels, out_channels, kernel_size, stride):
    weight = weights.get_tensor(f"{prefix}.weight")
    bias = weights.get_tensor(f"{prefix}.bias")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
107
108
109
110
111
112
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
113
114
115
116
117
118
119

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = nn.Parameter(bias)
    return conv2d


@classmethod
OlivierDehaene's avatar
OlivierDehaene committed
120
def load_conv2d_no_bias(
OlivierDehaene's avatar
OlivierDehaene committed
121
    cls, prefix, weights, in_channels, out_channels, kernel_size, stride
OlivierDehaene's avatar
OlivierDehaene committed
122
):
123
124
    weight = weights.get_tensor(f"{prefix}.weight")
    with init_empty_weights():
OlivierDehaene's avatar
OlivierDehaene committed
125
126
127
128
129
130
        conv2d = cls(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
        )
131
132
133
134
135

    conv2d.weight = nn.Parameter(weight)
    conv2d.bias = None
    return conv2d

136

137
138
torch.nn.Conv2d.load = load_conv2d
torch.nn.Conv2d.load_no_bias = load_conv2d_no_bias
139
torch.nn.LayerNorm.load = load_layer_norm
140
torch.nn.LayerNorm.load_no_bias = load_layer_norm_no_bias
141

142
143

class FastLinear(nn.Module):
144
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
145
146
147
        self,
        weight,
        bias,
148
    ) -> None:
149
150
151
152
153
        super().__init__()
        self.weight = nn.Parameter(weight)
        if bias is not None:
            self.bias = nn.Parameter(bias)
        else:
154
            self.bias = None
155
156
157
158
159
160

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
161
        else:
162
163
            bias = None
        return cls(weight, bias)
164
165

    def forward(self, input: torch.Tensor) -> torch.Tensor:
166
        return F.linear(input, self.weight, self.bias)
167
168


169
170
class EETQLinear(nn.Module):
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
171
172
173
        self,
        weight,
        bias,
174
175
176
177
178
    ) -> None:
        super().__init__()
        device = weight.device
        weight = torch.t(weight).contiguous().cpu()
        weight, scale = quant_weights(weight, torch.int8, False)
179

180
181
182
183
184
185
186
187
188
189
        self.weight = weight.cuda(device)
        self.scale = scale.cuda(device)
        self.bias = bias.cuda(device) if bias is not None else None

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        output = w8_a16_gemm(input, self.weight, self.scale)
        output = output + self.bias if self.bias is not None else output
        return output


190
class Linear8bitLt(nn.Module):
191
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
192
193
194
195
196
197
198
        self,
        weight,
        bias,
        has_fp16_weights=True,
        memory_efficient_backward=False,
        threshold=0.0,
        index=None,
199
    ):
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        super().__init__()
        assert (
            not memory_efficient_backward
        ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
        self.state = bnb.MatmulLtState()
        self.index = index

        # Necessary for stacked layers
        self.state.threshold = threshold
        self.state.has_fp16_weights = has_fp16_weights
        self.state.memory_efficient_backward = memory_efficient_backward
        if threshold > 0.0 and not has_fp16_weights:
            self.state.use_pool = True

        self.weight = Int8Params(
            weight.data,
            has_fp16_weights=has_fp16_weights,
            requires_grad=has_fp16_weights,
218
        )
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
        self.weight.cuda(weight.device)
        self.bias = bias

    def init_8bit_state(self):
        self.state.CB = self.weight.CB
        self.state.SCB = self.weight.SCB
        self.weight.CB = None
        self.weight.SCB = None

    def forward(self, x: torch.Tensor):
        self.state.is_training = self.training
        if self.weight.CB is not None:
            self.init_8bit_state()

        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)

        if not self.state.has_fp16_weights:
            if self.state.CB is not None and self.state.CxB is not None:
                # we converted 8-bit row major to turing/ampere format in the first inference pass
                # we no longer need the row-major weight
                del self.state.CB
                self.weight.data = self.state.CxB
        return out
246
247


Nicolas Patry's avatar
Nicolas Patry committed
248
249
250
251
class Linear4bit(nn.Module):
    def __init__(self, weight, bias, quant_type):
        super().__init__()
        self.weight = Params4bit(
OlivierDehaene's avatar
OlivierDehaene committed
252
253
254
255
            weight.data,
            requires_grad=False,
            compress_statistics=True,
            quant_type=quant_type,
Nicolas Patry's avatar
Nicolas Patry committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
        )
        self.compute_dtype = None
        self.weight.cuda(weight.device)
        self.bias = bias

    def forward(self, x: torch.Tensor):
        # weights are cast automatically as Int8Params, but the bias has to be cast manually
        if self.bias is not None and self.bias.dtype != x.dtype:
            self.bias.data = self.bias.data.to(x.dtype)

        if getattr(self.weight, "quant_state", None) is None:
            print(
                "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
            )
        inp_dtype = x.dtype
        if self.compute_dtype is not None:
            x = x.to(self.compute_dtype)

        bias = None if self.bias is None else self.bias.to(self.compute_dtype)
        out = bnb.matmul_4bit(
            x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
        )

        out = out.to(inp_dtype)

        return out


284
285
@lru_cache(1)
def warn_deprecate_bnb():
OlivierDehaene's avatar
OlivierDehaene committed
286
287
288
289
    logger.warning(
        "Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
    )

290

291
292
293
def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
294
295
296
297
    elif quantize == "eetq":
        if HAS_EETQ:
            linear = EETQLinear(weight, bias)
        else:
OlivierDehaene's avatar
OlivierDehaene committed
298
299
300
            raise ImportError(
                "Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
            )
301
    elif quantize == "bitsandbytes":
302
        warn_deprecate_bnb()
303
304
305
306
307
308
309
310
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
Nicolas Patry's avatar
Nicolas Patry committed
311
312
313
314
315
316
317
318
319
320
321
322
    elif quantize == "bitsandbytes-fp4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
323
    elif quantize == "gptq":
324
        try:
325
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
326
327
328
329
330
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

331
        if use_exllama:
OlivierDehaene's avatar
OlivierDehaene committed
332
333
334
            linear = ExllamaQuantLinear(
                qweight, qzeros, scales, g_idx, bias, bits, groupsize
            )
335
336
337
338
339
340
341
342
343
344
        else:
            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
345
346
347
348
349
350
351
    elif quantize == "awq":
        try:
            qweight, qzeros, scales, _, bits, groupsize, _ = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
OlivierDehaene's avatar
OlivierDehaene committed
352
353
354
355
356
357
358
359
        linear = WQLinear(
            w_bit=bits,
            group_size=groupsize,
            qweight=qweight,
            qzeros=qzeros,
            scales=scales,
            bias=bias is not None,
        )
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear


class SuperLayer(nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
375
    def __init__(self, linear, process_group, should_gather: bool):
376
        super().__init__(linear)
377
        self.process_group = process_group
378
        self.should_gather = should_gather
379
380
381

    @staticmethod
    def load(config, prefix: str, weights):
382
383
384
385
386
387
388
389
390
391
392
393
        if weights.process_group.size() > 1:
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
394

395
396
        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
        if config.quantize in ["gptq", "awq", "eetq"]:
397
398
399
            quantize = None
        else:
            quantize = config.quantize
400
        return TensorParallelHead(
401
            get_linear(weight, bias=None, quantize=quantize),
402
            process_group=weights.process_group,
403
            should_gather=should_gather,
404
405
406
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
OlivierDehaene's avatar
OlivierDehaene committed
407
408
409
        if not self.should_gather:
            return super().forward(input)

410
        world_size = self.process_group.size()
OlivierDehaene's avatar
OlivierDehaene committed
411
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
412
413
            out_dim = self.linear.weight.shape[0]

OlivierDehaene's avatar
OlivierDehaene committed
414
415
416
417
418
419
420
421
            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T
422
423
424
425

            torch.mm(input, self.linear.weight.T, out=local_out)

            torch.distributed.all_gather_into_tensor(
OlivierDehaene's avatar
OlivierDehaene committed
426
                world_out, gather_input, group=self.process_group
427
428
            )

OlivierDehaene's avatar
OlivierDehaene committed
429
430
431
            if input.shape[0] == 1:
                return world_out
            return world_out.T
432

OlivierDehaene's avatar
OlivierDehaene committed
433
434
435
436
        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
437
438
439
440
441
442
443
        torch.distributed.all_gather(world_output, output, group=self.process_group)
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
xiaobin's avatar
xiaobin committed
444
445
    def load_qkv(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
OlivierDehaene's avatar
OlivierDehaene committed
446
        weight = weights.get_weights_col_packed_qkv(prefix, quantize=config.quantize)
xiaobin's avatar
xiaobin committed
447
448
449
450
451
452
453
454
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)

    @classmethod
455
    def load(cls, config, prefix: str, weights, bias: bool):
456
        return cls.load_multi(config, [prefix], weights, bias, dim=0)
457

458
459
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
460
461
462
        weight = weights.get_multi_weights_col(
            prefixes, quantize=config.quantize, dim=dim
        )
463

464
465
        if bias:
            b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
466
            bias = torch.cat(b, dim=dim)
467
468
        else:
            bias = None
469
470
        linear = get_linear(weight, bias, config.quantize)
        return cls(linear)
471

472
473
474
475

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
476
477
        self.process_group = process_group

478
479
    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
480
481
        weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)

482
483
484
485
486
487
488
489
490
        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
            get_linear(weight, bias, config.quantize),
            process_group=weights.process_group,
        )
491

492
493
    def forward(self, input: torch.Tensor) -> torch.Tensor:
        out = super().forward(input)
494
495
        if self.process_group.size() > 1:
            torch.distributed.all_reduce(out, group=self.process_group)
496
        return out
497
498


499
500
501
class TensorParallelEmbedding(nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
502
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
503
504
505
506
507
508
509
510
511
512
513
514
515
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = num_embeddings // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = block_size
        self.process_group = weights.process_group
        self.reduce = reduce
516
517

        """Additional 0 entry used for masking"""
518
        self.weight = nn.Parameter(F.pad(weight, (0, 0, 0, 1)))
519
520
521
522
523
524
525
526
527

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
528
        out = torch.nn.functional.embedding(input, self.weight)
529
        if self.reduce and self.process_group.size() > 1:
530
            torch.distributed.all_reduce(out, group=self.process_group)
531
532
533
534
        return out


try:
fxmarty's avatar
fxmarty committed
535
536
    if IS_CUDA_SYSTEM:
        import dropout_layer_norm
OlivierDehaene's avatar
OlivierDehaene committed
537
538
    elif IS_ROCM_SYSTEM:
        from vllm import layernorm_ops
fxmarty's avatar
fxmarty committed
539
540
    else:
        dropout_layer_norm = None
541
542
543

    class FastLayerNorm(nn.LayerNorm):
        def forward(self, hidden_states, residual=None):
fxmarty's avatar
fxmarty committed
544
            if hidden_states.shape[-1] > 8192 or IS_ROCM_SYSTEM:
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                return super(FastLayerNorm, self).forward(hidden_states), residual
            else:
                (
                    normed_hidden_states,
                    residual,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
                    hidden_states,
                    residual,
                    self.weight,
                    self.bias,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.eps,
                    1.0,
                    0,
                    None,
                    False,
                    False,
                )
                if residual is None:
                    residual = hidden_states

                return normed_hidden_states, residual
OlivierDehaene's avatar
OlivierDehaene committed
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607

    class FastRMSNorm(nn.Module):
        def __init__(self, weight: torch.Tensor, eps: float):
            super().__init__()

            self.weight = nn.Parameter(weight)
            self.variance_epsilon = eps

        @classmethod
        def load(cls, prefix, weights, eps=1e-6):
            weight = weights.get_tensor(f"{prefix}.weight")
            return cls(weight, eps)

        def forward(self, hidden_states, residual=None):
            if hidden_states.shape[-1] > 8192:
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                hidden_states = hidden_states.to(torch.float32)
                variance = hidden_states.pow(2).mean(-1, keepdim=True)
                hidden_states = hidden_states * torch.rsqrt(
                    variance + self.variance_epsilon
                )

                # convert into half-precision if necessary
                if self.weight.dtype in [torch.float16, torch.bfloat16]:
                    hidden_states = hidden_states.to(self.weight.dtype)

                return self.weight * hidden_states, residual
            elif IS_CUDA_SYSTEM:
                # faster post attention rms norm
OlivierDehaene's avatar
OlivierDehaene committed
608
609
610
611
612
                (
                    normed_hidden_states,
                    res,
                    *rest,
                ) = dropout_layer_norm.dropout_add_ln_fwd(
OlivierDehaene's avatar
OlivierDehaene committed
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
                    hidden_states,
                    residual,
                    self.weight,
                    None,
                    None,
                    None,
                    None,
                    None,
                    0.0,
                    self.variance_epsilon,
                    1.0,
                    0,
                    None,
                    False,
                    True,  # Activate RMSNorm
                )
                if res is None:
                    res = hidden_states

                return normed_hidden_states, res
            elif IS_ROCM_SYSTEM:
                # We use VLLM RMSNorm kernel that can be compiled for RoCm, instead of Flash Attention ones that can not.
                if residual is not None:
                    hidden_states += residual
                residual = hidden_states

                out = torch.empty_like(hidden_states)
                layernorm_ops.rms_norm(
                    out,
                    hidden_states,
                    self.weight.data,
                    self.variance_epsilon,
                )
                return out, residual
            else:
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
649
650
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
OlivierDehaene's avatar
OlivierDehaene committed
651

652
653
654
655
except ImportError:
    pass

try:
fxmarty's avatar
fxmarty committed
656
657
658
659
660
    if IS_CUDA_SYSTEM:
        from flash_attn.layers.rotary import RotaryEmbedding
        import rotary_emb
    elif IS_ROCM_SYSTEM:
        from vllm import pos_encoding_ops
661

Nicolas Patry's avatar
Nicolas Patry committed
662
663
    def _create_inv_freq(dim, base, device):
        inv_freq = 1.0 / (
OlivierDehaene's avatar
OlivierDehaene committed
664
            base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim)
Nicolas Patry's avatar
Nicolas Patry committed
665
666
667
668
669
        )
        return inv_freq

    def _get_rope_config(config):
        if os.getenv("ROPE_SCALING", None) is not None:
OlivierDehaene's avatar
OlivierDehaene committed
670
671
672
673
            rope_scaling = {
                "type": os.environ["ROPE_SCALING"],
                "factor": float(os.environ["ROPE_FACTOR"]),
            }
Nicolas Patry's avatar
Nicolas Patry committed
674
675
676
            return rope_scaling
        return getattr(config, "rope_scaling", None)

677
    class PositionRotaryEmbedding(nn.Module):
Nicolas Patry's avatar
Nicolas Patry committed
678
        def __init__(self, inv_freq, scaling_factor):
679
            super().__init__()
680
            self.inv_freq = inv_freq
681
682
683
684
685
            self._seq_len_cached = 0
            self._cos_cached = None
            self._sin_cached = None
            self._cos_k_cached = None
            self._sin_k_cached = None
Nicolas Patry's avatar
Nicolas Patry committed
686
687
            self.scaling_factor = scaling_factor
            self.dynamic_args = None
688

OlivierDehaene's avatar
OlivierDehaene committed
689
690
691
692
693
694
695
        def forward(
            self,
            query: torch.Tensor,
            key: torch.Tensor,
            cos: torch.Tensor,
            sin: torch.Tensor,
        ):
fxmarty's avatar
fxmarty committed
696
697
698
699
            # Such controlflows may add some overhead.
            if IS_CUDA_SYSTEM:
                rotary_dim = cos.shape[-1]
                q1 = query[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
700
                q2 = query[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
701
702
703
704

                rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)

                k1 = key[..., :rotary_dim]
OlivierDehaene's avatar
OlivierDehaene committed
705
                k2 = key[..., rotary_dim : 2 * rotary_dim]
fxmarty's avatar
fxmarty committed
706
707
708
709
710
711
712
713
714

                rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
            elif IS_ROCM_SYSTEM:
                # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
                # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773

                head_size = query.shape[-1]

                # Inplace operation, updating query and key.
OlivierDehaene's avatar
OlivierDehaene committed
715
                pos_encoding_ops.rotary_embedding(query, key, head_size, cos, sin, True)
fxmarty's avatar
fxmarty committed
716
            else:
OlivierDehaene's avatar
OlivierDehaene committed
717
                raise ValueError(
OlivierDehaene's avatar
OlivierDehaene committed
718
719
                    "Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction."
                )
fxmarty's avatar
fxmarty committed
720

721
        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
722
723
724
725
726
727
728
729
730
        def static(cls, config, dim, base, device):
            inv_freq = _create_inv_freq(dim, base, device)
            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
731
732
733
734
735
736
737
                    return DynamicPositionRotaryEmbedding(
                        dim=dim,
                        max_position_embeddings=config.max_position_embeddings,
                        base=base,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
738
739
740
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
741
742
743
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
744
745
746
747
748
749
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
750
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
751
                    )
Nicolas Patry's avatar
Nicolas Patry committed
752
                else:
OlivierDehaene's avatar
OlivierDehaene committed
753
754
755
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
756
            return cls(inv_freq, scaling_factor)
757
758

        @classmethod
Nicolas Patry's avatar
Nicolas Patry committed
759
        def load(cls, config, prefix, weights):
760
761
762
763
764
            # XXX: Always load this in float32 !
            dtype = weights.dtype
            weights.dtype = torch.float32
            inv_freq = weights.get_tensor(f"{prefix}.inv_freq")
            weights.dtype = dtype
Nicolas Patry's avatar
Nicolas Patry committed
765
766
767
768
769
770
771
772

            scaling_factor = None
            rope_scaling = _get_rope_config(config)
            if rope_scaling is not None:
                scaling_factor = rope_scaling["factor"]
                if rope_scaling["type"] == "linear":
                    pass
                elif rope_scaling["type"] == "dynamic":
OlivierDehaene's avatar
OlivierDehaene committed
773
774
775
776
777
778
779
                    return DynamicPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
                        max_position_embeddings=config.max_position_embeddings,
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
780
781
782
                elif rope_scaling["type"] == "yarn":
                    return YarnPositionRotaryEmbedding(
                        dim=2 * inv_freq.shape[0],
OlivierDehaene's avatar
OlivierDehaene committed
783
784
785
                        max_position_embeddings=rope_scaling[
                            "original_max_position_embeddings"
                        ],
Nicolas Patry's avatar
Nicolas Patry committed
786
787
788
789
790
791
                        base=10000.0,
                        device=inv_freq.device,
                        scaling_factor=scaling_factor,
                        extrapolation_factor=1,
                        attn_factor=1,
                        beta_fast=32,
OlivierDehaene's avatar
OlivierDehaene committed
792
                        beta_slow=1,
Nicolas Patry's avatar
Nicolas Patry committed
793
                    )
Nicolas Patry's avatar
Nicolas Patry committed
794
                else:
OlivierDehaene's avatar
OlivierDehaene committed
795
796
797
                    raise NotImplementedError(
                        f"rope scaling type {rope_scaling['type']} is not implemented or invalid"
                    )
Nicolas Patry's avatar
Nicolas Patry committed
798
            return cls(inv_freq, scaling_factor)
799

800
801
802
803
        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
804
805
806
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
807
808
809
            ):
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
Nicolas Patry's avatar
Nicolas Patry committed
810
811
                if self.scaling_factor is not None:
                    t /= self.scaling_factor
812
813
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
Nicolas Patry's avatar
Nicolas Patry committed
814

815
816
817
818
819
                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

        def get_cos_sin(
OlivierDehaene's avatar
OlivierDehaene committed
820
            self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype
821
822
823
824
        ):
            """
            Return cos and sin for the asked position ids
            """
fxmarty's avatar
fxmarty committed
825
826
827
828
829
            if IS_ROCM_SYSTEM:
                # For RoCm, we always use float cos/sin to avoid a cast.
                # For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
                # But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
                dtype = torch.float32
830
831
832
833
834

            self._update_cos_sin_cache(dtype, position_ids.device, max_s)

            cos = torch.index_select(self._cos_cached, 0, position_ids)
            sin = torch.index_select(self._sin_cached, 0, position_ids)
fxmarty's avatar
fxmarty committed
835
            # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
836
837
            return cos.unsqueeze(1), sin.unsqueeze(1)

Nicolas Patry's avatar
Nicolas Patry committed
838
839
    class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
        def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
Nicolas Patry's avatar
Nicolas Patry committed
840
            inv_freq = _create_inv_freq(dim, base, device)
Nicolas Patry's avatar
Nicolas Patry committed
841
842
843
844
845
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base

OlivierDehaene's avatar
OlivierDehaene committed
846
        def _update_cos_sin_cache(self, dtype, device, seqlen):
Nicolas Patry's avatar
Nicolas Patry committed
847
848
849
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
850
851
852
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
853
854
            ):
                if seqlen > self.max_position_embeddings:
OlivierDehaene's avatar
OlivierDehaene committed
855
                    newbase = self.base * (
OlivierDehaene's avatar
OlivierDehaene committed
856
857
                        (self.scaling_factor * seqlen / self.max_position_embeddings)
                        - (self.scaling_factor - 1)
OlivierDehaene's avatar
OlivierDehaene committed
858
859
860
861
                    ) ** (self.dim / (self.dim - 2))
                    self.inv_freq = _create_inv_freq(
                        self.dim, newbase, self.inv_freq.device
                    )
Nicolas Patry's avatar
Nicolas Patry committed
862
863
864
865
866
867
868
869
870
                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = torch.cos(freqs).to(dtype)
                self._sin_cached = torch.sin(freqs).to(dtype)

Nicolas Patry's avatar
Nicolas Patry committed
871
872
    # Inverse dim formula to find dim based on number of rotations
    import math
OlivierDehaene's avatar
OlivierDehaene committed
873

OlivierDehaene's avatar
OlivierDehaene committed
874
875
876
877
878
879
    def find_correction_dim(
        num_rotations, dim, base=10000, max_position_embeddings=2048
    ):
        return (
            dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))
        ) / (2 * math.log(base))
Nicolas Patry's avatar
Nicolas Patry committed
880
881

    # Find dim range bounds based on rotations
OlivierDehaene's avatar
OlivierDehaene committed
882
883
884
885
886
887
888
889
890
    def find_correction_range(
        low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
    ):
        low = math.floor(
            find_correction_dim(low_rot, dim, base, max_position_embeddings)
        )
        high = math.ceil(
            find_correction_dim(high_rot, dim, base, max_position_embeddings)
        )
OlivierDehaene's avatar
OlivierDehaene committed
891
892
        return max(low, 0), min(high, dim - 1)  # Clamp values just in case

Nicolas Patry's avatar
Nicolas Patry committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
    def linear_ramp_mask(min, max, dim):
        if min == max:
            max += 0.001  # Prevent singularity

        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

    def get_mscale(scale=1):
        if scale <= 1:
            return 1.0
        return 0.1 * math.log(scale) + 1.0

    class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
OlivierDehaene's avatar
OlivierDehaene committed
907
908
909
910
911
912
913
914
915
916
917
918
919
        def __init__(
            self,
            dim,
            max_position_embeddings,
            base,
            device,
            scaling_factor,
            *,
            extrapolation_factor,
            attn_factor,
            beta_fast,
            beta_slow,
        ):
Nicolas Patry's avatar
Nicolas Patry committed
920
921
922
923
924
925
926
927
928
            inv_freq = _create_inv_freq(dim, base, device)
            super().__init__(inv_freq, scaling_factor)
            self.dim = dim
            self.max_position_embeddings = max_position_embeddings
            self.base = base
            self.extrapolation_factor = extrapolation_factor
            self.attn_factor = attn_factor
            self.beta_fast = beta_fast
            self.beta_slow = beta_slow
OlivierDehaene's avatar
OlivierDehaene committed
929
930
931
            self.mscale = float(
                get_mscale(self.scaling_factor) * self.attn_factor
            )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
932
933
934
935
936

        def _update_cos_sin_cache(self, dtype, device, seqlen):
            # Reset the tables if the sequence length has changed,
            # or if we're on a new device (possibly due to tracing for instance)
            if (
OlivierDehaene's avatar
OlivierDehaene committed
937
938
939
                seqlen > self._seq_len_cached
                or self._cos_cached.device != device
                or self._cos_cached.dtype != dtype
Nicolas Patry's avatar
Nicolas Patry committed
940
941
942
943
944
945
946
            ):
                if seqlen > self.max_position_embeddings:
                    inv_freq_extrapolation = _create_inv_freq(
                        self.dim, self.base, self.inv_freq.device
                    )
                    freqs = 1.0 / inv_freq_extrapolation
                    inv_freq_interpolation = 1.0 / (self.scaling_factor * freqs)
OlivierDehaene's avatar
OlivierDehaene committed
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
                    low, high = find_correction_range(
                        self.beta_fast,
                        self.beta_slow,
                        self.dim,
                        self.base,
                        self.max_position_embeddings,
                    )
                    inv_freq_mask = (
                        1
                        - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
                    ) * self.extrapolation_factor  # Get n-d rotational scaling corrected for extrapolation
                    inv_freq = (
                        inv_freq_interpolation * (1 - inv_freq_mask)
                        + inv_freq_extrapolation * inv_freq_mask
                    )
Nicolas Patry's avatar
Nicolas Patry committed
962
963

                    self.inv_freq = inv_freq
OlivierDehaene's avatar
OlivierDehaene committed
964
965
966
                    self.mscale = float(
                        get_mscale(self.scaling_factor) * self.attn_factor
                    )  # Get n-d magnitude scaling corrected for interpolation
Nicolas Patry's avatar
Nicolas Patry committed
967
968
969
970
971
972
973
974
975
976

                self._seq_len_cached = seqlen
                t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
                # Don't do einsum, it converts fp32 to fp16
                # freqs = torch.einsum("i,j->ij", t, self.inv_freq)

                freqs = torch.outer(t, self.inv_freq.to(device=t.device))
                self._cos_cached = (torch.cos(freqs) * self.mscale).to(dtype)
                self._sin_cached = (torch.sin(freqs) * self.mscale).to(dtype)

977
978
except ImportError:
    pass