flash_causal_lm.py 74.5 KB
Newer Older
1
from contextlib import nullcontext
2
import math
3
import os
4
import time
5
6
7
import torch
import torch.distributed

8
9
import numpy as np

10
from loguru import logger
11
12
from dataclasses import dataclass
from opentelemetry import trace
13
14
15
16
17
18
from transformers import (
    PreTrainedTokenizerBase,
    AutoConfig,
    AutoTokenizer,
    GenerationConfig,
)
19
from typing import Any, ContextManager, Iterable, Optional, Tuple, List, Type, Dict
fxmarty's avatar
fxmarty committed
20

drbh's avatar
drbh committed
21
from text_generation_server.adapters import AdapterBatchData, AdapterBatchMetadata
fxmarty's avatar
fxmarty committed
22
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
Daniël de Kok's avatar
Daniël de Kok committed
23
from text_generation_server.utils.chunks import concat_text_chunks
Nicolas Patry's avatar
Nicolas Patry committed
24
from text_generation_server.utils.import_utils import SYSTEM
OlivierDehaene's avatar
OlivierDehaene committed
25
from text_generation_server.models import Model
26
from text_generation_server.utils.log import log_master
27
from text_generation_server.utils.tokens import batch_top_tokens
Nicolas Patry's avatar
Nicolas Patry committed
28
from text_generation_server.utils.speculate import get_speculate
29
30
31
32
33
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)
34
35
from text_generation_server.models.types import (
    Batch,
Nicolas Patry's avatar
Nicolas Patry committed
36
    Tokens,
37
38
39
40
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
Nicolas Patry's avatar
Nicolas Patry committed
41
42
from text_generation_server.models.globals import (
    MEM_POOL,
43
    ATTENTION,
44
    BLOCK_SIZE,
Nicolas Patry's avatar
Nicolas Patry committed
45
    CUDA_GRAPHS,
46
    TGI_WIGGLE_ROOM,
Nicolas Patry's avatar
Nicolas Patry committed
47
48
    get_adapter_to_index,
)
49
from text_generation_server.layers.attention import Seqlen
50
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
51
from text_generation_server.utils.dist import MEMORY_FRACTION
52
from text_generation_server.utils.quantization import get_loader
drbh's avatar
drbh committed
53
from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments
54

Nicolas Patry's avatar
Nicolas Patry committed
55
from text_generation_server.utils.import_utils import (
Nicolas Patry's avatar
Nicolas Patry committed
56
57
58
    empty_cache,
    synchronize,
    get_free_memory,
Nicolas Patry's avatar
Nicolas Patry committed
59
60
)

Nicolas Patry's avatar
Nicolas Patry committed
61
62
tracer = trace.get_tracer(__name__)

63
64
65
66
67
68
69
70
71
72
73
74
75
76

# Will be set in init
SLIDING_WINDOW: Optional[int] = None


def set_sliding_window(sliding_window: int):
    global SLIDING_WINDOW
    SLIDING_WINDOW = sliding_window


def get_sliding_windows() -> int:
    global SLIDING_WINDOW
    return SLIDING_WINDOW

77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def init_cpu_threads_env(rank_id: int, world_size: int):
    import importlib.util

    if importlib.util.find_spec("numa") is not None:
        import numa
        import psutil

        nodes = numa.get_max_node() + 1
        rank_per_node = math.ceil(world_size / nodes)
        num_cpus_per_nodes = int(psutil.cpu_count(logical=False) / nodes)
        node_id = int(rank_id / rank_per_node)
        rank_offset_per_node = rank_id % rank_per_node
        if os.getenv("OMP_NUM_THREADS") is None:
            num_cpus_per_rank = max(int(num_cpus_per_nodes / rank_per_node), 1)
        else:
            num_cpus_per_rank = int(os.getenv("OMP_NUM_THREADS"))
        if len(numa.get_membind()) == nodes:
            numa.set_membind([node_id])
        torch.set_num_threads(num_cpus_per_rank)
        if len(numa.get_affinity(0)) == psutil.cpu_count(logical=True):
            cpu_start = num_cpus_per_rank * rank_offset_per_node
            numa.set_affinity(
                0,
                list(numa.node_to_cpus(node_id))[
                    cpu_start : cpu_start + num_cpus_per_rank
                ],
            )
        logger.info(f"affinity={numa.get_affinity(0)}, membind = {numa.get_membind()}")


108
109
110
111
@dataclass
class FlashCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
112
113
    # request id -> idx in list mapping
    requests_idx_mapping: Dict[int, int]
114
115

    # Decoder values
116
117
    input_ids: torch.Tensor
    position_ids: torch.Tensor
118
    speculative_ids: Optional[torch.Tensor]
119

120
121
122
123
    # Flash Attention values

    # tensor of length b containing the cumulative sequence lengths of the sequences in the batch, only used in prefill
    cu_seqlen_prefill: Optional[torch.Tensor]
124
125
126
    # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers
    # as we only keep SLIDING_WINDOW values instead of the whole tensor
    prefill_cache_indices: Optional[torch.Tensor]
127
128
129
130
131
132
133
134
135
136

    # Paged Attention values

    # Set when creating the batch
    # CPU tensor of length b indicating the start of each sequence in slots
    start_slots: torch.Tensor
    # tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode
    slot_indices: torch.Tensor

    # list of length b of list of length s_i // block_size
137
    block_tables: List[List[int]]
138
    # tensor of size [b, max_total_seqlen // block_size] holding the paged attention block tables for all sequences
139
    block_tables_tensor: torch.Tensor
140
    # tensor of length \sum_{i=0}^{b} max_s_i  holding the paged attention slots for all sequences
141
    slots: torch.Tensor
Nicolas Patry's avatar
Nicolas Patry committed
142
143
144
    # size [b], containing the number of blocks that can be retrieved from the cache
    prefix_lens: List[int]
    prefix_lens_tensor: torch.Tensor
145

146
147
    max_seqlen: int

148
149
150
151
152
    # Prefill metadata tensors to efficiently compute logprobs
    prefill_head_indices: Optional[torch.Tensor]
    prefill_next_token_indices: Optional[torch.tensor]
    prefill_cu_outlens: Optional[List[int]]

Nicolas Patry's avatar
Nicolas Patry committed
153
154
155
    # Prefixes
    prefix_ids: List[List[int]]

156
157
    # All tokens
    all_input_ids: List[List[int]]
158
    all_input_ids_tensor: torch.Tensor
159
160
161

    # Lengths of all generations present in the batch
    input_lengths: List[int]
162
    input_lengths_tensor: torch.Tensor
163
164
    prefix_offsets: List[Optional[int]]
    read_offsets: List[Optional[int]]
165
166

    # Generation helpers
167
    next_token_chooser: HeterogeneousNextTokenChooser
168
    stopping_criterias: List[StoppingCriteria]
Nicolas Patry's avatar
Nicolas Patry committed
169
170
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor
171

drbh's avatar
drbh committed
172
173
174
    # Adapter metadata for each request
    adapter_meta: AdapterBatchMetadata

175
    # Number of blocks in this batch
176
    num_blocks: int
177
178
    # Maximum number of blocks
    max_blocks: int
179

180
181
    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
182
            id=self.batch_id,
183
            request_ids=[r.id for r in self.requests],
184
            size=len(self),
185
            max_tokens=self.num_blocks * BLOCK_SIZE,
186
187
188
        )

    @classmethod
Daniël de Kok's avatar
Daniël de Kok committed
189
190
191
    def batch_tokenized_inputs(
        cls, requests: Iterable[generate_pb2.Request], tokenizer
    ):
192
193
194
        max_length = 0
        all_input_ids = []
        batch_size = 0
195
        for r in requests:
196
197
198
199
200
201
202
203
204
205
206
            batch_size += 1
            inputs = concat_text_chunks(r.input_chunks.chunks)
            input_ids = tokenizer(
                inputs,
                truncation=True,
                max_length=r.truncate,
                add_special_tokens=r.add_special_tokens,
            )["input_ids"]
            max_length = max(max_length, len(input_ids))
            all_input_ids.append(input_ids)
        return all_input_ids
207

drbh's avatar
drbh committed
208
209
210
211
212
213
214
215
216
    @classmethod
    def from_tokenized(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        batch_tokenized_inputs,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
217
        sliding_window = get_sliding_windows()
218
        position_ids = []
219
        cu_seqlen_prefill = [0]
220
221
        start_slots = []
        slot_indices = []
222
        prefill_cache_indices = []
223
224

        input_lengths = []
225
226
        prefix_offsets = []
        read_offsets = []
227
        all_input_ids = []
Nicolas Patry's avatar
Nicolas Patry committed
228
        prefix_ids = []
229
        requests_idx_mapping = {}
230

231
232
233
234
235
236
        all_prefill_logprobs = True
        no_prefill_logprobs = True
        prefill_head_indices = []
        prefill_next_token_indices = []
        prefill_cu_outlens = [0]

237
        next_token_chooser_parameters = []
238
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
239
        top_n_tokens = []
240

drbh's avatar
drbh committed
241
242
243
        adapter_indices_list = []
        adapter_set = set()

244
245
        # Cumulative length
        cumulative_length = 0
Nicolas Patry's avatar
Nicolas Patry committed
246
        cumulative_slot_tokens = 0
247
        prefill_out_cumulative_length = 0
248

249
        num_blocks = 0
250
        max_seqlen = 0
251
        max_length = 0
252
        max_blocks = 0
253

254
255
        block_tables = []
        slots = []
Nicolas Patry's avatar
Nicolas Patry committed
256
        prefix_lens = []
257

258
        # Parse batch
259
260
261
        for i, (r, tokenized_input) in enumerate(
            zip(pb.requests, batch_tokenized_inputs)
        ):
262
263
264
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

Nicolas Patry's avatar
Nicolas Patry committed
265
266
            orig_input_length = len(tokenized_input)

267
268
269
270
271
272
273
            prefix_len = r.prefix_len
            assert (
                prefix_len <= orig_input_length
            ), f"Prefix {prefix_len} vs input {orig_input_length}"
            if prefix_len == orig_input_length:
                assert prefix_len > 0
                prefix_len -= 1
Nicolas Patry's avatar
Nicolas Patry committed
274

Nicolas Patry's avatar
Nicolas Patry committed
275
276
            # Commented as it's costly.
            # log_master(logger.debug, "Tokenized input ids {tokenized_input}")
Nicolas Patry's avatar
Nicolas Patry committed
277
278
279
            prefix_ids.append(tokenized_input[:prefix_len])
            tokenized_input = tokenized_input[prefix_len:]

280
281
            input_length = len(tokenized_input)
            input_lengths.append(input_length)
282

283
            prefix_offsets.append(input_length - 5)
284
            read_offsets.append(input_length)
285

286
            all_input_ids.append(tokenized_input)
287
288

            # Position ids
Nicolas Patry's avatar
Nicolas Patry committed
289
290
291
            request_position_ids = torch.arange(
                prefix_len, orig_input_length, dtype=torch.int32
            )
292
            position_ids.append(request_position_ids)
293
294

            # Add cumulative lengths of all previous inputs
295
            cu_seqlen_prefill.append(cumulative_length + input_length)
296

297
            next_token_chooser_parameters.append(r.parameters)
298

299
300
301
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
302
            max_new_tokens = stopping_criteria.max_new_tokens
303
            stopping_criterias.append(stopping_criteria)
Nicolas Patry's avatar
Nicolas Patry committed
304
            top_n_tokens.append(r.top_n_tokens)
305

Nicolas Patry's avatar
Nicolas Patry committed
306
307
            ADAPTER_TO_INDEX = get_adapter_to_index()
            adapter_index = ADAPTER_TO_INDEX.get(r.adapter_id, 0)
drbh's avatar
drbh committed
308
309
310
            adapter_indices_list.append(torch.full((input_length,), adapter_index))
            adapter_set.add(adapter_index)

311
312
            # Paged attention
            # Remove one as the first token des not have a past
Nicolas Patry's avatar
Nicolas Patry committed
313
            speculative_length = get_speculate()
drbh's avatar
drbh committed
314
            speculative_length = 0 if speculative_length is None else speculative_length
Nicolas Patry's avatar
Nicolas Patry committed
315
316
317
318
319
320
321

            # Tokens that need to be mapped to blocks.
            block_tokens = orig_input_length + max_new_tokens - 1 + speculative_length

            # Tokens that need to be mapped to slots. We don't need slots for the
            # cached prefix (if present).
            slot_tokens = input_length + max_new_tokens - 1 + speculative_length
322
323
324

            # blocks and slots can be empty (for example in warmup)
            if not r.blocks:
Nicolas Patry's avatar
Nicolas Patry committed
325
                needed_blocks = math.ceil(block_tokens / BLOCK_SIZE)
326
327
328
329
330
331
332
333
334
335
                request_blocks = [
                    b for b in range(num_blocks, num_blocks + needed_blocks)
                ]
                request_slots = [
                    s
                    for b in request_blocks
                    for s in range(b * BLOCK_SIZE, (b + 1) * BLOCK_SIZE)
                ]
            else:
                request_blocks = r.blocks
Nicolas Patry's avatar
Nicolas Patry committed
336
337
338
                request_slots = r.slots[
                    prefix_len:  #: orig_input_length + max_new_tokens + speculative_length
                ]
339
340

            block_tables.append(request_blocks)
Nicolas Patry's avatar
Nicolas Patry committed
341
342
343

            slots.extend(request_slots)
            prefix_lens.append(prefix_len)
344
            num_blocks += len(request_blocks)
Nicolas Patry's avatar
Nicolas Patry committed
345
            start_slots.append(cumulative_slot_tokens)
346
347

            request_slot_indices = torch.arange(
Nicolas Patry's avatar
Nicolas Patry committed
348
349
                cumulative_slot_tokens,
                cumulative_slot_tokens + input_length,
350
351
352
353
                dtype=torch.int64,
            )
            slot_indices.append(request_slot_indices)

354
355
356
357
358
359
360
361
362
            # Create tensor to slice into the kv tensor in prefill
            if sliding_window is not None:
                request_prefill_cache_indices = torch.arange(
                    cumulative_length + max(0, input_length - sliding_window),
                    cumulative_length + input_length,
                    dtype=torch.int64,
                )
                prefill_cache_indices.append(request_prefill_cache_indices)

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
            all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
            no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs

            if r.prefill_logprobs:
                prefill_head_indices.append(request_position_ids + cumulative_length)
                prefill_next_token_indices.append(
                    prefill_out_cumulative_length + input_length - 1
                )
                prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
                prefill_out_cumulative_length += input_length
            else:
                prefill_head_indices.append(
                    torch.tensor(
                        [cumulative_length + input_length - 1], dtype=torch.int32
                    )
                )
                prefill_next_token_indices.append(prefill_out_cumulative_length)
                prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
                prefill_out_cumulative_length += 1

383
384
            # Update
            cumulative_length += input_length
Nicolas Patry's avatar
Nicolas Patry committed
385
            cumulative_slot_tokens += slot_tokens
386
            max_seqlen = max(max_seqlen, input_length)
387
            max_blocks = max(max_blocks, len(request_blocks))
OlivierDehaene's avatar
OlivierDehaene committed
388
389
390
            max_length = max(
                max_length, input_length + max_new_tokens + speculative_length
            )
391

drbh's avatar
drbh committed
392
393
394
395
        adapter_indices = torch.cat(adapter_indices_list).to(
            dtype=torch.int64, device=device
        )

396
        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
drbh's avatar
drbh committed
397
            next_token_chooser_parameters, dtype, device, tokenizer
398
        )
399
        start_slots = torch.tensor(start_slots, dtype=torch.int64)
400
401
402
403
404
405
406

        # Padded all_input_ids_tensor
        all_input_ids_tensor = np.zeros(
            (len(all_input_ids), max_length), dtype=np.int64
        )
        for i, input_ids in enumerate(all_input_ids):
            all_input_ids_tensor[i, : len(input_ids)] = input_ids
407

408
409
410
411
412
        # Create tensors on device
        all_input_ids_tensor = torch.tensor(
            all_input_ids_tensor, dtype=torch.int64, device=device
        )

413
414
415
        if len(pb.requests) > 1:
            input_ids = np.concatenate(all_input_ids, dtype=np.int64)
            position_ids = torch.cat(position_ids)
416
            slot_indices = torch.cat(slot_indices)
417
418
            if sliding_window is not None:
                prefill_cache_indices = torch.cat(prefill_cache_indices)
419
420
421
        else:
            input_ids = all_input_ids[0]
            position_ids = position_ids[0]
422
            slot_indices = slot_indices[0]
423
424
            if sliding_window is not None:
                prefill_cache_indices = prefill_cache_indices[0]
425

426
427
        cu_seqlen_prefill = torch.tensor(
            cu_seqlen_prefill, device=device, dtype=torch.int32
428
429
430
        )
        position_ids = position_ids.to(device)
        slot_indices = slot_indices.to(device)
431
432
433
        prefill_cache_indices = (
            prefill_cache_indices.to(device) if sliding_window is not None else None
        )
434
        input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
435
436
        input_lengths_tensor = torch.tensor(
            input_lengths, dtype=torch.int32, device=device
437
        )
438

drbh's avatar
drbh committed
439
440
441
442
443
        adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
        adapter_segments = torch.tensor(
            adapter_segments, dtype=torch.int32, device=device
        )

444
445
        if all_prefill_logprobs:
            prefill_head_indices = None
446
            prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
447
        elif no_prefill_logprobs:
448
            prefill_head_indices = cu_seqlen_prefill[1:] - 1
449
450
451
452
453
454
455
456
            prefill_next_token_indices = None
        else:
            prefill_head_indices = torch.tensor(
                torch.cat(prefill_head_indices), dtype=torch.int64, device=device
            )
            prefill_next_token_indices = torch.tensor(
                prefill_next_token_indices, dtype=torch.int64, device=device
            )
Nicolas Patry's avatar
Nicolas Patry committed
457
458
459
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )
460

461
        slots = torch.tensor(slots, dtype=torch.int64, device=device)
Nicolas Patry's avatar
Nicolas Patry committed
462

463
464
465
466
467
468
        block_tables_tensor = torch.zeros(
            (len(block_tables), max_blocks), dtype=torch.int32, device="cpu"
        )
        for i, request_blocks in enumerate(block_tables):
            block_tables_tensor[i, : len(request_blocks)] = torch.tensor(request_blocks)
        block_tables_tensor = block_tables_tensor.to(device)
Nicolas Patry's avatar
Nicolas Patry committed
469
        prefix_lens_tensor = torch.tensor(prefix_lens, dtype=torch.int32, device=device)
470

471
472
473
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
474
            requests_idx_mapping=requests_idx_mapping,
475
476
            input_ids=input_ids,
            position_ids=position_ids,
477
            cu_seqlen_prefill=cu_seqlen_prefill,
478
            prefill_cache_indices=prefill_cache_indices,
479
480
            start_slots=start_slots,
            slot_indices=slot_indices,
481
482
483
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
Nicolas Patry's avatar
Nicolas Patry committed
484
485
            prefix_lens=prefix_lens,
            prefix_lens_tensor=prefix_lens_tensor,
486
            max_seqlen=max_seqlen,
487
488
489
            prefill_head_indices=prefill_head_indices,
            prefill_next_token_indices=prefill_next_token_indices,
            prefill_cu_outlens=prefill_cu_outlens,
490
            input_lengths=input_lengths,
491
            input_lengths_tensor=input_lengths_tensor,
492
493
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
494
            all_input_ids=all_input_ids,
495
            all_input_ids_tensor=all_input_ids_tensor,
Nicolas Patry's avatar
Nicolas Patry committed
496
            prefix_ids=prefix_ids,
497
            next_token_chooser=next_token_chooser,
498
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
499
500
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
501
            num_blocks=num_blocks,
502
            max_blocks=max_blocks,
drbh's avatar
drbh committed
503
504
505
506
507
508
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
Nicolas Patry's avatar
Nicolas Patry committed
509
            speculative_ids=None,
510
511
        )

512
513
514
515
516
517
518
519
    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
520
        assert len(pb.requests) > 0
521
522
523
        batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer)
        return cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)

524
    @tracer.start_as_current_span("filter")
525
526
    def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch":
        if len(request_ids) == 0:
527
528
            raise ValueError("Batch must have at least one request")
        # We assume that if len(requests) == len(self) then the requests are the same
529
        if len(request_ids) == len(self):
530
531
            return self

532
        device = self.input_ids.device
533

534
535
536
        # New values after filtering
        requests_idx_mapping = {}

537
538
539
        # Used to index into tensors
        indices = []

540
541
542
        # slots to keep after filtering
        slot_filtering_indices = torch.zeros(
            self.slots.shape[0], dtype=torch.bool, device=device
543
544
        )

545
        # Create on CPU to only move to GPU once instead of at every copy
546
        slot_indices = torch.empty(len(request_ids), dtype=torch.int64)
547
548
        max_seqlen = 0

549
        requests = []
550
551
        start_slots = []
        block_tables = []
552
        all_input_ids = []
Nicolas Patry's avatar
Nicolas Patry committed
553
        prefix_ids = []
554

555
        input_lengths = []
Nicolas Patry's avatar
Nicolas Patry committed
556
        prefix_lens = []
557
558
        prefix_offsets = []
        read_offsets = []
559

560
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
561
        top_n_tokens = []
drbh's avatar
drbh committed
562
        adapter_set = set()
563

564
        num_blocks = 0
565
566
567
568
        max_blocks = 0
        # Cumulative length
        cumulative_max_length = 0

569
570
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
571
            indices.append(idx)
572
573
574
            requests_idx_mapping[request_id] = i

            requests.append(self.requests[idx])
575
576
577

            # Get length
            request_input_length = self.input_lengths[idx]
Nicolas Patry's avatar
Nicolas Patry committed
578
            prefix_len = self.prefix_lens[idx]
579
            max_seqlen = max(max_seqlen, request_input_length)
580

581
            all_input_ids.append(self.all_input_ids[idx])
Nicolas Patry's avatar
Nicolas Patry committed
582
            prefix_ids.append(self.prefix_ids[idx])
583
584

            input_lengths.append(request_input_length)
Nicolas Patry's avatar
Nicolas Patry committed
585
            prefix_lens.append(prefix_len)
586
587
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
588

589
590
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
591

Nicolas Patry's avatar
Nicolas Patry committed
592
593
            top_n_tokens.append(self.top_n_tokens[idx])

Nicolas Patry's avatar
Nicolas Patry committed
594
595
            ADAPTER_TO_INDEX = get_adapter_to_index()
            adapter_index = ADAPTER_TO_INDEX.get(self.requests[idx].adapter_id, 0)
drbh's avatar
drbh committed
596
597
            adapter_set.add(adapter_index)

598
            remaining_tokens = (
599
600
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
601

602
            request_block_table = self.block_tables[idx]
603
            num_blocks += len(request_block_table)
604
605
606
            block_tables.append(request_block_table)
            start_slots.append(cumulative_max_length)

607
            # Copy to tensor (CPU)
608
            slot_indices[i] = cumulative_max_length + request_input_length - 1
609
610

            # Set slice
611
612
613
614
615
            slot_filtering_indices[
                self.start_slots[idx] : self.start_slots[idx]
                + request_input_length
                + remaining_tokens
                - 1
616
617
618
            ] = True

            cumulative_max_length += request_input_length + remaining_tokens - 1
619

620
621
            max_blocks = max(max_blocks, len(request_block_table))

622
623
624
        # Index into tensors
        input_ids = self.input_ids[indices]
        position_ids = self.position_ids[indices]
drbh's avatar
drbh committed
625
        adapter_indices = self.adapter_meta.adapter_indices[indices]
626
        all_input_ids_tensor = self.all_input_ids_tensor[indices]
627
628
629
        block_tables_tensor = self.block_tables_tensor[indices]
        input_lengths_tensor = self.input_lengths_tensor[indices]
        slots = self.slots[slot_filtering_indices]
Nicolas Patry's avatar
Nicolas Patry committed
630
        prefix_lens_tensor = self.prefix_lens_tensor[indices]
631
        next_token_chooser = self.next_token_chooser.filter(indices)
Nicolas Patry's avatar
Nicolas Patry committed
632
        top_n_tokens_tensor = self.top_n_tokens_tensor[indices]
OlivierDehaene's avatar
OlivierDehaene committed
633
634
635
        speculative_ids = (
            self.speculative_ids[indices] if self.speculative_ids is not None else None
        )
636
637

        start_slots = torch.tensor(start_slots, dtype=torch.int64)
638

639
        # Move to GPU now that we have the whole tensor
640
        slot_indices = slot_indices.to(device)
641

drbh's avatar
drbh committed
642
643
644
645
        adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
        adapter_segments = torch.tensor(
            adapter_segments, dtype=torch.int32, device=device
        )
646
        # assert sum(len(b) for b in block_tables) == (block_tables_tensor != 0).sum()
drbh's avatar
drbh committed
647

648
        return type(self)(
649
650
651
652
653
            batch_id=self.batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
654
            cu_seqlen_prefill=None,
655
            prefill_cache_indices=None,
656
657
658
659
660
            start_slots=start_slots,
            slot_indices=slot_indices,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
661
            max_seqlen=max_seqlen,
662
663
664
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
665
            input_lengths=input_lengths,
666
            input_lengths_tensor=input_lengths_tensor,
Nicolas Patry's avatar
Nicolas Patry committed
667
668
            prefix_lens=prefix_lens,
            prefix_lens_tensor=prefix_lens_tensor,
669
670
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
671
672
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
Nicolas Patry's avatar
Nicolas Patry committed
673
            prefix_ids=prefix_ids,
674
            next_token_chooser=next_token_chooser,
675
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
676
677
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
678
            num_blocks=num_blocks,
679
            max_blocks=max_blocks,
Nicolas Patry's avatar
Nicolas Patry committed
680
            speculative_ids=speculative_ids,
drbh's avatar
drbh committed
681
682
683
684
685
686
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
687
688
689
690
691
692
693
694
695
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
        # Batch attributes
        requests = []
        requests_idx_mapping = {}

696
        num_blocks = 0
697
698
699
700
701
702
703
704
        total_batch_size = 0
        total_slots = 0
        max_blocks = 0
        max_length = 0
        max_seqlen = 0
        for b in batches:
            total_batch_size += len(b)
            total_slots += len(b.slots)
705
            num_blocks += b.num_blocks
OlivierDehaene's avatar
OlivierDehaene committed
706
707
708
            speculative_length = (
                b.speculative_ids.shape[1] if b.speculative_ids is not None else 0
            )
709
710
711
712
713
714
715
            max_blocks = max(max_blocks, b.max_blocks)
            max_seqlen = max(max_seqlen, b.max_seqlen)
            max_length = max(
                max_length,
                max(
                    input_length
                    + stopping_criteria.max_new_tokens
Nicolas Patry's avatar
Nicolas Patry committed
716
                    + speculative_length
717
718
719
720
721
722
                    - stopping_criteria.current_tokens
                    for input_length, stopping_criteria in zip(
                        b.input_lengths, b.stopping_criterias
                    )
                ),
            )
723
724
725

        input_ids = batches[0].input_ids.new_empty(total_batch_size)
        position_ids = batches[0].position_ids.new_empty(total_batch_size)
726
727
728
729
730
731
732
733
        slots = batches[0].slots.new_empty(total_slots)
        slot_indices = batches[0].slot_indices.new_empty(total_batch_size)
        input_lengths_tensor = batches[0].input_lengths_tensor.new_empty(
            total_batch_size
        )
        block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
            (total_batch_size, max_blocks)
        )
Nicolas Patry's avatar
Nicolas Patry committed
734
        prefix_lens_tensor = batches[0].prefix_lens_tensor.new_empty(total_batch_size)
735
736
        all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
            (total_batch_size, max_length)
737
        )
Nicolas Patry's avatar
Nicolas Patry committed
738
739
740
        top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
            total_batch_size,
        )
drbh's avatar
drbh committed
741
742
743
744
745
746
747
748
        total_indices_size = sum(
            b.adapter_meta.adapter_indices.shape[0] for b in batches
        )
        adapter_indices = batches[0].adapter_meta.adapter_indices.new_empty(
            total_indices_size
        )
        adapter_set = set()
        adapter_segment_builder = SegmentConcatBuilder()
749

750
751
        start_slots = []
        block_tables = []
Nicolas Patry's avatar
Nicolas Patry committed
752
        prefix_lens = []
753
        all_input_ids = []
Nicolas Patry's avatar
Nicolas Patry committed
754
        prefix_ids = []
755
756

        input_lengths = []
757
758
        prefix_offsets = []
        read_offsets = []
759

760
        next_token_chooser_parameters = []
761
        fsm_grammar_states = []
762
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
763
        top_n_tokens = []
764

765
        # Cumulative length
766
        cumulative_batch_size = 0
767
        cumulative_slots = 0
drbh's avatar
drbh committed
768
        cumulative_adapter_indices_size = 0
769
770
771

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
772
773
774
775
776
777
778
779

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + cumulative_batch_size

780
781
            start_index = cumulative_batch_size
            end_index = cumulative_batch_size + len(batch)
782
783
            slots_start_index = cumulative_slots
            slots_end_index = cumulative_slots + len(batch.slots)
784
785
786
787

            # Copy tensors (GPU)
            input_ids[start_index:end_index] = batch.input_ids
            position_ids[start_index:end_index] = batch.position_ids
788
789
            slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots
            input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor
Nicolas Patry's avatar
Nicolas Patry committed
790
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
791
            slots[slots_start_index:slots_end_index] = batch.slots
792

drbh's avatar
drbh committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
            # Copy over adapter indices
            adapter_start_index = cumulative_adapter_indices_size
            adapter_end_index = (
                cumulative_adapter_indices_size
                + batch.adapter_meta.adapter_indices.shape[0]
            )
            adapter_indices[adapter_start_index:adapter_end_index] = (
                batch.adapter_meta.adapter_indices
            )
            cumulative_adapter_indices_size = adapter_end_index
            adapter_set.update(batch.adapter_meta.adapter_set)
            adapter_segment_builder.concat(
                batch.adapter_meta.adapter_segments, batch.adapter_meta.segment_indices
            )

808
809
810
            all_input_ids_tensor[
                start_index:end_index, : batch.all_input_ids_tensor.shape[1]
            ] = batch.all_input_ids_tensor[:, :max_length]
811

812
813
814
            block_tables_tensor[
                start_index:end_index, : batch.block_tables_tensor.shape[1]
            ] = batch.block_tables_tensor[:, :max_blocks]
815

Nicolas Patry's avatar
Nicolas Patry committed
816
817
            prefix_lens_tensor[start_index:end_index] = batch.prefix_lens_tensor

818
819
820
            start_slots.append(batch.start_slots + cumulative_slots)

            block_tables.extend(batch.block_tables)
Nicolas Patry's avatar
Nicolas Patry committed
821
            prefix_lens.extend(batch.prefix_lens)
822
            all_input_ids.extend(batch.all_input_ids)
Nicolas Patry's avatar
Nicolas Patry committed
823
            prefix_ids.extend(batch.prefix_ids)
824

825
            input_lengths.extend(batch.input_lengths)
826
827
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
828

829
            next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
830
            fsm_grammar_states.extend(batch.next_token_chooser.fsm_grammar_states)
831
832
            stopping_criterias.extend(batch.stopping_criterias)

Nicolas Patry's avatar
Nicolas Patry committed
833
834
            top_n_tokens.extend(batch.top_n_tokens)

835
            # Update
836
            cumulative_batch_size += len(batch)
837
            cumulative_slots += len(batch.slots)
838

839
        start_slots = torch.concat(start_slots)
840

841
842
        # assert sum(len(b) for b in block_tables) == (block_tables_tensor != 0).sum()

843
        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
844
845
846
            next_token_chooser_parameters,
            dtype=batches[0].next_token_chooser.dtype,
            device=batches[0].next_token_chooser.device,
drbh's avatar
drbh committed
847
            tokenizer=batches[0].next_token_chooser.tokenizer,
848
            fsm_grammar_states=fsm_grammar_states,
849
850
        )

OlivierDehaene's avatar
OlivierDehaene committed
851
852
853
854
855
        speculative_ids = (
            torch.cat([b.speculative_ids for b in batches], dim=0)
            if batches[0].speculative_ids is not None
            else None
        )
Nicolas Patry's avatar
Nicolas Patry committed
856

drbh's avatar
drbh committed
857
858
        adapter_segments, adapter_segment_indices = adapter_segment_builder.build()

859
        return cls(
860
861
            batch_id=batches[0].batch_id,
            requests=requests,
862
            requests_idx_mapping=requests_idx_mapping,
863
864
            input_ids=input_ids,
            position_ids=position_ids,
865
            cu_seqlen_prefill=None,
866
            prefill_cache_indices=None,
867
868
869
870
            start_slots=start_slots,
            slot_indices=slot_indices,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
Nicolas Patry's avatar
Nicolas Patry committed
871
872
            prefix_lens=prefix_lens,
            prefix_lens_tensor=prefix_lens_tensor,
873
            slots=slots,
874
            max_seqlen=max_seqlen,
875
876
877
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
878
            input_lengths=input_lengths,
879
            input_lengths_tensor=input_lengths_tensor,
880
881
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
882
883
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
Nicolas Patry's avatar
Nicolas Patry committed
884
            prefix_ids=prefix_ids,
885
            next_token_chooser=next_token_chooser,
886
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
887
888
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
889
            num_blocks=num_blocks,
890
            max_blocks=max_blocks,
OlivierDehaene's avatar
OlivierDehaene committed
891
            speculative_ids=speculative_ids,
drbh's avatar
drbh committed
892
893
894
895
896
897
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
898
899
900
901
902
903
        )

    def __len__(self):
        return len(self.requests)


904
905
906
907
908
909
910
911
912
913
914
915
ADAPTER_LAYERS = [
    "q_proj",
    "k_proj",
    "v_proj",
    "o_proj",
    "gate_proj",
    "up_proj",
    "down_proj",
]
ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"}


916
917
918
class FlashCausalLM(Model):
    def __init__(
        self,
drbh's avatar
drbh committed
919
        model_id: str,
920
921
922
923
924
925
926
927
928
929
930
931
        model_class,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
        lora_adapter_ids: Optional[list] = [],
        tokenizer_class: PreTrainedTokenizerBase = AutoTokenizer,
        config_class: PreTrainedTokenizerBase = AutoConfig,
        default_dtype=torch.float16,
        aliases=None,
        # Used for Santacoder override of config
932
933
934
        num_kv_heads: Optional[int] = None,
        # Deepseek V2 uses different QK and V dims.
        head_size: Optional[int] = None,
935
        skip_special_tokens: bool = True,
936
    ):
Nicolas Patry's avatar
Nicolas Patry committed
937
        self.quantize = quantize
938
939
940
941
942
943
944
945
946
947
948
949
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = default_dtype if dtype is None else dtype
        elif SYSTEM == "ipex":
            if hasattr(torch, "xpu") and torch.xpu.is_available():
                device = torch.device(f"xpu:{rank}")
                dtype = default_dtype if dtype is None else dtype
            else:
                device = torch.device("cpu")
                # Float16 doesn't exist on target.
                dtype = torch.bfloat16 if dtype is None else dtype
950
                init_cpu_threads_env(rank_id=rank, world_size=world_size)
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
        else:
            raise NotImplementedError(f"{model_class} is only available on GPU")

        tokenizer = tokenizer_class.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        try:
            generation_config = GenerationConfig.from_pretrained(
                model_id, revision=revision, trust_remote_code=trust_remote_code
            )
            if isinstance(generation_config.eos_token_id, (list, set)):
                # TODO Huge hack
                tokenizer._eos_token_ids = set(generation_config.eos_token_id)
        except Exception:
            pass

        config = config_class.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
        config.speculator = speculator

        torch.distributed.barrier(group=self.process_group)

979
        weights_loader = get_loader(quantize, model_id, revision)
980
981
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(
982
983
984
985
986
987
            filenames,
            device,
            dtype,
            process_group=self.process_group,
            aliases=aliases,
            weights_loader=weights_loader,
988
989
990
991
992
993
994
995
996
997
        )

        prefix = ""
        model = model_class(prefix, config, weights)
        torch.distributed.barrier(group=self.process_group)

        # VLM models define the config we care about in their text_config
        text_config = getattr(config, "text_config", None)
        if text_config is not None:
            config = text_config
998
999
1000
1001
1002
1003

        if getattr(config, "sliding_window", None) is not None:
            set_sliding_window(config.sliding_window)
        else:
            config.sliding_window = None

1004
        self.num_layers = config.num_hidden_layers
1005
        self.num_heads = config.num_attention_heads // self.process_group.size()
1006
1007
        # Validation is done in the model itself
        if num_kv_heads is None:
1008
1009
            num_kv_heads = getattr(config, "num_key_value_heads", None)
            # GPT-2 workaround
1010
            if num_kv_heads is None:
1011
1012
1013
                num_kv_heads = getattr(config, "n_head", None)
        if num_kv_heads is None:
            raise ValueError("Cannot get the number of key/value heads")
1014
1015
1016
1017
1018
1019
        self.num_kv_heads = (
            num_kv_heads // self.process_group.size()
            if num_kv_heads > 1
            else num_kv_heads
        )
        assert self.num_kv_heads > 0
1020
1021

        if head_size is None:
Nicolas Patry's avatar
Nicolas Patry committed
1022
1023
1024
1025
1026
1027
            # Some models use GQA and different sizes for o_proj
            # and q_proj, that allows for that.
            if hasattr(config, "head_dim"):
                self.head_size = config.head_dim
            else:
                self.head_size = config.hidden_size // config.num_attention_heads
1028
1029
        else:
            self.head_size = head_size
1030

1031
        self.cuda_graphs = {}
1032
        self.kv_cache = []
1033

1034
        if ATTENTION == "flashinfer":
Nicolas Patry's avatar
Nicolas Patry committed
1035
            from text_generation_server.layers.attention.flashinfer import (
1036
1037
                create_prefill_state,
                create_decode_state,
Nicolas Patry's avatar
Nicolas Patry committed
1038
                create_prefill_with_paged_kv_state,
1039
1040
1041
            )

            self.prefill_state = create_prefill_state(device=device)
Nicolas Patry's avatar
Nicolas Patry committed
1042
1043
1044
            self.prefill_with_paged_kv_state = create_prefill_with_paged_kv_state(
                device=device
            )
1045

Nicolas Patry's avatar
Nicolas Patry committed
1046
1047
1048
1049
1050
            self.decode_state = create_decode_state(
                device=device,
                num_heads=self.num_heads,
                num_kv_heads=self.num_kv_heads,
            )
1051

1052
        super().__init__(
drbh's avatar
drbh committed
1053
            model_id=model_id,
1054
            model=model,
1055
1056
1057
1058
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
1059
1060
            rank=rank,
            world_size=world_size,
1061
            sliding_window=config.sliding_window,
1062
1063
1064
1065
1066
1067
        )

    @property
    def batch_type(self) -> Type[FlashCausalLMBatch]:
        return FlashCausalLMBatch

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
    def max_past(self) -> int:
        return getattr(self.model, "max_past", None)

    def init_kv_cache(
        self,
        num_blocks: int,
        num_layers: int,
        num_heads: int,
        head_size: int,
        dtype: torch.dtype,
        device: torch.device,
    ):
        self.kv_cache = []
        empty_cache()

        element_size = torch.tensor([], dtype=dtype).element_size()
Wang, Yi's avatar
Wang, Yi committed
1084
1085
1086
1087
        if SYSTEM == "ipex" and device.type == "xpu":
            x = 1
        else:
            x = BLOCK_SIZE // element_size
1088

1089
        if ATTENTION in {"flashdecoding", "flashinfer"}:
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, BLOCK_SIZE, num_heads, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, BLOCK_SIZE, num_heads, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
        elif SYSTEM == "ipex" and device == torch.device("cpu"):
Wang, Yi's avatar
Wang, Yi committed
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, num_heads, BLOCK_SIZE, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, num_heads, BLOCK_SIZE, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
        else:
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, num_heads, head_size, BLOCK_SIZE),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
1137

1138
1139
1140
    def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
        input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
1141
        slots = torch.arange(bs, dtype=torch.int64, device=self.device)
Nicolas Patry's avatar
Nicolas Patry committed
1142
1143
1144
1145
        input_lengths = [max_s] * bs
        prefix_lengths = [0] * bs
        input_lengths_tensor = (
            torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
1146
        )
Nicolas Patry's avatar
Nicolas Patry committed
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        prefix_lengths_tensor = torch.zeros(bs, dtype=torch.int32, device=self.device)
        block_tables = torch.arange(
            max_bt, dtype=torch.int32, device=self.device
        ).repeat(bs)
        block_tables = block_tables.reshape((bs, max_bt))

        if ATTENTION == "flashinfer":
            block_tables = block_tables_to_ragged(
                block_tables=block_tables,
                input_lengths=input_lengths,
                prefix_lens=prefix_lengths,
            )
            from text_generation_server.layers.attention.flashinfer import (
1160
1161
1162
1163
1164
1165
1166
1167
1168
                create_decode_state_cuda_graphs,
            )

            block_tables_ptr = torch.zeros(
                bs + 1, dtype=torch.int32, device=self.device
            )
            last_page_len = torch.ones(bs, dtype=torch.int32, device=self.device)
            state = create_decode_state_cuda_graphs(
                device=input_ids.device,
Nicolas Patry's avatar
Nicolas Patry committed
1169
                block_tables=block_tables,
1170
1171
1172
1173
1174
1175
1176
1177
                block_tables_ptr=block_tables_ptr,
                last_page_len=last_page_len,
                num_heads=self.num_heads,
                num_kv_heads=self.num_kv_heads,
            )
        else:
            state = None

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
        graph = torch.cuda.CUDAGraph()
        self.cuda_graphs[bs] = {
            "input_ids": input_ids,
            "position_ids": position_ids,
            "kv_cache": self.kv_cache,
            "block_tables": block_tables,
            "slots": slots,
            "input_lengths": input_lengths_tensor,
            "prefix_lengths": prefix_lengths_tensor,
            "state": state,
            "graph": graph,
        }

1191
1192
        torch.cuda.synchronize()
        # Run once outside to warmup
1193
        with self._forward_context(
1194
            block_tables=block_tables,
1195
            cu_seqlen_prefill=None,
Nicolas Patry's avatar
Nicolas Patry committed
1196
            input_lengths_tensor=input_lengths_tensor,
1197
            state=state,
Nicolas Patry's avatar
Nicolas Patry committed
1198
            prefix_lens_tensor=prefix_lengths_tensor,
1199
        ):
1200
1201
1202
1203
1204
1205
1206
            seqlen = Seqlen(
                input_lengths=input_lengths_tensor,
                prefix_lengths=prefix_lengths_tensor,
                cu_seqlen_q=None,
                max_q=1,
                max_k=max_s,
            )
1207
            self.model.forward(
1208
1209
1210
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=None,
1211
                kv_cache=self.kv_cache,
1212
1213
                block_tables=block_tables,
                slots=slots,
1214
                seqlen=seqlen,
1215
                max_s=max_s,
1216
                prefill_cache_indices=None,
1217
1218
                lm_head_indices=None,
            )
1219
            del seqlen
1220
1221
1222
1223

            torch.cuda.synchronize()

            with torch.cuda.graph(graph, pool=MEM_POOL):
1224
1225
1226
1227
1228
1229
1230
                seqlen = Seqlen(
                    input_lengths=input_lengths_tensor,
                    prefix_lengths=prefix_lengths_tensor,
                    cu_seqlen_q=None,
                    max_q=1,
                    max_k=max_s,
                )
1231
1232
1233
1234
1235
1236
1237
                logits, speculative_logits = self.model.forward(
                    input_ids=input_ids,
                    position_ids=position_ids,
                    cu_seqlen_prefill=None,
                    kv_cache=self.kv_cache,
                    block_tables=block_tables,
                    slots=slots,
1238
                    seqlen=seqlen,
1239
1240
1241
1242
1243
1244
                    max_s=max_s,
                    prefill_cache_indices=None,
                    lm_head_indices=None,
                )
                self.cuda_graphs[bs]["logits"] = logits
                self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
1245
1246
        torch.cuda.synchronize()

1247
    def warmup(self, batch: FlashCausalLMBatch):
1248
        # The warmup batch is the biggest batch we could ever receive
Nicolas Patry's avatar
Nicolas Patry committed
1249
1250
        empty_cache()

1251
        try:
1252
1253
            self.init_kv_cache(
                batch.num_blocks,
1254
1255
1256
1257
1258
1259
                self.num_layers,
                self.num_kv_heads,
                self.head_size,
                self.dtype,
                self.device,
            )
1260
            max_bt = batch.max_blocks
1261
            max_s = max_bt * BLOCK_SIZE
fxmarty's avatar
fxmarty committed
1262
1263
1264

            if SYSTEM == "rocm" and os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False):
                torch.cuda.tunable.tuning_enable(False)
1265
            _, batch, _ = self.generate_token(batch)
OlivierDehaene's avatar
OlivierDehaene committed
1266
        except torch.cuda.OutOfMemoryError as e:
1267
            raise RuntimeError(
1268
1269
                f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
                f"You need to decrease `--max-batch-prefill-tokens`"
1270
            ) from e
1271

Nicolas Patry's avatar
Nicolas Patry committed
1272
        synchronize(self.device)
1273

1274
1275
        # Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm)
        # Calculate the number of blocks that can be allocated with the free memory
1276
1277
1278
1279
        dtype_size = torch.tensor([], dtype=self.dtype).element_size()
        cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size
        total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size

Nicolas Patry's avatar
Nicolas Patry committed
1280
        free_memory = get_free_memory(self.device, MEMORY_FRACTION)
drbh's avatar
drbh committed
1281
        batch_num_blocks = batch.num_blocks if batch is not None else 0
1282
1283

        num_blocks = (
1284
            # Leave 5% for some wiggle room
1285
            int((free_memory * TGI_WIGGLE_ROOM) // total_cache_size)
1286
            # Add batch.num_blocks as we allocated it above, so it is included in the peak memory.
drbh's avatar
drbh committed
1287
            + batch_num_blocks
1288
1289
        )

1290
        del batch
1291

1292
        self.init_kv_cache(
1293
1294
1295
1296
1297
1298
1299
1300
            num_blocks,
            self.num_layers,
            self.num_kv_heads,
            self.head_size,
            self.dtype,
            self.device,
        )

fxmarty's avatar
fxmarty committed
1301
1302
1303
1304
1305
        if SYSTEM == "rocm":
            if (
                os.environ.get("PYTORCH_TUNABLEOP_ENABLED") is None
                or os.environ.get("PYTORCH_TUNABLEOP_ENABLED") == "1"
            ):
1306
1307
                torch.cuda.tunable.enable()

fxmarty's avatar
fxmarty committed
1308
1309
1310
1311
1312
1313
1314
1315
                if os.environ.get("PYTORCH_TUNABLEOP_TUNING") != "0":
                    torch.cuda.tunable.tuning_enable(True)

                if os.environ.get("PYTORCH_TUNABLEOP_SEQLENS") is not None:
                    tuning_sequences = [
                        int(val)
                        for val in os.environ["PYTORCH_TUNABLEOP_SEQLENS"].split(",")
                    ]
1316
                elif CUDA_GRAPHS is not None:
fxmarty's avatar
fxmarty committed
1317
                    tuning_sequences = CUDA_GRAPHS
1318
1319
1320
                else:
                    # For seqlen = 1, we dispatch to LLMM1 kernel.
                    tuning_sequences = [2, 3, 4, 5, 6, 7]
fxmarty's avatar
fxmarty committed
1321
1322
1323

                tunableop_filepath = os.path.join(
                    HUGGINGFACE_HUB_CACHE,
drbh's avatar
drbh committed
1324
                    f"tunableop_{self.model_id.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv",
fxmarty's avatar
fxmarty committed
1325
1326
                )

1327
1328
1329
                log_master(
                    logger.info,
                    f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`.",
fxmarty's avatar
fxmarty committed
1330
1331
1332
                )

                if os.path.isfile(tunableop_filepath):
1333
1334
1335
                    log_master(
                        logger.info,
                        f"The file {tunableop_filepath} already exists and will be reused.",
fxmarty's avatar
fxmarty committed
1336
1337
1338
1339
1340
1341
                    )
                    torch.cuda.tunable.read_file(tunableop_filepath)

                os.makedirs(HUGGINGFACE_HUB_CACHE, exist_ok=True)

                for seqlen in tuning_sequences:
1342
                    log_master(logger.info, f"Warming up TunableOp for seqlen={seqlen}")
fxmarty's avatar
fxmarty committed
1343
1344
1345
1346
                    self.tunableop_warmup(seqlen)
                    torch.cuda.tunable.write_file(tunableop_filepath)
                torch.cuda.tunable.tuning_enable(False)
            else:
1347
1348
1349
                log_master(
                    logger.info,
                    "PyTorch ROCm TunableOp (https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable) is disabled. TunableOp brings an additional 5-8% latency improvement for small sequence lengths but requires a warmup. If necessary, please use the environment variable PYTORCH_TUNABLEOP_ENABLED=1 to enable TunableOp.",
fxmarty's avatar
fxmarty committed
1350
1351
                )

1352
        if CUDA_GRAPHS:
1353
            try:
1354
1355
1356
                log_master(
                    logger.info, f"Cuda Graphs are enabled for sizes {CUDA_GRAPHS}"
                )
1357
                # Warmup cuda graphs
1358
                for bs in CUDA_GRAPHS:
1359
1360
                    if self.speculate is None or self.speculate + 1 <= bs:
                        self.cuda_graph_warmup(bs, max_s, max_bt)
OlivierDehaene's avatar
OlivierDehaene committed
1361
            except torch.cuda.OutOfMemoryError:
1362
                logger.exception("Decode cuda graph warmup failed")
1363
        else:
1364
1365
1366
            log_master(
                logger.info, f"Cuda Graphs are disabled (CUDA_GRAPHS={CUDA_GRAPHS})."
            )
1367

1368
        return int(num_blocks * BLOCK_SIZE)
1369

fxmarty's avatar
fxmarty committed
1370
1371
1372
1373
1374
    def tunableop_warmup(self, seqlen: int):
        input_ids = torch.zeros(seqlen, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(seqlen, dtype=torch.int32, device=self.device)
        slots = torch.arange(seqlen, dtype=torch.int64, device=self.device)

fxmarty's avatar
fxmarty committed
1375
1376
        # Dummy value, some models (starcoder2) don't accept `None`.
        input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device)
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
        prefix_lens_tensor = torch.zeros(seqlen, dtype=torch.int32, device=self.device)
        cu_seqlen_prefill = torch.tensor(
            [0, seqlen], device=self.device, dtype=torch.int32
        )
        seqlen = Seqlen(
            input_lengths=input_lengths,
            prefix_lengths=prefix_lens_tensor,
            cu_seqlen_q=cu_seqlen_prefill,
            max_q=1,
            max_k=seqlen,
        )
fxmarty's avatar
fxmarty committed
1388

fxmarty's avatar
fxmarty committed
1389
1390
1391
1392
        # We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
        self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
1393
            cu_seqlen_prefill=cu_seqlen_prefill,
1394
            kv_cache=self.kv_cache,
fxmarty's avatar
fxmarty committed
1395
            block_tables=None,
1396
            seqlen=seqlen,
fxmarty's avatar
fxmarty committed
1397
1398
1399
            slots=slots,
            max_s=seqlen,
            lm_head_indices=None,
1400
            prefill_cache_indices=None,
fxmarty's avatar
fxmarty committed
1401
1402
        )

1403
    def forward(
drbh's avatar
drbh committed
1404
        self, batch: FlashCausalLMBatch, adapter_data: AdapterBatchData
1405
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
1406
        # Model Forward
Nicolas Patry's avatar
Nicolas Patry committed
1407
        if batch.speculative_ids is not None:
OlivierDehaene's avatar
OlivierDehaene committed
1408
1409
1410
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
1411
            kv_cache = self.kv_cache
OlivierDehaene's avatar
OlivierDehaene committed
1412
1413
1414
1415
1416
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
1417
1418
1419

            speculative_ids = batch.speculative_ids

OlivierDehaene's avatar
OlivierDehaene committed
1420
            B, speculative_length = speculative_ids.shape
Nicolas Patry's avatar
Nicolas Patry committed
1421
            new_length = speculative_length + 1
OlivierDehaene's avatar
OlivierDehaene committed
1422
1423
1424
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1425
1426
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
OlivierDehaene's avatar
OlivierDehaene committed
1427
1428
1429
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1430
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
OlivierDehaene's avatar
OlivierDehaene committed
1431
1432
1433
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1434
1435
1436
            prefix_lens_tensor = (
                batch.prefix_lens_tensor.unsqueeze(-1).expand(B, new_length)
            ).reshape(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1437
1438

            # Add Copy the block tables for all members
OlivierDehaene's avatar
OlivierDehaene committed
1439
1440
1441
1442
1443
1444
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
Nicolas Patry's avatar
Nicolas Patry committed
1445
1446
1447
1448
1449
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
OlivierDehaene's avatar
OlivierDehaene committed
1450
1451
1452
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
1453
            kv_cache = self.kv_cache
OlivierDehaene's avatar
OlivierDehaene committed
1454
1455
1456
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
Nicolas Patry's avatar
Nicolas Patry committed
1457
            prefix_lens_tensor = batch.prefix_lens_tensor
OlivierDehaene's avatar
OlivierDehaene committed
1458
1459
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
1460

1461
1462
1463
1464
1465
1466
        if cu_seqlen_prefill is None and self.max_past() is not None:
            # In decode, not prefill, we're actually overwriting the KV-cache
            # in a circular buffer mode.
            # This makes sure the max_s for the decode pass is correct.
            max_s = min(self.max_past(), max_s)

1467
        bs = input_ids.shape[0]
OlivierDehaene's avatar
OlivierDehaene committed
1468
1469
1470
1471
1472
1473
1474
1475
        sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
        if sorted_padded_bs:
            # Get associated cuda graph
            cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
        else:
            cuda_graph = None

        if cu_seqlen_prefill is not None or cuda_graph is None:
1476
            if ATTENTION == "flashinfer":
Nicolas Patry's avatar
Nicolas Patry committed
1477
1478
1479
1480
1481
                block_tables = block_tables_to_ragged(
                    block_tables=block_tables,
                    input_lengths=batch.input_lengths,
                    prefix_lens=batch.prefix_lens,
                )
1482
            with self._forward_context(
1483
                block_tables=block_tables,
1484
                cu_seqlen_prefill=cu_seqlen_prefill,
1485
                input_lengths_tensor=input_lengths,
Nicolas Patry's avatar
Nicolas Patry committed
1486
                prefix_lens_tensor=prefix_lens_tensor,
1487
            ):
1488
1489
1490
1491
1492
1493
1494
1495
                max_k = (input_lengths + prefix_lens_tensor).max().item()
                seqlen = Seqlen(
                    input_lengths=input_lengths,
                    prefix_lengths=prefix_lens_tensor,
                    cu_seqlen_q=cu_seqlen_prefill,
                    max_q=max_s,
                    max_k=max_k,
                )
1496
1497
1498
1499
1500
1501
1502
                logits, speculative_logits = self.model.forward(
                    input_ids=input_ids,
                    position_ids=position_ids,
                    cu_seqlen_prefill=cu_seqlen_prefill,
                    kv_cache=kv_cache,
                    block_tables=block_tables,
                    slots=slots,
1503
                    seqlen=seqlen,
1504
1505
1506
1507
1508
1509
1510
1511
                    max_s=max_s,
                    prefill_cache_indices=batch.prefill_cache_indices,
                    lm_head_indices=lm_head_indices,
                    adapter_data=adapter_data,
                )
                if batch.prefill_cache_indices is not None:
                    batch.prefill_cache_indices = None
                return logits, speculative_logits
1512
1513
1514
1515
1516

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
        cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
Nicolas Patry's avatar
Nicolas Patry committed
1517
1518
1519
1520
1521
1522
        if ATTENTION == "flashinfer":
            block_tables = block_tables_to_ragged(
                block_tables=block_tables,
                input_lengths=batch.input_lengths,
                prefix_lens=batch.prefix_lens,
            )
1523
            # assert block_tables.shape[0] >= slots.shape[0]
Nicolas Patry's avatar
Nicolas Patry committed
1524
1525
1526
1527
1528
            cuda_graph["block_tables"][: block_tables.shape[0]] = block_tables
        else:
            cuda_graph["block_tables"][
                : block_tables.shape[0], : block_tables.shape[1]
            ] = block_tables
1529
1530
1531
1532

        # XXX: This is working only because block 0 is reserved for the healthcheck
        # so it doesn't matter if we override it with bogus values.
        cuda_graph["slots"].fill_(0)
1533
1534
        cuda_graph["slots"][: slots.shape[0]] = slots
        cuda_graph["input_lengths"].zero_()
1535
1536
1537
        cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths
        cuda_graph["prefix_lengths"].zero_()
        cuda_graph["prefix_lengths"][: prefix_lens_tensor.shape[0]] = prefix_lens_tensor
1538

1539
        with self._forward_context(
Nicolas Patry's avatar
Nicolas Patry committed
1540
            block_tables=cuda_graph["block_tables"],
1541
            cu_seqlen_prefill=None,
Nicolas Patry's avatar
Nicolas Patry committed
1542
            input_lengths_tensor=cuda_graph["input_lengths"],
1543
1544
            prefix_lens_tensor=cuda_graph["prefix_lengths"],
            state=cuda_graph["state"],
1545
1546
1547
1548
        ):
            # Replay the graph
            cuda_graph["graph"].replay()

1549
        # Slice output to the correct shape
1550
1551
1552
1553
1554
1555
1556
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits
1557
1558
1559
1560

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashCausalLMBatch
1561
1562
    ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch], Tuple[int, int]]:
        start = time.time_ns()
1563
        prefill = batch.cu_seqlen_prefill is not None
1564
        prefill_logprobs = batch.prefill_next_token_indices is not None
1565

drbh's avatar
drbh committed
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
        # Update adapter indices for speculative tokens (if present)
        adapter_meta = batch.adapter_meta
        if batch.speculative_ids is not None:
            B, speculative_length = batch.speculative_ids.shape
            new_length = speculative_length + 1
            adapter_indices = (
                adapter_meta.adapter_indices.unsqueeze(-1)
                .expand(B, new_length)
                .reshape(-1)
            )
            adapter_segments = adapter_meta.adapter_segments * new_length
            adapter_meta = AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_meta.adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_meta.segment_indices,
            )

        # Assign pointers to adapter weights
        # TODO(travis): don't update this if indices haven't changed
        adapter_data = AdapterBatchData.from_meta(
            adapter_meta,
            self.layer_to_adapter_weights,
            prefill,
            batch.prefill_head_indices,
        )

        out, speculative_logits = self.forward(batch, adapter_data)
1594

1595
1596
        if prefill:
            next_token_logits = (
1597
                out[batch.prefill_next_token_indices] if prefill_logprobs else out
1598
            )
Nicolas Patry's avatar
Nicolas Patry committed
1599
1600
            if speculative_logits is not None:
                speculative_logits = (
OlivierDehaene's avatar
OlivierDehaene committed
1601
1602
1603
                    speculative_logits[batch.prefill_next_token_indices]
                    if prefill_logprobs
                    else speculative_logits
Nicolas Patry's avatar
Nicolas Patry committed
1604
                )
drbh's avatar
drbh committed
1605
1606
1607
1608
            next_adapter_indices = batch.adapter_meta.adapter_indices.new_empty(
                len(batch)
            )

1609
1610
        else:
            next_token_logits = out
drbh's avatar
drbh committed
1611
            next_adapter_indices = batch.adapter_meta.adapter_indices
1612

Nicolas Patry's avatar
Nicolas Patry committed
1613
        speculate = get_speculate()
OlivierDehaene's avatar
OlivierDehaene committed
1614
1615
1616
1617
1618
1619
1620
1621
1622
        (
            next_input_ids,
            next_token_logprobs,
            logprobs,
            accepted_ids,
            speculative_ids,
        ) = batch.next_token_chooser(
            batch.all_input_ids_tensor[:, : batch.max_seqlen],
            next_token_logits,
Nicolas Patry's avatar
Nicolas Patry committed
1623
            speculate,
OlivierDehaene's avatar
OlivierDehaene committed
1624
1625
            batch.speculative_ids,
            speculative_logits,
1626
1627
        )

Nicolas Patry's avatar
Nicolas Patry committed
1628
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
Nicolas Patry's avatar
Nicolas Patry committed
1629
            batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs, accepted_ids
Nicolas Patry's avatar
Nicolas Patry committed
1630
1631
        )

1632
        if prefill:
1633
            if len(batch) > 1 and prefill_logprobs:
1634
1635
                # We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
                # When batch == 1, we will just use the batch.input_ids values directly
1636
                prefill_tokens_indices = batch.input_ids.new_zeros(len(out))
1637
1638

            next_position_ids = batch.position_ids.new_empty(len(batch))
1639
1640
1641
            batch.slot_indices = batch.slot_indices[batch.cu_seqlen_prefill[1:] - 1]
            # We do not need cu_seqlen_prefill anymore
            batch.cu_seqlen_prefill = None
1642
1643
1644
1645
        else:
            prefill_logprobs = None
            next_position_ids = batch.position_ids

1646
1647
1648
1649
1650
        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []
1651
        stopped = True
1652
1653

        # Zipped iterator
OlivierDehaene's avatar
OlivierDehaene committed
1654
        iterator = zip(batch.input_lengths, batch.all_input_ids, accepted_ids)
1655

1656
1657
1658
1659
        # We do two for loops as the first one can run completely asynchronously from the GPU while for the second
        # one, we need to first do a GPU <-> CPU sync
        # It is faster if we delay this sync for the maximum amount of time

1660
        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
1661
        index = 0
OlivierDehaene's avatar
OlivierDehaene committed
1662
        for i, (input_length, all_input_ids, n_accepted_ids) in enumerate(iterator):
1663
            # Indexing metadata
1664
1665
1666
            start_index = cumulative_length
            end_index = cumulative_length + input_length

1667
            if prefill:
1668
1669
1670
1671
1672
                # Indexing metadata
                out_start_index = batch.prefill_cu_outlens[i]
                out_end_index = batch.prefill_cu_outlens[i + 1]
                out_length = out_end_index - out_start_index

1673
1674
1675
1676
                # Initialize position_ids
                # In decode, we do not need this as we can just increment position ids
                next_position_ids[i] = batch.position_ids[end_index - 1]

drbh's avatar
drbh committed
1677
1678
1679
1680
1681
1682
                # Initialize adapter indices
                # In decode, we only have one token per row in the batch, so grab last index
                next_adapter_indices[i] = batch.adapter_meta.adapter_indices[
                    end_index - 1
                ]

1683
1684
                # Used to gather prefill logprobs
                # Copy batch.input_ids to prefill_token_indices
1685
1686
                if prefill_logprobs:
                    if len(batch) > 1:
drbh's avatar
drbh committed
1687
1688
1689
                        prefill_tokens_indices[out_start_index : out_end_index - 1] = (
                            batch.input_ids[start_index + 1 : start_index + out_length]
                        )
1690
1691
1692
1693
1694
                    else:
                        # Set prefill_tokens_indices to the correct slice
                        prefill_tokens_indices = batch.input_ids[
                            start_index + 1 : start_index + out_length
                        ]
1695

Nicolas Patry's avatar
Nicolas Patry committed
1696
1697
1698
            for j in range(n_accepted_ids):
                batch.all_input_ids_tensor[i, input_length + j] = next_input_ids[index]
                index += 1
1699
1700
1701

            cumulative_length += input_length

drbh's avatar
drbh committed
1702
        # Update values
Nicolas Patry's avatar
Nicolas Patry committed
1703
1704
1705
1706
1707
        batch.input_ids = next_input_ids[accepted_ids.cumsum(dim=-1) - 1]
        batch.speculative_ids = speculative_ids
        batch.position_ids = next_position_ids + accepted_ids
        batch.input_lengths_tensor += accepted_ids
        batch.slot_indices += accepted_ids
drbh's avatar
drbh committed
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
        batch.adapter_meta.adapter_indices = next_adapter_indices

        if prefill:
            # adjust segment lengths to account for all request lengths being 1 during decoding
            adapter_segments, _ = find_segments(batch.adapter_meta.adapter_indices)
            batch.adapter_meta.adapter_segments = torch.tensor(
                adapter_segments,
                dtype=torch.int32,
                device=batch.adapter_meta.adapter_segments.device,
            )
1718

1719
        if prefill and prefill_logprobs:
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
            # Get prefill logprobs
            prefill_logprobs_tensor = torch.log_softmax(out, -1)
            prefill_logprobs = torch.gather(
                prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
            )
            # GPU <-> CPU sync
            prefill_logprobs = prefill_logprobs.view(-1).tolist()

        # GPU <-> CPU sync
        next_token_logprobs = next_token_logprobs.tolist()
Nicolas Patry's avatar
Nicolas Patry committed
1730
        next_token_ids = next_input_ids.tolist()
1731
1732
        accepted_ids = accepted_ids.tolist()
        start_decode = time.time_ns()
1733
1734
1735
1736
1737

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
1738
1739
            batch.prefix_offsets,
            batch.read_offsets,
1740
1741
            batch.stopping_criterias,
            batch.all_input_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1742
            batch.prefix_ids,
1743
1744
            batch.next_token_chooser.do_sample,
            batch.next_token_chooser.seeds,
Nicolas Patry's avatar
Nicolas Patry committed
1745
            batch.top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1746
            accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1747
1748
            batch_top_token_ids,
            batch_top_token_logprobs,
1749
1750
1751
        )

        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
1752
        index = 0
1753
1754
1755
        for i, (
            request,
            input_length,
1756
1757
            prefix_offset,
            read_offset,
1758
1759
            stopping_criteria,
            all_input_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1760
            prefix_ids,
1761
1762
            do_sample,
            seed,
Nicolas Patry's avatar
Nicolas Patry committed
1763
            top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1764
            n_accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1765
1766
            top_token_ids,
            top_token_logprobs,
1767
        ) in enumerate(iterator):
1768
            # Append next token to all tokens
Nicolas Patry's avatar
Nicolas Patry committed
1769
1770
1771
            next_token_texts = []
            left = 0

1772
            if n_accepted_ids > 1:
1773
                log_master(logger.debug, f"speculated ids {n_accepted_ids - 1}")
1774

Nicolas Patry's avatar
Nicolas Patry committed
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
            current_stopped = False
            for j in range(index, index + n_accepted_ids):
                # Generated token
                next_token_id = next_token_ids[j]
                all_input_ids.append(next_token_id)
                next_token_text, prefix_offset, read_offset = self.decode_token(
                    all_input_ids,
                    prefix_offset,
                    read_offset,
                )
                next_token_texts.append(next_token_text)
1786

Nicolas Patry's avatar
Nicolas Patry committed
1787
1788
1789
1790
                stop, reason = stopping_criteria(
                    next_token_id,
                    next_token_text,
                )
1791

Nicolas Patry's avatar
Nicolas Patry committed
1792
1793
1794
1795
1796
1797
1798
                if stop:
                    left = index + n_accepted_ids - j - 1
                    current_stopped = True
                    break
                else:
                    current_stopped = False
            stopped = stopped and current_stopped
1799

OlivierDehaene's avatar
OlivierDehaene committed
1800
1801
1802
1803
            _next_token_ids = next_token_ids[index : index + n_accepted_ids - left]
            _next_token_logprobs = next_token_logprobs[
                index : index + n_accepted_ids - left
            ]
Nicolas Patry's avatar
Nicolas Patry committed
1804
            index += n_accepted_ids
1805

1806
1807
1808
1809
1810
            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
1811
1812
                    output_text, _, _ = self.decode_token(
                        all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1813
1814
1815
1816
1817
1818
                        prefix_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens
                        - 1,
                        read_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens,
                        skip_special_tokens=True,
1819
1820
                    )
                    generated_text = GeneratedText(
1821
1822
1823
1824
                        output_text,
                        stopping_criteria.current_tokens,
                        reason,
                        seed if do_sample else None,
1825
1826
1827
1828
1829
                    )
                else:
                    generated_text = None

                # Prefill
1830
1831
1832
1833
                if prefill and request.prefill_logprobs:
                    out_start_index = batch.prefill_cu_outlens[i]
                    out_end_index = batch.prefill_cu_outlens[i + 1]

1834
                    # Remove generated token to only have prefill and add nan for first prompt token
Nicolas Patry's avatar
Nicolas Patry committed
1835
1836
1837
                    request_prefill_logprobs = (
                        [float("nan")] * (len(prefix_ids) + 1)
                    ) + prefill_logprobs[out_start_index : out_end_index - 1]
1838
1839
                    prefill_token_ids = all_input_ids[:-1]
                    prefill_texts = self.tokenizer.batch_decode(
Nicolas Patry's avatar
Nicolas Patry committed
1840
                        prefix_ids + prefill_token_ids,
1841
1842
1843
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1844
1845

                    prefill_tokens = Tokens(
Nicolas Patry's avatar
Nicolas Patry committed
1846
                        prefix_ids + prefill_token_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1847
1848
1849
                        request_prefill_logprobs,
                        prefill_texts,
                        is_special=[],
1850
1851
1852
1853
                    )
                else:
                    prefill_tokens = None

Nicolas Patry's avatar
Nicolas Patry committed
1854
                if top_n_tokens > 0:
Nicolas Patry's avatar
Nicolas Patry committed
1855
                    all_top_tokens = []
drbh's avatar
drbh committed
1856
                    for top_token_ids, top_token_logprobs in zip(
1857
1858
                        top_token_ids, top_token_logprobs
                    ):
Nicolas Patry's avatar
Nicolas Patry committed
1859
1860
1861
1862
1863
1864
                        toptoken_texts = self.tokenizer.batch_decode(
                            top_token_ids,
                            clean_up_tokenization_spaces=False,
                            skip_special_tokens=False,
                        )
                        special_toptokens = [
1865
1866
                            token_id in self.all_special_ids
                            for token_id in top_token_ids
Nicolas Patry's avatar
Nicolas Patry committed
1867
1868
1869
1870
1871
1872
1873
1874
1875
                        ]
                        top_tokens = Tokens(
                            top_token_ids,
                            top_token_logprobs,
                            toptoken_texts,
                            special_toptokens,
                        )
                        all_top_tokens.append(top_tokens)
                    top_tokens = all_top_tokens
Nicolas Patry's avatar
Nicolas Patry committed
1876
1877
1878
                else:
                    top_tokens = None

1879
1880
1881
                generation = Generation(
                    request.id,
                    prefill_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1882
1883
1884
1885
1886
1887
                    Tokens(
                        _next_token_ids,
                        _next_token_logprobs,
                        next_token_texts,
                        [nid in self.all_special_ids for nid in _next_token_ids],
                    ),
1888
                    generated_text,
Nicolas Patry's avatar
Nicolas Patry committed
1889
                    top_tokens,
1890
1891
                )

1892
                generations.append(generation)
1893

drbh's avatar
drbh committed
1894
1895
1896
            # accept each new token for this specific request since we may
            # have more than one new token per request with speculative decoding
            for next_token_id in _next_token_ids:
OlivierDehaene's avatar
OlivierDehaene committed
1897
1898
1899
                batch.next_token_chooser = (
                    batch.next_token_chooser.advance_grammar_single(i, next_token_id)
                )
drbh's avatar
drbh committed
1900

1901
            # Update values
1902
            batch.input_lengths[i] = input_length + n_accepted_ids
Nicolas Patry's avatar
Nicolas Patry committed
1903
1904
            if batch.input_lengths[i] > batch.max_seqlen:
                batch.max_seqlen = batch.input_lengths[i]
1905
1906
            batch.prefix_offsets[i] = prefix_offset
            batch.read_offsets[i] = read_offset
1907
1908
            batch.all_input_ids[i] = all_input_ids

1909
1910
        if stopped:
            # No need to return a batch if we know that all requests stopped
1911
1912
1913
            forward_ns = start_decode - start
            decode_ns = time.time_ns() - start_decode
            return generations, None, (forward_ns, decode_ns)
1914

1915
1916
1917
        batch.prefill_cu_outlens = None
        batch.prefill_head_indices = None
        batch.prefill_next_token_indices = None
1918

1919
1920
1921
        forward_ns = start_decode - start
        decode_ns = time.time_ns() - start_decode
        return generations, batch, (forward_ns, decode_ns)
1922
1923
1924
1925
1926
1927

    def _forward_context(
        self,
        *,
        block_tables: torch.Tensor,
        cu_seqlen_prefill: Optional[torch.Tensor],
Nicolas Patry's avatar
Nicolas Patry committed
1928
1929
        input_lengths_tensor: torch.Tensor,
        prefix_lens_tensor: torch.Tensor,
1930
1931
        state: Optional[Any] = None,
    ) -> ContextManager:
1932
        if ATTENTION != "flashinfer":
1933
1934
            return nullcontext()

Nicolas Patry's avatar
Nicolas Patry committed
1935
        from text_generation_server.layers.attention.flashinfer import (
1936
            use_decode_state,
Nicolas Patry's avatar
Nicolas Patry committed
1937
            use_prefill_with_paged_kv_state,
1938
1939
        )

Nicolas Patry's avatar
Nicolas Patry committed
1940
1941
        # has_prefix_lens = any(prefix_len > 0 for prefix_len in prefix_lens)

1942
        if cu_seqlen_prefill is not None:
Nicolas Patry's avatar
Nicolas Patry committed
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
            return use_prefill_with_paged_kv_state(
                state=(
                    state if state is not None else self.prefill_with_paged_kv_state
                ),
                # block_tables=block_tables_to_ragged(
                #     block_tables=block_tables,
                #     input_lengths=input_lengths,
                #     prefix_lens=prefix_lens,
                # ),
                block_tables=block_tables,
1953
                cu_seqlens=cu_seqlen_prefill,
1954
                input_lengths=input_lengths_tensor + prefix_lens_tensor,
1955
1956
1957
                num_heads=self.num_heads,
                num_kv_heads=self.num_kv_heads,
                head_size=self.head_size,
Nicolas Patry's avatar
Nicolas Patry committed
1958
                page_size=BLOCK_SIZE,
1959
1960
            )
        else:
Nicolas Patry's avatar
Nicolas Patry committed
1961
            assert input_lengths_tensor is not None
1962
1963
            return use_decode_state(
                state=state if state is not None else self.decode_state,
1964
                input_lengths=input_lengths_tensor + prefix_lens_tensor,
Nicolas Patry's avatar
Nicolas Patry committed
1965
                block_tables=block_tables,
1966
1967
1968
1969
1970
                num_heads=self.num_heads,
                num_kv_heads=self.num_kv_heads,
                head_size=self.head_size,
                page_size=BLOCK_SIZE,
            )
Nicolas Patry's avatar
Nicolas Patry committed
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990


def block_tables_to_ragged(
    *, block_tables: torch.Tensor, input_lengths: List[int], prefix_lens: List[int]
) -> torch.Tensor:
    """Convert block table to ragged format compatible with FlashInfer."""
    assert len(input_lengths) == len(prefix_lens)

    total_len = sum(input_lengths) + sum(prefix_lens)
    block_tables_ragged = torch.empty(
        total_len, dtype=torch.int32, device=block_tables.device
    )

    offset = 0
    for i, (input_length, prefix_len) in enumerate(zip(input_lengths, prefix_lens)):
        seq_len = prefix_len + input_length
        block_tables_ragged[offset : offset + seq_len] = block_tables[i][:seq_len]
        offset += seq_len

    return block_tables_ragged