flash_causal_lm.py 18.5 KB
Newer Older
1
2
3
4
5
6
7
8
import torch
import torch.distributed

from torch.nn import functional as F

from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
9
from typing import Optional, Tuple, List, Type, Union, Dict
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

from text_generation_server.models import Model
from text_generation_server.models.types import (
    Batch,
    PrefillTokens,
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
    NextTokenChooser,
    StoppingCriteria,
    Sampling,
)

tracer = trace.get_tracer(__name__)


@dataclass
class FlashCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
32
33
    # request id -> idx in list mapping
    requests_idx_mapping: Dict[int, int]
34
35

    # Decoder values
36
37
    input_ids: List[torch.Tensor]
    position_ids: List[torch.Tensor]
38
    # cumulative sequence lengths
39
    cu_seqlens: List[int]
40
    max_seqlen: int
41
    past_key_values: Optional[Union[torch.Tensor, List[torch.Tensor]]]
42
43
44
45
46
47
48

    # All tokens
    all_input_ids: List[List[int]]
    all_input_ids_tensor: List[torch.Tensor]

    # Lengths of all generations present in the batch
    input_lengths: List[int]
49
50
    offsets: List[Optional[int]]
    token_offsets: List[Optional[int]]
51
52
53
54
55

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

56
57
58
    # Constant shared tensor, ref here just so that it's accessible in concatentate()
    past_pad: Optional[torch.Tensor]

59
60
61
62
63
64
65
66
67
68
69
    def to_pb(self) -> generate_pb2.Batch:
        return generate_pb2.Batch(
            id=self.batch_id, requests=self.requests, size=len(self)
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
70
    ) -> "FlashCausalLMBatch":
71
72
73
74
75
76
        input_ids = []
        position_ids = []
        cu_seqlens = [0]
        max_seqlen = 0

        input_lengths = []
77
78
        offsets = []
        token_offsets = []
79
80
        all_input_ids = []
        all_input_ids_tensor = []
81
        requests_idx_mapping = {}
82
83
84
85
86
87
88
89

        next_token_choosers = []
        stopping_criterias = []

        # Cumulative length
        cumulative_length = 0

        # Parse batch
90
91
92
93
        for i, r in enumerate(pb.requests):
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

94
95
96
            tokenized_input = tokenizer(
                r.inputs, truncation=True, max_length=r.truncate
            )["input_ids"]
97

98
99
100
            input_length = len(tokenized_input)
            max_seqlen = max(max_seqlen, input_length)
            input_lengths.append(input_length)
101

102
103
            offsets.append(None)
            token_offsets.append(None)
104
105
106
107
108
109
            all_input_ids.append(tokenized_input)

            tokenized_input = torch.tensor(tokenized_input, device=device)
            input_ids.append(tokenized_input)

            # Position ids
110
111
112
            position_ids.append(
                torch.arange(0, input_length, dtype=torch.int32, device=device)
            )
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

            # Add cumulative lengths of all previous inputs
            cu_seqlens.append(cumulative_length + input_length)

            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            all_input_ids_tensor.append(
                F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
            )

            # Update
            cumulative_length += input_length

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
132
            requests_idx_mapping=requests_idx_mapping,
133
134
135
136
137
138
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=None,
            input_lengths=input_lengths,
139
140
            offsets=offsets,
            token_offsets=token_offsets,
141
142
143
144
145
146
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
        )

147
148
149
150
151
152
153
154
    @tracer.start_as_current_span("filter")
    def filter(self, requests: List[generate_pb2.Request]) -> "FlashCausalLMBatch":
        if len(requests) == 0:
            raise ValueError("Batch must have at least one request")
        # We assume that if len(requests) == len(self) then the requests are the same
        if len(requests) == len(self):
            return self

155
156
        single_request = len(requests) == 1

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        # Cumulative length
        cumulative_length = 0

        # New values after filtering
        requests_idx_mapping = {}

        input_ids = []
        position_ids = []
        cu_seqlens = [0]
        max_seqlen = 0
        past_key_values = []

        all_input_ids = []
        all_input_ids_tensor = []

172
        input_lengths = []
173
174
        offsets = []
        token_offsets = []
175

176
177
178
        next_token_choosers = []
        stopping_criterias = []

179
180
181
182
183
184
185
186
187
188
189
        for i, r in enumerate(requests):
            idx = self.requests_idx_mapping[r.id]
            requests_idx_mapping[r.id] = i

            # Get length
            request_input_length = self.input_lengths[idx]

            input_ids.append(self.input_ids[idx])
            position_ids.append(self.position_ids[idx])
            cu_seqlens.append(cumulative_length + request_input_length)
            max_seqlen = max(max_seqlen, request_input_length)
190
191
192
            if not single_request:
                past_key_values.append(self.past_key_values[2 * idx])
                past_key_values.append(self.past_key_values[1])
193
194
195
196
197
198
199
200
201
202
203
204
205

            all_input_ids.append(self.all_input_ids[idx])
            all_input_ids_tensor.append(self.all_input_ids_tensor[idx])

            input_lengths.append(request_input_length)
            offsets.append(self.offsets[idx])
            token_offsets.append(self.token_offsets[idx])

            next_token_choosers.append(self.next_token_choosers[idx])
            stopping_criterias.append(self.stopping_criterias[idx])

            cumulative_length += request_input_length

206
207
208
209
210
211
212
        if single_request:
            # Preallocate tensor for bs = 1 case
            past_key_values = torch.nn.functional.pad(
                self.past_key_values[0],
                (0, 0, 0, 0, 0, 0, 0, stopping_criterias[0].max_new_tokens - stopping_criterias[0].current_tokens)
            )

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        return FlashCausalLMBatch(
            batch_id=self.batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            offsets=offsets,
            token_offsets=token_offsets,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
        # Batch attributes
        requests = []
        requests_idx_mapping = {}

238
239
        input_ids = []
        position_ids = []
240
        cu_seqlens = [0]
241
242
243
        max_seqlen = 0
        past_key_values = []

244
245
246
247
248
249
250
251
252
253
        all_input_ids = []
        all_input_ids_tensor = []

        input_lengths = []
        offsets = []
        token_offsets = []

        next_token_choosers = []
        stopping_criterias = []

254
        # Cumulative length
255
256
        cumulative_batch_size = 0
        cumulative_length = 0
257
258
259

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
260
261
262
263
264
265
266
267
268
269
270
271
272

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + cumulative_batch_size

            input_ids.extend(batch.input_ids)
            position_ids.extend(batch.position_ids)
            # Add cumulative lengths of all previous inputs
            cu_seqlens.extend([l + cumulative_length for l in batch.cu_seqlens[1:]])
            max_seqlen = max(max_seqlen, batch.max_seqlen)
273
274
275
276
277
            if len(batch) != 1:
                past_key_values.extend(batch.past_key_values)
            else:
                past_key_values.append(batch.past_key_values[:, :batch.input_lengths[0]])
                past_key_values.append(batch.past_pad)
278
279
280
281

            all_input_ids.extend(batch.all_input_ids)
            all_input_ids_tensor.extend(batch.all_input_ids_tensor)

282
            input_lengths.extend(batch.input_lengths)
283
284
            offsets.extend(batch.offsets)
            token_offsets.extend(batch.token_offsets)
285

286
287
288
289
290
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Update
            cumulative_length += batch.cu_seqlens[-1]
291
            cumulative_batch_size += len(batch)
292
293
294
295

        return FlashCausalLMBatch(
            batch_id=batches[0].batch_id,
            requests=requests,
296
            requests_idx_mapping=requests_idx_mapping,
297
298
299
300
301
302
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
303
304
            offsets=offsets,
            token_offsets=token_offsets,
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
        )

    def __len__(self):
        return len(self.requests)


class FlashCausalLM(Model):
    def __init__(
        self,
        model_cls: Type[PreTrainedModel],
        model_id: str,
        revision: Optional[str] = None,
321
322
        quantize: bool = False,
        decode_buffer: int = 3,
323
    ):
324
        self.past_pad = None
325
326
327
328
329
330
331
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
        else:
            raise NotImplementedError("FlashCausalLM is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
332
            model_id, revision=revision, padding_side="left", truncation_side="left"
333
334
335
336
337
338
        )
        self.model = (
            model_cls.from_pretrained(
                model_id,
                revision=revision,
                torch_dtype=dtype,
339
                load_in_8bit=quantize,
340
341
            )
            .eval()
342
            .to(device)
343
344
345
        )

        super(FlashCausalLM, self).__init__(
346
            tokenizer=tokenizer, device=device, decode_buffer=decode_buffer
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        )

    @property
    def batch_type(self) -> Type[FlashCausalLMBatch]:
        return FlashCausalLMBatch

    def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
        return self.tokenizer.decode(
            generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
        )

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_s: int,
        past_key_values: Optional = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Model Forward
        return self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_s=max_s,
            past_key_values=past_key_values,
        )

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashCausalLMBatch
    ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
379
380
        # Shortcut when batch_size == 1
        if len(batch) == 1:
381
382
            # No need to slice this down
            past_key_values = batch.past_key_values
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
        else:
            # Concatenate tensors
            input_ids = torch.cat(batch.input_ids).view(-1)
            past_key_values = (
                torch.cat(batch.past_key_values, dim=1)
                if batch.past_key_values is not None
                else None
            )

        # Concatenate when prefill, torch.tensor when decode
        position_ids = (
            torch.tensor(batch.position_ids, device=self.device)
            if batch.past_key_values is not None
            else torch.cat(batch.position_ids)
        )
        cu_seqlens = torch.tensor(
            batch.cu_seqlens, device=self.device, dtype=torch.int32
        )
401
402

        out, present = self.forward(
403
            input_ids,
404
405
406
            position_ids,
            cu_seqlens,
            batch.max_seqlen,
407
            past_key_values,
408
409
        )

410
411
        # Initialize past_key_values in prefill
        if batch.past_key_values is None:
412
413
414
415
416
417
418
419
420
421
422
423
            # Initialize past padding tensor
            if self.past_pad is None:
                self.past_pad = present.new_zeros(present.shape[0], 1, *present.shape[2:])
            # Set in batch in case it needs to be used later in concatenate()
            batch.past_pad = self.past_pad
            if len(batch) == 1:
                # Preallocate tensor for bs = 1 case
                batch.past_key_values = torch.nn.functional.pad(
                    present, (0, 0, 0, 0, 0, 0, 0, batch.stopping_criterias[0].max_new_tokens)
                )
            else:
                batch.past_key_values = [None, self.past_pad] * len(batch)
424
425
426
427
428
429

        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []
430
        stopped = True
431
432
433
434
435

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
436
437
            batch.offsets,
            batch.token_offsets,
438
439
440
441
442
443
444
445
446
447
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
            batch.all_input_ids_tensor,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
448
449
            offset,
            token_offset,
450
451
452
453
454
455
456
457
458
            next_token_chooser,
            stopping_criteria,
            all_input_ids,
            all_input_ids_tensor,
        ) in enumerate(iterator):
            # Indexing metadata
            start_index = cumulative_length
            end_index = cumulative_length + input_length

459
460
            prefill = stopping_criteria.current_tokens == 0
            if prefill:
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
                # Prefill mode
                # out is of shape [cumulative_sequence_lengths, vocab_size]
                logits = out[start_index:end_index]
            else:
                # Decode mode
                # out is of shape [batch_size, vocab_size]
                logits = out[i].unsqueeze(0)

            # Select next token
            next_token_id, logprobs = next_token_chooser(
                all_input_ids_tensor[None, :input_length], logits
            )
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_id_item = next_token_id_squeezed.item()

            # Append next token to all tokens
            all_input_ids.append(next_token_id_item)
            all_input_ids_tensor[input_length] = next_token_id_item

            # Generated token
            next_token_logprob = logprobs[-1, next_token_id_item]
482
483
484
485
            next_token_text, offset, token_offset = self.decode_token(
                all_input_ids,
                offset,
                token_offset,
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(
                next_token_id_item,
                next_token_text,
            )

            if stop:
                # Decode generated tokens
                output_text = self.decode(
                    all_input_ids[-stopping_criteria.current_tokens :]
                )
                # Get seed
                if isinstance(next_token_chooser.choice, Sampling):
                    seed = next_token_chooser.choice.seed
                else:
                    seed = None

                generated_text = GeneratedText(
                    output_text, stopping_criteria.current_tokens, reason, seed
                )
            else:
509
                stopped = False
510
511
512
                generated_text = None

            # Prefill
513
            if prefill:
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
                # Remove generated token to only have prefill and add nan for first prompt token
                prefill_logprobs = [float("nan")] + logprobs.gather(
                    1, all_input_ids_tensor[1:input_length].unsqueeze(1)
                ).squeeze(1)[:-1].tolist()
                prefill_token_ids = all_input_ids[:-1]
                prefill_texts = self.tokenizer.batch_decode(
                    prefill_token_ids,
                    clean_up_tokenization_spaces=False,
                    skip_special_tokens=False,
                )
                prefill_tokens = PrefillTokens(
                    prefill_token_ids, prefill_logprobs, prefill_texts
                )
            else:
                prefill_tokens = None

            generation = Generation(
                request.id,
                prefill_tokens,
                next_token_id_item,
                next_token_logprob,
                next_token_text,
                next_token_id_item in self.all_special_ids,
                generated_text,
            )

            generations.append(generation)
            cumulative_length += input_length
542
            new_input_length = input_length + 1
543

544
545
546
547
548
549
550
551
552
            # Update values
            batch.input_ids[i] = next_token_id
            batch.position_ids[i] = input_length
            batch.input_lengths[i] = new_input_length
            batch.offsets[i] = offset
            batch.token_offsets[i] = token_offset
            batch.all_input_ids[i] = all_input_ids
            batch.all_input_ids_tensor[i] = all_input_ids_tensor
            batch.max_seqlen = max(batch.max_seqlen, new_input_length)
553
554
            if len(batch) != 1:
                batch.past_key_values[i * 2] = present[:, start_index:end_index]
555
556
557
558
559
            # Cumulative sum
            batch.cu_seqlens[(i + 1)] = batch.cu_seqlens[i] + new_input_length

        # No need to return a batch if we know that all requests stopped
        return generations, batch if not stopped else None