flash_causal_lm.py 65.2 KB
Newer Older
1
import math
2
import os
3
import time
4
import itertools
5
6
7
import torch
import torch.distributed

8
9
import numpy as np

10
from loguru import logger
11
12
from dataclasses import dataclass
from opentelemetry import trace
13
14
15
16
17
18
from transformers import (
    PreTrainedTokenizerBase,
    AutoConfig,
    AutoTokenizer,
    GenerationConfig,
)
Daniël de Kok's avatar
Daniël de Kok committed
19
from typing import Iterable, Optional, Tuple, List, Type, Dict
fxmarty's avatar
fxmarty committed
20

drbh's avatar
drbh committed
21
from text_generation_server.adapters import AdapterBatchData, AdapterBatchMetadata
fxmarty's avatar
fxmarty committed
22
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
Daniël de Kok's avatar
Daniël de Kok committed
23
from text_generation_server.utils.chunks import concat_text_chunks
Nicolas Patry's avatar
Nicolas Patry committed
24
from text_generation_server.utils.import_utils import SYSTEM
OlivierDehaene's avatar
OlivierDehaene committed
25
from text_generation_server.models import Model
26
from text_generation_server.utils.tokens import batch_top_tokens
27
from text_generation_server.utils.dist import RANK
Nicolas Patry's avatar
Nicolas Patry committed
28
from text_generation_server.utils.speculate import get_speculate
29
30
31
32
33
34
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
    hub,
)
35
36
from text_generation_server.models.types import (
    Batch,
Nicolas Patry's avatar
Nicolas Patry committed
37
    Tokens,
38
39
40
41
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
Nicolas Patry's avatar
Nicolas Patry committed
42
43
from text_generation_server.models.globals import (
    MEM_POOL,
44
45
    FLASH_DECODING,
    BLOCK_SIZE,
Nicolas Patry's avatar
Nicolas Patry committed
46
47
48
49
    CUDA_GRAPHS,
    get_adapter_to_index,
    MODEL_ID,
)
50
from text_generation_server.layers.attention import Seqlen
51
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
52
from text_generation_server.utils.dist import MEMORY_FRACTION
53
from text_generation_server.utils.quantization import get_loader
drbh's avatar
drbh committed
54
from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments
55

Nicolas Patry's avatar
Nicolas Patry committed
56
from text_generation_server.utils.import_utils import (
Nicolas Patry's avatar
Nicolas Patry committed
57
58
59
    empty_cache,
    synchronize,
    get_free_memory,
Nicolas Patry's avatar
Nicolas Patry committed
60
61
)

Nicolas Patry's avatar
Nicolas Patry committed
62
63
tracer = trace.get_tracer(__name__)

64
65
66
67
68
69
70
71
72
73
74
75
76
77

# Will be set in init
SLIDING_WINDOW: Optional[int] = None


def set_sliding_window(sliding_window: int):
    global SLIDING_WINDOW
    SLIDING_WINDOW = sliding_window


def get_sliding_windows() -> int:
    global SLIDING_WINDOW
    return SLIDING_WINDOW

78

79
80
81
82
@dataclass
class FlashCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
83
84
    # request id -> idx in list mapping
    requests_idx_mapping: Dict[int, int]
85
86

    # Decoder values
87
88
    input_ids: torch.Tensor
    position_ids: torch.Tensor
89
    speculative_ids: Optional[torch.Tensor]
90

91
92
93
94
    # Flash Attention values

    # tensor of length b containing the cumulative sequence lengths of the sequences in the batch, only used in prefill
    cu_seqlen_prefill: Optional[torch.Tensor]
95
96
97
    # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers
    # as we only keep SLIDING_WINDOW values instead of the whole tensor
    prefill_cache_indices: Optional[torch.Tensor]
98
99
100
101
102
103
104
105
106
107

    # Paged Attention values

    # Set when creating the batch
    # CPU tensor of length b indicating the start of each sequence in slots
    start_slots: torch.Tensor
    # tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode
    slot_indices: torch.Tensor

    # list of length b of list of length s_i // block_size
108
    block_tables: List[List[int]]
109
    # tensor of size [b, max_total_seqlen // block_size] holding the paged attention block tables for all sequences
110
    block_tables_tensor: torch.Tensor
111
    # tensor of length \sum_{i=0}^{b} max_s_i  holding the paged attention slots for all sequences
112
    slots: torch.Tensor
113

114
115
    max_seqlen: int

116
117
118
119
120
    # Prefill metadata tensors to efficiently compute logprobs
    prefill_head_indices: Optional[torch.Tensor]
    prefill_next_token_indices: Optional[torch.tensor]
    prefill_cu_outlens: Optional[List[int]]

121
122
    # All tokens
    all_input_ids: List[List[int]]
123
    all_input_ids_tensor: torch.Tensor
124
125
126

    # Lengths of all generations present in the batch
    input_lengths: List[int]
127
    input_lengths_tensor: torch.Tensor
128
129
    prefix_offsets: List[Optional[int]]
    read_offsets: List[Optional[int]]
130
131

    # Generation helpers
132
    next_token_chooser: HeterogeneousNextTokenChooser
133
    stopping_criterias: List[StoppingCriteria]
Nicolas Patry's avatar
Nicolas Patry committed
134
135
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor
136

drbh's avatar
drbh committed
137
138
139
    # Adapter metadata for each request
    adapter_meta: AdapterBatchMetadata

140
    # Number of blocks in this batch
141
    num_blocks: int
142
143
    # Maximum number of blocks
    max_blocks: int
144

145
146
    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
147
            id=self.batch_id,
148
            request_ids=[r.id for r in self.requests],
149
            size=len(self),
150
            max_tokens=self.num_blocks * BLOCK_SIZE,
151
152
153
        )

    @classmethod
Daniël de Kok's avatar
Daniël de Kok committed
154
155
156
    def batch_tokenized_inputs(
        cls, requests: Iterable[generate_pb2.Request], tokenizer
    ):
157
158
        batch_inputs = []
        max_truncation = 0
159
        for r in requests:
Daniël de Kok's avatar
Daniël de Kok committed
160
            batch_inputs.append(concat_text_chunks(r.input_chunks.chunks))
161
162
163
164
165
            max_truncation = max(max_truncation, r.truncate)

        batch_tokenized_inputs = tokenizer(
            batch_inputs, truncation=True, max_length=max_truncation
        )["input_ids"]
166
        return batch_tokenized_inputs
167

drbh's avatar
drbh committed
168
169
170
171
172
173
174
175
176
    @classmethod
    def from_tokenized(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        batch_tokenized_inputs,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
177
        sliding_window = get_sliding_windows()
178
        position_ids = []
179
        cu_seqlen_prefill = [0]
180
181
        start_slots = []
        slot_indices = []
182
        prefill_cache_indices = []
183
184

        input_lengths = []
185
186
        prefix_offsets = []
        read_offsets = []
187
        all_input_ids = []
188
        requests_idx_mapping = {}
189

190
191
192
193
194
195
        all_prefill_logprobs = True
        no_prefill_logprobs = True
        prefill_head_indices = []
        prefill_next_token_indices = []
        prefill_cu_outlens = [0]

196
        next_token_chooser_parameters = []
197
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
198
        top_n_tokens = []
199

drbh's avatar
drbh committed
200
201
202
        adapter_indices_list = []
        adapter_set = set()

203
204
        # Cumulative length
        cumulative_length = 0
205
        cumulative_max_length = 0
206
        prefill_out_cumulative_length = 0
207

208
        num_blocks = 0
209
        max_seqlen = 0
210
        max_length = 0
211
        max_blocks = 0
212

213
214
215
        block_tables = []
        slots = []

216
        # Parse batch
217
218
219
        for i, (r, tokenized_input) in enumerate(
            zip(pb.requests, batch_tokenized_inputs)
        ):
220
221
222
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

223
            tokenized_input = tokenized_input[-r.truncate :]
224
225
226
227
228
            if (
                tokenized_input[0] == tokenizer.bos_token_id
                and tokenized_input[1] == tokenizer.bos_token_id
            ):
                tokenized_input = tokenized_input[1:]
229

230
231
            input_length = len(tokenized_input)
            input_lengths.append(input_length)
232

233
            prefix_offsets.append(input_length - 5)
234
            read_offsets.append(input_length)
235

236
            all_input_ids.append(tokenized_input)
237
238

            # Position ids
239
240
            request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
            position_ids.append(request_position_ids)
241
242

            # Add cumulative lengths of all previous inputs
243
            cu_seqlen_prefill.append(cumulative_length + input_length)
244

245
            next_token_chooser_parameters.append(r.parameters)
246

247
248
249
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
250
            max_new_tokens = stopping_criteria.max_new_tokens
251
            stopping_criterias.append(stopping_criteria)
Nicolas Patry's avatar
Nicolas Patry committed
252
            top_n_tokens.append(r.top_n_tokens)
253

Nicolas Patry's avatar
Nicolas Patry committed
254
255
            ADAPTER_TO_INDEX = get_adapter_to_index()
            adapter_index = ADAPTER_TO_INDEX.get(r.adapter_id, 0)
drbh's avatar
drbh committed
256
257
258
            adapter_indices_list.append(torch.full((input_length,), adapter_index))
            adapter_set.add(adapter_index)

259
260
            # Paged attention
            # Remove one as the first token des not have a past
Nicolas Patry's avatar
Nicolas Patry committed
261
            speculative_length = get_speculate()
drbh's avatar
drbh committed
262
            speculative_length = 0 if speculative_length is None else speculative_length
Nicolas Patry's avatar
Nicolas Patry committed
263
            total_tokens = input_length + max_new_tokens - 1 + speculative_length
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

            # blocks and slots can be empty (for example in warmup)
            if not r.blocks:
                needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
                request_blocks = [
                    b for b in range(num_blocks, num_blocks + needed_blocks)
                ]
                request_slots = [
                    s
                    for b in request_blocks
                    for s in range(b * BLOCK_SIZE, (b + 1) * BLOCK_SIZE)
                ]
            else:
                request_blocks = r.blocks
                request_slots = r.slots

            block_tables.append(request_blocks)
            slots.extend(request_slots[:total_tokens])
            num_blocks += len(request_blocks)
283
284
285
286
287
288
289
290
291
            start_slots.append(cumulative_max_length)

            request_slot_indices = torch.arange(
                cumulative_max_length,
                cumulative_max_length + input_length,
                dtype=torch.int64,
            )
            slot_indices.append(request_slot_indices)

292
293
294
295
296
297
298
299
300
            # Create tensor to slice into the kv tensor in prefill
            if sliding_window is not None:
                request_prefill_cache_indices = torch.arange(
                    cumulative_length + max(0, input_length - sliding_window),
                    cumulative_length + input_length,
                    dtype=torch.int64,
                )
                prefill_cache_indices.append(request_prefill_cache_indices)

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
            all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
            no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs

            if r.prefill_logprobs:
                prefill_head_indices.append(request_position_ids + cumulative_length)
                prefill_next_token_indices.append(
                    prefill_out_cumulative_length + input_length - 1
                )
                prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
                prefill_out_cumulative_length += input_length
            else:
                prefill_head_indices.append(
                    torch.tensor(
                        [cumulative_length + input_length - 1], dtype=torch.int32
                    )
                )
                prefill_next_token_indices.append(prefill_out_cumulative_length)
                prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
                prefill_out_cumulative_length += 1

321
322
            # Update
            cumulative_length += input_length
323
324
            cumulative_max_length += total_tokens
            max_seqlen = max(max_seqlen, input_length)
325
            max_blocks = max(max_blocks, len(request_blocks))
OlivierDehaene's avatar
OlivierDehaene committed
326
327
328
            max_length = max(
                max_length, input_length + max_new_tokens + speculative_length
            )
329

drbh's avatar
drbh committed
330
331
332
333
        adapter_indices = torch.cat(adapter_indices_list).to(
            dtype=torch.int64, device=device
        )

334
        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
drbh's avatar
drbh committed
335
            next_token_chooser_parameters, dtype, device, tokenizer
336
        )
337
        start_slots = torch.tensor(start_slots, dtype=torch.int64)
338
339
340
341
342
343
344

        # Padded all_input_ids_tensor
        all_input_ids_tensor = np.zeros(
            (len(all_input_ids), max_length), dtype=np.int64
        )
        for i, input_ids in enumerate(all_input_ids):
            all_input_ids_tensor[i, : len(input_ids)] = input_ids
345

346
347
348
349
350
        # Create tensors on device
        all_input_ids_tensor = torch.tensor(
            all_input_ids_tensor, dtype=torch.int64, device=device
        )

351
352
353
        if len(pb.requests) > 1:
            input_ids = np.concatenate(all_input_ids, dtype=np.int64)
            position_ids = torch.cat(position_ids)
354
            slot_indices = torch.cat(slot_indices)
355
356
            if sliding_window is not None:
                prefill_cache_indices = torch.cat(prefill_cache_indices)
357
358
359
        else:
            input_ids = all_input_ids[0]
            position_ids = position_ids[0]
360
            slot_indices = slot_indices[0]
361
362
            if sliding_window is not None:
                prefill_cache_indices = prefill_cache_indices[0]
363

364
365
        cu_seqlen_prefill = torch.tensor(
            cu_seqlen_prefill, device=device, dtype=torch.int32
366
367
368
        )
        position_ids = position_ids.to(device)
        slot_indices = slot_indices.to(device)
369
370
371
        prefill_cache_indices = (
            prefill_cache_indices.to(device) if sliding_window is not None else None
        )
372
        input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
373
374
        input_lengths_tensor = torch.tensor(
            input_lengths, dtype=torch.int32, device=device
375
        )
376

drbh's avatar
drbh committed
377
378
379
380
381
        adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
        adapter_segments = torch.tensor(
            adapter_segments, dtype=torch.int32, device=device
        )

382
383
        if all_prefill_logprobs:
            prefill_head_indices = None
384
            prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
385
        elif no_prefill_logprobs:
386
            prefill_head_indices = cu_seqlen_prefill[1:] - 1
387
388
389
390
391
392
393
394
            prefill_next_token_indices = None
        else:
            prefill_head_indices = torch.tensor(
                torch.cat(prefill_head_indices), dtype=torch.int64, device=device
            )
            prefill_next_token_indices = torch.tensor(
                prefill_next_token_indices, dtype=torch.int64, device=device
            )
Nicolas Patry's avatar
Nicolas Patry committed
395
396
397
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )
398

399
400
401
402
403
404
405
406
        slots = torch.tensor(slots, dtype=torch.int64, device=device)
        block_tables_tensor = torch.zeros(
            (len(block_tables), max_blocks), dtype=torch.int32, device="cpu"
        )
        for i, request_blocks in enumerate(block_tables):
            block_tables_tensor[i, : len(request_blocks)] = torch.tensor(request_blocks)
        block_tables_tensor = block_tables_tensor.to(device)

407
408
409
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
410
            requests_idx_mapping=requests_idx_mapping,
411
412
            input_ids=input_ids,
            position_ids=position_ids,
413
            cu_seqlen_prefill=cu_seqlen_prefill,
414
            prefill_cache_indices=prefill_cache_indices,
415
416
            start_slots=start_slots,
            slot_indices=slot_indices,
417
418
419
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
420
            max_seqlen=max_seqlen,
421
422
423
            prefill_head_indices=prefill_head_indices,
            prefill_next_token_indices=prefill_next_token_indices,
            prefill_cu_outlens=prefill_cu_outlens,
424
            input_lengths=input_lengths,
425
            input_lengths_tensor=input_lengths_tensor,
426
427
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
428
            all_input_ids=all_input_ids,
429
430
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_chooser=next_token_chooser,
431
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
432
433
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
434
            num_blocks=num_blocks,
435
            max_blocks=max_blocks,
drbh's avatar
drbh committed
436
437
438
439
440
441
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
Nicolas Patry's avatar
Nicolas Patry committed
442
            speculative_ids=None,
443
444
        )

445
446
447
448
449
450
451
452
453
454
455
    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
        batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer)
        return cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)

456
    @tracer.start_as_current_span("filter")
457
458
    def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch":
        if len(request_ids) == 0:
459
460
            raise ValueError("Batch must have at least one request")
        # We assume that if len(requests) == len(self) then the requests are the same
461
        if len(request_ids) == len(self):
462
463
            return self

464
        device = self.input_ids.device
465

466
467
468
        # New values after filtering
        requests_idx_mapping = {}

469
470
471
        # Used to index into tensors
        indices = []

472
473
474
        # slots to keep after filtering
        slot_filtering_indices = torch.zeros(
            self.slots.shape[0], dtype=torch.bool, device=device
475
476
        )

477
        # Create on CPU to only move to GPU once instead of at every copy
478
        slot_indices = torch.empty(len(request_ids), dtype=torch.int64)
479
480
        max_seqlen = 0

481
        requests = []
482
483
        start_slots = []
        block_tables = []
484
485
        all_input_ids = []

486
        input_lengths = []
487
488
        prefix_offsets = []
        read_offsets = []
489

490
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
491
        top_n_tokens = []
drbh's avatar
drbh committed
492
        adapter_set = set()
493

494
        num_blocks = 0
495
496
497
498
        max_blocks = 0
        # Cumulative length
        cumulative_max_length = 0

499
500
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
501
            indices.append(idx)
502
503
504
            requests_idx_mapping[request_id] = i

            requests.append(self.requests[idx])
505
506
507
508

            # Get length
            request_input_length = self.input_lengths[idx]
            max_seqlen = max(max_seqlen, request_input_length)
509

510
511
512
            all_input_ids.append(self.all_input_ids[idx])

            input_lengths.append(request_input_length)
513
514
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
515

516
517
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
518

Nicolas Patry's avatar
Nicolas Patry committed
519
520
            top_n_tokens.append(self.top_n_tokens[idx])

Nicolas Patry's avatar
Nicolas Patry committed
521
522
            ADAPTER_TO_INDEX = get_adapter_to_index()
            adapter_index = ADAPTER_TO_INDEX.get(self.requests[idx].adapter_id, 0)
drbh's avatar
drbh committed
523
524
            adapter_set.add(adapter_index)

525
            remaining_tokens = (
526
527
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
528

529
            request_block_table = self.block_tables[idx]
530
            num_blocks += len(request_block_table)
531
532
533
            block_tables.append(request_block_table)
            start_slots.append(cumulative_max_length)

534
            # Copy to tensor (CPU)
535
            slot_indices[i] = cumulative_max_length + request_input_length - 1
536
537

            # Set slice
538
539
540
541
542
            slot_filtering_indices[
                self.start_slots[idx] : self.start_slots[idx]
                + request_input_length
                + remaining_tokens
                - 1
543
544
545
            ] = True

            cumulative_max_length += request_input_length + remaining_tokens - 1
546

547
548
            max_blocks = max(max_blocks, len(request_block_table))

549
550
551
        # Index into tensors
        input_ids = self.input_ids[indices]
        position_ids = self.position_ids[indices]
drbh's avatar
drbh committed
552
        adapter_indices = self.adapter_meta.adapter_indices[indices]
553
        all_input_ids_tensor = self.all_input_ids_tensor[indices]
554
555
556
        block_tables_tensor = self.block_tables_tensor[indices]
        input_lengths_tensor = self.input_lengths_tensor[indices]
        slots = self.slots[slot_filtering_indices]
557
        next_token_chooser = self.next_token_chooser.filter(indices)
Nicolas Patry's avatar
Nicolas Patry committed
558
        top_n_tokens_tensor = self.top_n_tokens_tensor[indices]
OlivierDehaene's avatar
OlivierDehaene committed
559
560
561
        speculative_ids = (
            self.speculative_ids[indices] if self.speculative_ids is not None else None
        )
562
563

        start_slots = torch.tensor(start_slots, dtype=torch.int64)
564

565
        # Move to GPU now that we have the whole tensor
566
        slot_indices = slot_indices.to(device)
567

drbh's avatar
drbh committed
568
569
570
571
572
        adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
        adapter_segments = torch.tensor(
            adapter_segments, dtype=torch.int32, device=device
        )

573
        return type(self)(
574
575
576
577
578
            batch_id=self.batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
579
            cu_seqlen_prefill=None,
580
            prefill_cache_indices=None,
581
582
583
584
585
            start_slots=start_slots,
            slot_indices=slot_indices,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
586
            max_seqlen=max_seqlen,
587
588
589
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
590
            input_lengths=input_lengths,
591
            input_lengths_tensor=input_lengths_tensor,
592
593
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
594
595
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
596
            next_token_chooser=next_token_chooser,
597
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
598
599
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
600
            num_blocks=num_blocks,
601
            max_blocks=max_blocks,
Nicolas Patry's avatar
Nicolas Patry committed
602
            speculative_ids=speculative_ids,
drbh's avatar
drbh committed
603
604
605
606
607
608
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
609
610
611
612
613
614
615
616
617
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
        # Batch attributes
        requests = []
        requests_idx_mapping = {}

618
        num_blocks = 0
619
620
621
622
623
624
625
626
        total_batch_size = 0
        total_slots = 0
        max_blocks = 0
        max_length = 0
        max_seqlen = 0
        for b in batches:
            total_batch_size += len(b)
            total_slots += len(b.slots)
627
            num_blocks += b.num_blocks
OlivierDehaene's avatar
OlivierDehaene committed
628
629
630
            speculative_length = (
                b.speculative_ids.shape[1] if b.speculative_ids is not None else 0
            )
631
632
633
634
635
636
637
            max_blocks = max(max_blocks, b.max_blocks)
            max_seqlen = max(max_seqlen, b.max_seqlen)
            max_length = max(
                max_length,
                max(
                    input_length
                    + stopping_criteria.max_new_tokens
Nicolas Patry's avatar
Nicolas Patry committed
638
                    + speculative_length
639
640
641
642
643
644
                    - stopping_criteria.current_tokens
                    for input_length, stopping_criteria in zip(
                        b.input_lengths, b.stopping_criterias
                    )
                ),
            )
645
646
647

        input_ids = batches[0].input_ids.new_empty(total_batch_size)
        position_ids = batches[0].position_ids.new_empty(total_batch_size)
648
649
650
651
652
653
654
655
656
657
        slots = batches[0].slots.new_empty(total_slots)
        slot_indices = batches[0].slot_indices.new_empty(total_batch_size)
        input_lengths_tensor = batches[0].input_lengths_tensor.new_empty(
            total_batch_size
        )
        block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
            (total_batch_size, max_blocks)
        )
        all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
            (total_batch_size, max_length)
658
        )
Nicolas Patry's avatar
Nicolas Patry committed
659
660
661
        top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
            total_batch_size,
        )
drbh's avatar
drbh committed
662
663
664
665
666
667
668
669
        total_indices_size = sum(
            b.adapter_meta.adapter_indices.shape[0] for b in batches
        )
        adapter_indices = batches[0].adapter_meta.adapter_indices.new_empty(
            total_indices_size
        )
        adapter_set = set()
        adapter_segment_builder = SegmentConcatBuilder()
670

671
672
        start_slots = []
        block_tables = []
673
674
675
        all_input_ids = []

        input_lengths = []
676
677
        prefix_offsets = []
        read_offsets = []
678

679
        next_token_chooser_parameters = []
680
        fsm_grammar_states = []
681
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
682
        top_n_tokens = []
683

684
        # Cumulative length
685
        cumulative_batch_size = 0
686
        cumulative_slots = 0
drbh's avatar
drbh committed
687
        cumulative_adapter_indices_size = 0
688
689
690

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
691
692
693
694
695
696
697
698

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + cumulative_batch_size

699
700
            start_index = cumulative_batch_size
            end_index = cumulative_batch_size + len(batch)
701
702
            slots_start_index = cumulative_slots
            slots_end_index = cumulative_slots + len(batch.slots)
703
704
705
706

            # Copy tensors (GPU)
            input_ids[start_index:end_index] = batch.input_ids
            position_ids[start_index:end_index] = batch.position_ids
707
708
            slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots
            input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor
Nicolas Patry's avatar
Nicolas Patry committed
709
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
710
            slots[slots_start_index:slots_end_index] = batch.slots
711

drbh's avatar
drbh committed
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
            # Copy over adapter indices
            adapter_start_index = cumulative_adapter_indices_size
            adapter_end_index = (
                cumulative_adapter_indices_size
                + batch.adapter_meta.adapter_indices.shape[0]
            )
            adapter_indices[adapter_start_index:adapter_end_index] = (
                batch.adapter_meta.adapter_indices
            )
            cumulative_adapter_indices_size = adapter_end_index
            adapter_set.update(batch.adapter_meta.adapter_set)
            adapter_segment_builder.concat(
                batch.adapter_meta.adapter_segments, batch.adapter_meta.segment_indices
            )

727
728
729
            all_input_ids_tensor[
                start_index:end_index, : batch.all_input_ids_tensor.shape[1]
            ] = batch.all_input_ids_tensor[:, :max_length]
730

731
732
733
            block_tables_tensor[
                start_index:end_index, : batch.block_tables_tensor.shape[1]
            ] = batch.block_tables_tensor[:, :max_blocks]
734

735
736
737
            start_slots.append(batch.start_slots + cumulative_slots)

            block_tables.extend(batch.block_tables)
738
739
            all_input_ids.extend(batch.all_input_ids)

740
            input_lengths.extend(batch.input_lengths)
741
742
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
743

744
            next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
745
            fsm_grammar_states.extend(batch.next_token_chooser.fsm_grammar_states)
746
747
            stopping_criterias.extend(batch.stopping_criterias)

Nicolas Patry's avatar
Nicolas Patry committed
748
749
            top_n_tokens.extend(batch.top_n_tokens)

750
            # Update
751
            cumulative_batch_size += len(batch)
752
            cumulative_slots += len(batch.slots)
753

754
        start_slots = torch.concat(start_slots)
755

756
        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
757
758
759
            next_token_chooser_parameters,
            dtype=batches[0].next_token_chooser.dtype,
            device=batches[0].next_token_chooser.device,
drbh's avatar
drbh committed
760
            tokenizer=batches[0].next_token_chooser.tokenizer,
761
            fsm_grammar_states=fsm_grammar_states,
762
763
        )

OlivierDehaene's avatar
OlivierDehaene committed
764
765
766
767
768
        speculative_ids = (
            torch.cat([b.speculative_ids for b in batches], dim=0)
            if batches[0].speculative_ids is not None
            else None
        )
Nicolas Patry's avatar
Nicolas Patry committed
769

drbh's avatar
drbh committed
770
771
        adapter_segments, adapter_segment_indices = adapter_segment_builder.build()

772
        return cls(
773
774
            batch_id=batches[0].batch_id,
            requests=requests,
775
            requests_idx_mapping=requests_idx_mapping,
776
777
            input_ids=input_ids,
            position_ids=position_ids,
778
            cu_seqlen_prefill=None,
779
            prefill_cache_indices=None,
780
781
782
783
784
            start_slots=start_slots,
            slot_indices=slot_indices,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
785
            max_seqlen=max_seqlen,
786
787
788
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
789
            input_lengths=input_lengths,
790
            input_lengths_tensor=input_lengths_tensor,
791
792
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
793
794
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
795
            next_token_chooser=next_token_chooser,
796
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
797
798
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
799
            num_blocks=num_blocks,
800
            max_blocks=max_blocks,
OlivierDehaene's avatar
OlivierDehaene committed
801
            speculative_ids=speculative_ids,
drbh's avatar
drbh committed
802
803
804
805
806
807
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
808
809
810
811
812
813
        )

    def __len__(self):
        return len(self.requests)


814
815
816
817
818
819
820
821
822
823
824
825
ADAPTER_LAYERS = [
    "q_proj",
    "k_proj",
    "v_proj",
    "o_proj",
    "gate_proj",
    "up_proj",
    "down_proj",
]
ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"}


826
827
828
class FlashCausalLM(Model):
    def __init__(
        self,
drbh's avatar
drbh committed
829
        model_id: str,
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        model_class,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
        lora_adapter_ids: Optional[list] = [],
        tokenizer_class: PreTrainedTokenizerBase = AutoTokenizer,
        config_class: PreTrainedTokenizerBase = AutoConfig,
        default_dtype=torch.float16,
        aliases=None,
        # Used for Santacoder override of config
        num_kv_heads=None,
        skip_special_tokens: bool = True,
844
    ):
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = default_dtype if dtype is None else dtype
        elif SYSTEM == "ipex":
            if hasattr(torch, "xpu") and torch.xpu.is_available():
                device = torch.device(f"xpu:{rank}")
                dtype = default_dtype if dtype is None else dtype
            else:
                device = torch.device("cpu")
                # Float16 doesn't exist on target.
                dtype = torch.bfloat16 if dtype is None else dtype
        else:
            raise NotImplementedError(f"{model_class} is only available on GPU")

        tokenizer = tokenizer_class.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        try:
            generation_config = GenerationConfig.from_pretrained(
                model_id, revision=revision, trust_remote_code=trust_remote_code
            )
            if isinstance(generation_config.eos_token_id, (list, set)):
                # TODO Huge hack
                tokenizer._eos_token_ids = set(generation_config.eos_token_id)
        except Exception:
            pass

        config = config_class.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
        config.speculator = speculator

        torch.distributed.barrier(group=self.process_group)

885
        weights_loader = get_loader(quantize, model_id, revision)
886
887
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(
888
889
890
891
892
893
            filenames,
            device,
            dtype,
            process_group=self.process_group,
            aliases=aliases,
            weights_loader=weights_loader,
894
895
896
897
898
899
900
901
902
903
        )

        prefix = ""
        model = model_class(prefix, config, weights)
        torch.distributed.barrier(group=self.process_group)

        # VLM models define the config we care about in their text_config
        text_config = getattr(config, "text_config", None)
        if text_config is not None:
            config = text_config
904
905
906
907
908
909

        if getattr(config, "sliding_window", None) is not None:
            set_sliding_window(config.sliding_window)
        else:
            config.sliding_window = None

910
911
912
        self.num_layers = config.num_hidden_layers
        # Validation is done in the model itself
        if num_kv_heads is None:
913
914
            num_kv_heads = getattr(config, "num_key_value_heads", None)
            # GPT-2 workaround
915
            if num_kv_heads is None:
916
917
918
                num_kv_heads = getattr(config, "n_head", None)
        if num_kv_heads is None:
            raise ValueError("Cannot get the number of key/value heads")
919
920
921
922
923
924
        self.num_kv_heads = (
            num_kv_heads // self.process_group.size()
            if num_kv_heads > 1
            else num_kv_heads
        )
        assert self.num_kv_heads > 0
925
        self.head_size = config.hidden_size // config.num_attention_heads
926

927
        self.cuda_graphs = {}
928
        self.kv_cache = []
929

930
        super().__init__(
drbh's avatar
drbh committed
931
            model_id=model_id,
932
            model=model,
933
934
935
936
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
937
938
            rank=rank,
            world_size=world_size,
939
            sliding_window=config.sliding_window,
940
941
942
943
944
945
        )

    @property
    def batch_type(self) -> Type[FlashCausalLMBatch]:
        return FlashCausalLMBatch

946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
    def max_past(self) -> int:
        return getattr(self.model, "max_past", None)

    def init_kv_cache(
        self,
        num_blocks: int,
        num_layers: int,
        num_heads: int,
        head_size: int,
        dtype: torch.dtype,
        device: torch.device,
    ):
        self.kv_cache = []
        empty_cache()

        element_size = torch.tensor([], dtype=dtype).element_size()
Wang, Yi's avatar
Wang, Yi committed
962
963
964
965
        if SYSTEM == "ipex" and device.type == "xpu":
            x = 1
        else:
            x = BLOCK_SIZE // element_size
966

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
        if FLASH_DECODING:
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, BLOCK_SIZE, num_heads, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, BLOCK_SIZE, num_heads, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
        elif SYSTEM == "ipex" and device == torch.device("cpu"):
Wang, Yi's avatar
Wang, Yi committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, num_heads, BLOCK_SIZE, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, num_heads, BLOCK_SIZE, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
        else:
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, num_heads, head_size, BLOCK_SIZE),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
1015

1016
1017
1018
    def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
        input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
1019
        slots = torch.arange(bs, dtype=torch.int64, device=self.device)
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
        input_lengths = torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
        block_tables = (
            torch.arange(max_bt, dtype=torch.int32, device=self.device)
            .repeat(bs)
            .reshape((bs, max_bt))
        )

        self.cuda_graphs[bs] = {
            "input_ids": input_ids,
            "position_ids": position_ids,
1030
            "kv_cache": self.kv_cache,
1031
1032
1033
1034
            "block_tables": block_tables,
            "slots": slots,
            "input_lengths": input_lengths,
        }
1035
        input_lengths_ = Seqlen(input_lengths=input_lengths)
1036
1037
1038
1039
1040
1041
1042
1043
1044
        graph = torch.cuda.CUDAGraph()
        self.cuda_graphs[bs]["graph"] = graph

        torch.cuda.synchronize()
        # Run once outside to warmup
        self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=None,
1045
            kv_cache=self.kv_cache,
1046
1047
            block_tables=block_tables,
            slots=slots,
1048
            input_lengths=input_lengths_,
1049
            max_s=max_s,
1050
            prefill_cache_indices=None,
1051
1052
1053
1054
1055
            lm_head_indices=None,
        )
        torch.cuda.synchronize()

        with torch.cuda.graph(graph, pool=MEM_POOL):
1056
            input_lengths = Seqlen(input_lengths=input_lengths)
1057
            logits, speculative_logits = self.model.forward(
1058
1059
1060
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=None,
1061
                kv_cache=self.kv_cache,
1062
1063
1064
1065
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
1066
                prefill_cache_indices=None,
1067
1068
                lm_head_indices=None,
            )
1069
1070
            self.cuda_graphs[bs]["logits"] = logits
            self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
1071
1072
        torch.cuda.synchronize()

1073
    def warmup(self, batch: FlashCausalLMBatch):
1074
        # The warmup batch is the biggest batch we could ever receive
Nicolas Patry's avatar
Nicolas Patry committed
1075
1076
        empty_cache()

1077
        try:
1078
1079
            self.init_kv_cache(
                batch.num_blocks,
1080
1081
1082
1083
1084
1085
                self.num_layers,
                self.num_kv_heads,
                self.head_size,
                self.dtype,
                self.device,
            )
1086
            max_bt = batch.max_blocks
1087
            max_s = max_bt * BLOCK_SIZE
fxmarty's avatar
fxmarty committed
1088
1089
1090

            if SYSTEM == "rocm" and os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False):
                torch.cuda.tunable.tuning_enable(False)
1091
            _, batch, _ = self.generate_token(batch)
OlivierDehaene's avatar
OlivierDehaene committed
1092
        except torch.cuda.OutOfMemoryError as e:
1093
            raise RuntimeError(
1094
1095
                f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
                f"You need to decrease `--max-batch-prefill-tokens`"
1096
            ) from e
1097

Nicolas Patry's avatar
Nicolas Patry committed
1098
        synchronize(self.device)
1099

1100
1101
        # Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm)
        # Calculate the number of blocks that can be allocated with the free memory
1102
1103
1104
1105
        dtype_size = torch.tensor([], dtype=self.dtype).element_size()
        cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size
        total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size

Nicolas Patry's avatar
Nicolas Patry committed
1106
        free_memory = get_free_memory(self.device, MEMORY_FRACTION)
drbh's avatar
drbh committed
1107
        batch_num_blocks = batch.num_blocks if batch is not None else 0
1108
1109

        num_blocks = (
1110
1111
            # Leave 5% for some wiggle room
            int((free_memory * 0.95) // total_cache_size)
1112
            # Add batch.num_blocks as we allocated it above, so it is included in the peak memory.
drbh's avatar
drbh committed
1113
            + batch_num_blocks
1114
1115
        )

1116
        del batch
1117

1118
        self.init_kv_cache(
1119
1120
1121
1122
1123
1124
1125
1126
            num_blocks,
            self.num_layers,
            self.num_kv_heads,
            self.head_size,
            self.dtype,
            self.device,
        )

fxmarty's avatar
fxmarty committed
1127
1128
1129
1130
1131
        if SYSTEM == "rocm":
            if (
                os.environ.get("PYTORCH_TUNABLEOP_ENABLED") is None
                or os.environ.get("PYTORCH_TUNABLEOP_ENABLED") == "1"
            ):
1132
1133
                torch.cuda.tunable.enable()

fxmarty's avatar
fxmarty committed
1134
1135
1136
1137
1138
1139
1140
1141
                if os.environ.get("PYTORCH_TUNABLEOP_TUNING") != "0":
                    torch.cuda.tunable.tuning_enable(True)

                if os.environ.get("PYTORCH_TUNABLEOP_SEQLENS") is not None:
                    tuning_sequences = [
                        int(val)
                        for val in os.environ["PYTORCH_TUNABLEOP_SEQLENS"].split(",")
                    ]
1142
                elif CUDA_GRAPHS is not None:
fxmarty's avatar
fxmarty committed
1143
                    tuning_sequences = CUDA_GRAPHS
1144
1145
1146
                else:
                    # For seqlen = 1, we dispatch to LLMM1 kernel.
                    tuning_sequences = [2, 3, 4, 5, 6, 7]
fxmarty's avatar
fxmarty committed
1147
1148
1149

                tunableop_filepath = os.path.join(
                    HUGGINGFACE_HUB_CACHE,
Nicolas Patry's avatar
Nicolas Patry committed
1150
                    f"tunableop_{MODEL_ID.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv",
fxmarty's avatar
fxmarty committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
                )

                logger.info(
                    f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`."
                )

                if os.path.isfile(tunableop_filepath):
                    logger.info(
                        f"The file {tunableop_filepath} already exists and will be reused."
                    )
                    torch.cuda.tunable.read_file(tunableop_filepath)

                os.makedirs(HUGGINGFACE_HUB_CACHE, exist_ok=True)

                for seqlen in tuning_sequences:
                    logger.info(f"Warming up TunableOp for seqlen={seqlen}")
                    self.tunableop_warmup(seqlen)
                    torch.cuda.tunable.write_file(tunableop_filepath)
                torch.cuda.tunable.tuning_enable(False)
            else:
                logger.info(
                    "PyTorch ROCm TunableOp (https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable) is disabled. TunableOp brings an additional 5-8% latency improvement for small sequence lengths but requires a warmup. If necessary, please use the environment variable PYTORCH_TUNABLEOP_ENABLED=1 to enable TunableOp."
                )

1175
        if CUDA_GRAPHS:
1176
            try:
1177
                logger.info(f"Cuda Graphs are enabled for sizes {CUDA_GRAPHS}")
1178
                # Warmup cuda graphs
1179
                for bs in CUDA_GRAPHS:
1180
1181
                    if self.speculate is None or self.speculate + 1 <= bs:
                        self.cuda_graph_warmup(bs, max_s, max_bt)
OlivierDehaene's avatar
OlivierDehaene committed
1182
            except torch.cuda.OutOfMemoryError:
1183
                logger.exception(f"Decode cuda graph warmup failed")
1184
1185
        else:
            logger.info(f"Cuda Graphs are disabled (CUDA_GRAPHS={CUDA_GRAPHS}).")
1186

1187
        return int(num_blocks * BLOCK_SIZE)
1188

fxmarty's avatar
fxmarty committed
1189
1190
1191
1192
1193
    def tunableop_warmup(self, seqlen: int):
        input_ids = torch.zeros(seqlen, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(seqlen, dtype=torch.int32, device=self.device)
        slots = torch.arange(seqlen, dtype=torch.int64, device=self.device)

fxmarty's avatar
fxmarty committed
1194
1195
        # Dummy value, some models (starcoder2) don't accept `None`.
        input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device)
1196
        input_lengths = Seqlen(input_lengths=input_lengths)
fxmarty's avatar
fxmarty committed
1197

fxmarty's avatar
fxmarty committed
1198
1199
1200
1201
1202
1203
1204
        # We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
        self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=torch.tensor(
                [0, seqlen], device=self.device, dtype=torch.int32
            ),
1205
            kv_cache=self.kv_cache,
fxmarty's avatar
fxmarty committed
1206
            block_tables=None,
fxmarty's avatar
fxmarty committed
1207
            input_lengths=input_lengths,
fxmarty's avatar
fxmarty committed
1208
1209
1210
            slots=slots,
            max_s=seqlen,
            lm_head_indices=None,
1211
            prefill_cache_indices=None,
fxmarty's avatar
fxmarty committed
1212
1213
        )

1214
    def forward(
drbh's avatar
drbh committed
1215
        self, batch: FlashCausalLMBatch, adapter_data: AdapterBatchData
1216
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
1217
        # Model Forward
Nicolas Patry's avatar
Nicolas Patry committed
1218
        if batch.speculative_ids is not None:
OlivierDehaene's avatar
OlivierDehaene committed
1219
1220
1221
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
1222
            kv_cache = self.kv_cache
OlivierDehaene's avatar
OlivierDehaene committed
1223
1224
1225
1226
1227
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
1228
1229
1230

            speculative_ids = batch.speculative_ids

OlivierDehaene's avatar
OlivierDehaene committed
1231
            B, speculative_length = speculative_ids.shape
Nicolas Patry's avatar
Nicolas Patry committed
1232
            new_length = speculative_length + 1
OlivierDehaene's avatar
OlivierDehaene committed
1233
1234
1235
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1236
1237
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
OlivierDehaene's avatar
OlivierDehaene committed
1238
1239
1240
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1241
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
OlivierDehaene's avatar
OlivierDehaene committed
1242
1243
1244
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1245
1246

            # Add Copy the block tables for all members
OlivierDehaene's avatar
OlivierDehaene committed
1247
1248
1249
1250
1251
1252
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
Nicolas Patry's avatar
Nicolas Patry committed
1253
1254
1255
1256
1257
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
OlivierDehaene's avatar
OlivierDehaene committed
1258
1259
1260
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
1261
            kv_cache = self.kv_cache
OlivierDehaene's avatar
OlivierDehaene committed
1262
1263
1264
1265
1266
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
1267

1268
1269
1270
1271
1272
1273
        if cu_seqlen_prefill is None and self.max_past() is not None:
            # In decode, not prefill, we're actually overwriting the KV-cache
            # in a circular buffer mode.
            # This makes sure the max_s for the decode pass is correct.
            max_s = min(self.max_past(), max_s)

1274
        bs = input_ids.shape[0]
OlivierDehaene's avatar
OlivierDehaene committed
1275
1276
1277
1278
1279
1280
1281
1282
        sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
        if sorted_padded_bs:
            # Get associated cuda graph
            cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
        else:
            cuda_graph = None

        if cu_seqlen_prefill is not None or cuda_graph is None:
1283
            input_lengths = Seqlen(input_lengths=input_lengths)
1284
            logits, speculative_logits = self.model.forward(
1285
1286
1287
1288
1289
1290
1291
1292
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=cu_seqlen_prefill,
                kv_cache=kv_cache,
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
1293
                prefill_cache_indices=batch.prefill_cache_indices,
1294
                lm_head_indices=lm_head_indices,
drbh's avatar
drbh committed
1295
                adapter_data=adapter_data,
1296
            )
1297
1298
1299
            if batch.prefill_cache_indices is not None:
                batch.prefill_cache_indices = None
            return logits, speculative_logits
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
        cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
        cuda_graph["block_tables"][
            : block_tables.shape[0], : block_tables.shape[1]
        ] = block_tables
        cuda_graph["slots"].fill_(-1)
        cuda_graph["slots"][: slots.shape[0]] = slots
        cuda_graph["input_lengths"].zero_()
        cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths

        # Replay the graph
        cuda_graph["graph"].replay()
        # Slice output to the correct shape
1316
1317
1318
1319
1320
1321
1322
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits
1323
1324
1325
1326

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashCausalLMBatch
1327
1328
    ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch], Tuple[int, int]]:
        start = time.time_ns()
1329
        prefill = batch.cu_seqlen_prefill is not None
1330
        prefill_logprobs = batch.prefill_next_token_indices is not None
1331

drbh's avatar
drbh committed
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
        # Update adapter indices for speculative tokens (if present)
        adapter_meta = batch.adapter_meta
        if batch.speculative_ids is not None:
            B, speculative_length = batch.speculative_ids.shape
            new_length = speculative_length + 1
            adapter_indices = (
                adapter_meta.adapter_indices.unsqueeze(-1)
                .expand(B, new_length)
                .reshape(-1)
            )
            adapter_segments = adapter_meta.adapter_segments * new_length
            adapter_meta = AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_meta.adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_meta.segment_indices,
            )

        # Assign pointers to adapter weights
        # TODO(travis): don't update this if indices haven't changed
        adapter_data = AdapterBatchData.from_meta(
            adapter_meta,
            self.layer_to_adapter_weights,
            prefill,
            batch.prefill_head_indices,
        )

        out, speculative_logits = self.forward(batch, adapter_data)
1360

1361
1362
        if prefill:
            next_token_logits = (
1363
                out[batch.prefill_next_token_indices] if prefill_logprobs else out
1364
            )
Nicolas Patry's avatar
Nicolas Patry committed
1365
1366
            if speculative_logits is not None:
                speculative_logits = (
OlivierDehaene's avatar
OlivierDehaene committed
1367
1368
1369
                    speculative_logits[batch.prefill_next_token_indices]
                    if prefill_logprobs
                    else speculative_logits
Nicolas Patry's avatar
Nicolas Patry committed
1370
                )
drbh's avatar
drbh committed
1371
1372
1373
1374
            next_adapter_indices = batch.adapter_meta.adapter_indices.new_empty(
                len(batch)
            )

1375
1376
        else:
            next_token_logits = out
drbh's avatar
drbh committed
1377
            next_adapter_indices = batch.adapter_meta.adapter_indices
1378

Nicolas Patry's avatar
Nicolas Patry committed
1379
        speculate = get_speculate()
OlivierDehaene's avatar
OlivierDehaene committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
        (
            next_input_ids,
            next_token_logprobs,
            logprobs,
            accepted_ids,
            speculative_ids,
        ) = batch.next_token_chooser(
            batch.all_input_ids_tensor[:, : batch.max_seqlen],
            next_token_logits,
Nicolas Patry's avatar
Nicolas Patry committed
1389
            speculate,
OlivierDehaene's avatar
OlivierDehaene committed
1390
1391
            batch.speculative_ids,
            speculative_logits,
1392
1393
        )

Nicolas Patry's avatar
Nicolas Patry committed
1394
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
Nicolas Patry's avatar
Nicolas Patry committed
1395
            batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs, accepted_ids
Nicolas Patry's avatar
Nicolas Patry committed
1396
1397
        )

1398
        if prefill:
1399
            if len(batch) > 1 and prefill_logprobs:
1400
1401
                # We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
                # When batch == 1, we will just use the batch.input_ids values directly
1402
                prefill_tokens_indices = batch.input_ids.new_zeros(len(out))
1403
1404

            next_position_ids = batch.position_ids.new_empty(len(batch))
1405
1406
1407
            batch.slot_indices = batch.slot_indices[batch.cu_seqlen_prefill[1:] - 1]
            # We do not need cu_seqlen_prefill anymore
            batch.cu_seqlen_prefill = None
1408
1409
1410
1411
        else:
            prefill_logprobs = None
            next_position_ids = batch.position_ids

1412
1413
1414
1415
1416
        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []
1417
        stopped = True
1418
1419

        # Zipped iterator
OlivierDehaene's avatar
OlivierDehaene committed
1420
        iterator = zip(batch.input_lengths, batch.all_input_ids, accepted_ids)
1421

1422
1423
1424
1425
        # We do two for loops as the first one can run completely asynchronously from the GPU while for the second
        # one, we need to first do a GPU <-> CPU sync
        # It is faster if we delay this sync for the maximum amount of time

1426
        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
1427
        index = 0
OlivierDehaene's avatar
OlivierDehaene committed
1428
        for i, (input_length, all_input_ids, n_accepted_ids) in enumerate(iterator):
1429
            # Indexing metadata
1430
1431
1432
            start_index = cumulative_length
            end_index = cumulative_length + input_length

1433
            if prefill:
1434
1435
1436
1437
1438
                # Indexing metadata
                out_start_index = batch.prefill_cu_outlens[i]
                out_end_index = batch.prefill_cu_outlens[i + 1]
                out_length = out_end_index - out_start_index

1439
1440
1441
1442
                # Initialize position_ids
                # In decode, we do not need this as we can just increment position ids
                next_position_ids[i] = batch.position_ids[end_index - 1]

drbh's avatar
drbh committed
1443
1444
1445
1446
1447
1448
                # Initialize adapter indices
                # In decode, we only have one token per row in the batch, so grab last index
                next_adapter_indices[i] = batch.adapter_meta.adapter_indices[
                    end_index - 1
                ]

1449
1450
                # Used to gather prefill logprobs
                # Copy batch.input_ids to prefill_token_indices
1451
1452
                if prefill_logprobs:
                    if len(batch) > 1:
drbh's avatar
drbh committed
1453
1454
1455
                        prefill_tokens_indices[out_start_index : out_end_index - 1] = (
                            batch.input_ids[start_index + 1 : start_index + out_length]
                        )
1456
1457
1458
1459
1460
                    else:
                        # Set prefill_tokens_indices to the correct slice
                        prefill_tokens_indices = batch.input_ids[
                            start_index + 1 : start_index + out_length
                        ]
1461

Nicolas Patry's avatar
Nicolas Patry committed
1462
1463
1464
            for j in range(n_accepted_ids):
                batch.all_input_ids_tensor[i, input_length + j] = next_input_ids[index]
                index += 1
1465
1466
1467

            cumulative_length += input_length

drbh's avatar
drbh committed
1468
        # Update values
Nicolas Patry's avatar
Nicolas Patry committed
1469
1470
1471
1472
1473
        batch.input_ids = next_input_ids[accepted_ids.cumsum(dim=-1) - 1]
        batch.speculative_ids = speculative_ids
        batch.position_ids = next_position_ids + accepted_ids
        batch.input_lengths_tensor += accepted_ids
        batch.slot_indices += accepted_ids
drbh's avatar
drbh committed
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
        batch.adapter_meta.adapter_indices = next_adapter_indices

        if prefill:
            # adjust segment lengths to account for all request lengths being 1 during decoding
            adapter_segments, _ = find_segments(batch.adapter_meta.adapter_indices)
            batch.adapter_meta.adapter_segments = torch.tensor(
                adapter_segments,
                dtype=torch.int32,
                device=batch.adapter_meta.adapter_segments.device,
            )
1484

1485
        if prefill and prefill_logprobs:
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
            # Get prefill logprobs
            prefill_logprobs_tensor = torch.log_softmax(out, -1)
            prefill_logprobs = torch.gather(
                prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
            )
            # GPU <-> CPU sync
            prefill_logprobs = prefill_logprobs.view(-1).tolist()

        # GPU <-> CPU sync
        next_token_logprobs = next_token_logprobs.tolist()
Nicolas Patry's avatar
Nicolas Patry committed
1496
        next_token_ids = next_input_ids.tolist()
1497
1498
        accepted_ids = accepted_ids.tolist()
        start_decode = time.time_ns()
1499
1500
1501
1502
1503

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
1504
1505
            batch.prefix_offsets,
            batch.read_offsets,
1506
1507
            batch.stopping_criterias,
            batch.all_input_ids,
1508
1509
            batch.next_token_chooser.do_sample,
            batch.next_token_chooser.seeds,
Nicolas Patry's avatar
Nicolas Patry committed
1510
            batch.top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1511
            accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1512
1513
            batch_top_token_ids,
            batch_top_token_logprobs,
1514
1515
1516
        )

        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
1517
        index = 0
1518
1519
1520
        for i, (
            request,
            input_length,
1521
1522
            prefix_offset,
            read_offset,
1523
1524
            stopping_criteria,
            all_input_ids,
1525
1526
            do_sample,
            seed,
Nicolas Patry's avatar
Nicolas Patry committed
1527
            top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1528
            n_accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1529
1530
            top_token_ids,
            top_token_logprobs,
1531
        ) in enumerate(iterator):
1532
            # Append next token to all tokens
Nicolas Patry's avatar
Nicolas Patry committed
1533
1534
1535
            next_token_texts = []
            left = 0

1536
1537
1538
1539
            if n_accepted_ids > 1:
                if RANK == 0:
                    logger.debug(f"Speculated ids {n_accepted_ids - 1}")

Nicolas Patry's avatar
Nicolas Patry committed
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
            current_stopped = False
            for j in range(index, index + n_accepted_ids):
                # Generated token
                next_token_id = next_token_ids[j]
                all_input_ids.append(next_token_id)
                next_token_text, prefix_offset, read_offset = self.decode_token(
                    all_input_ids,
                    prefix_offset,
                    read_offset,
                )
                next_token_texts.append(next_token_text)
1551

Nicolas Patry's avatar
Nicolas Patry committed
1552
1553
1554
1555
                stop, reason = stopping_criteria(
                    next_token_id,
                    next_token_text,
                )
1556

Nicolas Patry's avatar
Nicolas Patry committed
1557
1558
1559
1560
1561
1562
1563
                if stop:
                    left = index + n_accepted_ids - j - 1
                    current_stopped = True
                    break
                else:
                    current_stopped = False
            stopped = stopped and current_stopped
1564

OlivierDehaene's avatar
OlivierDehaene committed
1565
1566
1567
1568
            _next_token_ids = next_token_ids[index : index + n_accepted_ids - left]
            _next_token_logprobs = next_token_logprobs[
                index : index + n_accepted_ids - left
            ]
Nicolas Patry's avatar
Nicolas Patry committed
1569
            index += n_accepted_ids
1570

1571
1572
1573
1574
1575
            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
1576
1577
                    output_text, _, _ = self.decode_token(
                        all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1578
1579
1580
1581
1582
1583
                        prefix_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens
                        - 1,
                        read_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens,
                        skip_special_tokens=True,
1584
1585
                    )
                    generated_text = GeneratedText(
1586
1587
1588
1589
                        output_text,
                        stopping_criteria.current_tokens,
                        reason,
                        seed if do_sample else None,
1590
1591
1592
1593
1594
                    )
                else:
                    generated_text = None

                # Prefill
1595
1596
1597
1598
                if prefill and request.prefill_logprobs:
                    out_start_index = batch.prefill_cu_outlens[i]
                    out_end_index = batch.prefill_cu_outlens[i + 1]

1599
1600
                    # Remove generated token to only have prefill and add nan for first prompt token
                    request_prefill_logprobs = [float("nan")] + prefill_logprobs[
1601
                        out_start_index : out_end_index - 1
1602
1603
1604
1605
1606
1607
1608
                    ]
                    prefill_token_ids = all_input_ids[:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1609
1610

                    prefill_tokens = Tokens(
OlivierDehaene's avatar
OlivierDehaene committed
1611
1612
1613
1614
                        prefill_token_ids,
                        request_prefill_logprobs,
                        prefill_texts,
                        is_special=[],
1615
1616
1617
1618
                    )
                else:
                    prefill_tokens = None

Nicolas Patry's avatar
Nicolas Patry committed
1619
                if top_n_tokens > 0:
Nicolas Patry's avatar
Nicolas Patry committed
1620
                    all_top_tokens = []
drbh's avatar
drbh committed
1621
                    for top_token_ids, top_token_logprobs in zip(
1622
1623
                        top_token_ids, top_token_logprobs
                    ):
Nicolas Patry's avatar
Nicolas Patry committed
1624
1625
1626
1627
1628
1629
                        toptoken_texts = self.tokenizer.batch_decode(
                            top_token_ids,
                            clean_up_tokenization_spaces=False,
                            skip_special_tokens=False,
                        )
                        special_toptokens = [
1630
1631
                            token_id in self.all_special_ids
                            for token_id in top_token_ids
Nicolas Patry's avatar
Nicolas Patry committed
1632
1633
1634
1635
1636
1637
1638
1639
1640
                        ]
                        top_tokens = Tokens(
                            top_token_ids,
                            top_token_logprobs,
                            toptoken_texts,
                            special_toptokens,
                        )
                        all_top_tokens.append(top_tokens)
                    top_tokens = all_top_tokens
Nicolas Patry's avatar
Nicolas Patry committed
1641
1642
1643
                else:
                    top_tokens = None

1644
1645
1646
                generation = Generation(
                    request.id,
                    prefill_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1647
1648
1649
1650
1651
1652
                    Tokens(
                        _next_token_ids,
                        _next_token_logprobs,
                        next_token_texts,
                        [nid in self.all_special_ids for nid in _next_token_ids],
                    ),
1653
                    generated_text,
Nicolas Patry's avatar
Nicolas Patry committed
1654
                    top_tokens,
1655
1656
                )

1657
                generations.append(generation)
1658

drbh's avatar
drbh committed
1659
1660
1661
            # accept each new token for this specific request since we may
            # have more than one new token per request with speculative decoding
            for next_token_id in _next_token_ids:
OlivierDehaene's avatar
OlivierDehaene committed
1662
1663
1664
                batch.next_token_chooser = (
                    batch.next_token_chooser.advance_grammar_single(i, next_token_id)
                )
drbh's avatar
drbh committed
1665

1666
            # Update values
1667
            batch.input_lengths[i] = input_length + n_accepted_ids
Nicolas Patry's avatar
Nicolas Patry committed
1668
1669
            if batch.input_lengths[i] > batch.max_seqlen:
                batch.max_seqlen = batch.input_lengths[i]
1670
1671
            batch.prefix_offsets[i] = prefix_offset
            batch.read_offsets[i] = read_offset
1672
1673
            batch.all_input_ids[i] = all_input_ids

1674
1675
        if stopped:
            # No need to return a batch if we know that all requests stopped
1676
1677
1678
            forward_ns = start_decode - start
            decode_ns = time.time_ns() - start_decode
            return generations, None, (forward_ns, decode_ns)
1679

1680
1681
1682
        batch.prefill_cu_outlens = None
        batch.prefill_head_indices = None
        batch.prefill_next_token_indices = None
1683

1684
1685
1686
        forward_ns = start_decode - start
        decode_ns = time.time_ns() - start_decode
        return generations, batch, (forward_ns, decode_ns)
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755

    @property
    def supports_adapter_loading(self) -> bool:
        return True

    def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]:
        layer_weights = {}

        prefix = "model.layers"

        # This accounts for VLMs (e.g. LlavaNext, Idefics2)
        # that have a language_model inside of the larger model.
        if hasattr(self.model, "language_model"):
            _model = self.model.language_model
        elif hasattr(self.model, "text_model"):
            _model = self.model.text_model
        else:
            _model = self.model

        for i, layer in enumerate(_model.model.layers):
            layer_weights[(i, "q_proj")] = (
                f"{prefix}.{i}.self_attn.q_proj",
                layer.self_attn.query_key_value,
            )
            layer_weights[(i, "k_proj")] = (
                f"{prefix}.{i}.self_attn.k_proj",
                layer.self_attn.query_key_value,
            )
            layer_weights[(i, "v_proj")] = (
                f"{prefix}.{i}.self_attn.v_proj",
                layer.self_attn.query_key_value,
            )
            layer_weights[(i, "o_proj")] = (
                f"{prefix}.{i}.self_attn.o_proj",
                layer.self_attn.o_proj,
            )

            # TODO: this is a hack to avoid the gate_proj for
            # FlashStarcoder2 that doesnt have these layers
            if hasattr(layer, "mlp") and hasattr(layer.mlp, "gate_up_proj"):
                layer_weights[(i, "gate_proj")] = (
                    f"{prefix}.{i}.mlp.gate_proj",
                    layer.mlp.gate_up_proj,
                )
                layer_weights[(i, "up_proj")] = (
                    f"{prefix}.{i}.mlp.up_proj",
                    layer.mlp.gate_up_proj,
                )
                layer_weights[(i, "down_proj")] = (
                    f"{prefix}.{i}.mlp.down_proj",
                    layer.mlp.down_proj,
                )

        layer_weights[(0, "lm_head")] = ("lm_head", _model.lm_head)
        return layer_weights

    @property
    def adapter_layers(self) -> List[str]:
        return ADAPTER_LAYERS

    @property
    def default_traced_adapter_layers(self) -> List[str]:
        return ["q_proj", "v_proj"]

    def get_num_layers_for_type(self, layer_type: str) -> int:
        return 1 if layer_type == "lm_head" else len(self.model.model.layers)

    def is_row_parallel(self, layer_type: str) -> bool:
        return layer_type in ROW_PARALLEL