flash_causal_lm.py 65.5 KB
Newer Older
1
import math
2
import os
3
import time
4
import itertools
5
6
7
import torch
import torch.distributed

8
9
import numpy as np

10
from loguru import logger
11
12
from dataclasses import dataclass
from opentelemetry import trace
13
14
15
16
17
18
from transformers import (
    PreTrainedTokenizerBase,
    AutoConfig,
    AutoTokenizer,
    GenerationConfig,
)
Daniël de Kok's avatar
Daniël de Kok committed
19
from typing import Iterable, Optional, Tuple, List, Type, Dict
fxmarty's avatar
fxmarty committed
20

drbh's avatar
drbh committed
21
from text_generation_server.adapters import AdapterBatchData, AdapterBatchMetadata
fxmarty's avatar
fxmarty committed
22
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
Daniël de Kok's avatar
Daniël de Kok committed
23
from text_generation_server.utils.chunks import concat_text_chunks
Nicolas Patry's avatar
Nicolas Patry committed
24
from text_generation_server.utils.import_utils import SYSTEM
OlivierDehaene's avatar
OlivierDehaene committed
25
from text_generation_server.models import Model
26
from text_generation_server.utils.log import log_master
27
from text_generation_server.utils.tokens import batch_top_tokens
Nicolas Patry's avatar
Nicolas Patry committed
28
from text_generation_server.utils.speculate import get_speculate
29
30
31
32
33
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)
34
35
from text_generation_server.models.types import (
    Batch,
Nicolas Patry's avatar
Nicolas Patry committed
36
    Tokens,
37
38
39
40
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
Nicolas Patry's avatar
Nicolas Patry committed
41
42
from text_generation_server.models.globals import (
    MEM_POOL,
43
44
    FLASH_DECODING,
    BLOCK_SIZE,
Nicolas Patry's avatar
Nicolas Patry committed
45
46
47
48
    CUDA_GRAPHS,
    get_adapter_to_index,
    MODEL_ID,
)
49
from text_generation_server.layers.attention import Seqlen
50
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
51
from text_generation_server.utils.dist import MEMORY_FRACTION
52
from text_generation_server.utils.quantization import get_loader
drbh's avatar
drbh committed
53
from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments
54

Nicolas Patry's avatar
Nicolas Patry committed
55
from text_generation_server.utils.import_utils import (
Nicolas Patry's avatar
Nicolas Patry committed
56
57
58
    empty_cache,
    synchronize,
    get_free_memory,
Nicolas Patry's avatar
Nicolas Patry committed
59
60
)

Nicolas Patry's avatar
Nicolas Patry committed
61
62
tracer = trace.get_tracer(__name__)

63
64
65
66
67
68
69
70
71
72
73
74
75
76

# Will be set in init
SLIDING_WINDOW: Optional[int] = None


def set_sliding_window(sliding_window: int):
    global SLIDING_WINDOW
    SLIDING_WINDOW = sliding_window


def get_sliding_windows() -> int:
    global SLIDING_WINDOW
    return SLIDING_WINDOW

77

78
79
80
81
@dataclass
class FlashCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
82
83
    # request id -> idx in list mapping
    requests_idx_mapping: Dict[int, int]
84
85

    # Decoder values
86
87
    input_ids: torch.Tensor
    position_ids: torch.Tensor
88
    speculative_ids: Optional[torch.Tensor]
89

90
91
92
93
    # Flash Attention values

    # tensor of length b containing the cumulative sequence lengths of the sequences in the batch, only used in prefill
    cu_seqlen_prefill: Optional[torch.Tensor]
94
95
96
    # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers
    # as we only keep SLIDING_WINDOW values instead of the whole tensor
    prefill_cache_indices: Optional[torch.Tensor]
97
98
99
100
101
102
103
104
105
106

    # Paged Attention values

    # Set when creating the batch
    # CPU tensor of length b indicating the start of each sequence in slots
    start_slots: torch.Tensor
    # tensor of indices of the currently used slots, length = \sum_{i=0}^{b} s_i in prefill, length = b in decode
    slot_indices: torch.Tensor

    # list of length b of list of length s_i // block_size
107
    block_tables: List[List[int]]
108
    # tensor of size [b, max_total_seqlen // block_size] holding the paged attention block tables for all sequences
109
    block_tables_tensor: torch.Tensor
110
    # tensor of length \sum_{i=0}^{b} max_s_i  holding the paged attention slots for all sequences
111
    slots: torch.Tensor
112

113
114
    max_seqlen: int

115
116
117
118
119
    # Prefill metadata tensors to efficiently compute logprobs
    prefill_head_indices: Optional[torch.Tensor]
    prefill_next_token_indices: Optional[torch.tensor]
    prefill_cu_outlens: Optional[List[int]]

120
121
    # All tokens
    all_input_ids: List[List[int]]
122
    all_input_ids_tensor: torch.Tensor
123
124
125

    # Lengths of all generations present in the batch
    input_lengths: List[int]
126
    input_lengths_tensor: torch.Tensor
127
128
    prefix_offsets: List[Optional[int]]
    read_offsets: List[Optional[int]]
129
130

    # Generation helpers
131
    next_token_chooser: HeterogeneousNextTokenChooser
132
    stopping_criterias: List[StoppingCriteria]
Nicolas Patry's avatar
Nicolas Patry committed
133
134
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor
135

drbh's avatar
drbh committed
136
137
138
    # Adapter metadata for each request
    adapter_meta: AdapterBatchMetadata

139
    # Number of blocks in this batch
140
    num_blocks: int
141
142
    # Maximum number of blocks
    max_blocks: int
143

144
145
    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
146
            id=self.batch_id,
147
            request_ids=[r.id for r in self.requests],
148
            size=len(self),
149
            max_tokens=self.num_blocks * BLOCK_SIZE,
150
151
152
        )

    @classmethod
Daniël de Kok's avatar
Daniël de Kok committed
153
154
155
    def batch_tokenized_inputs(
        cls, requests: Iterable[generate_pb2.Request], tokenizer
    ):
156
157
        batch_inputs = []
        max_truncation = 0
158
        for r in requests:
Daniël de Kok's avatar
Daniël de Kok committed
159
            batch_inputs.append(concat_text_chunks(r.input_chunks.chunks))
160
161
162
163
164
            max_truncation = max(max_truncation, r.truncate)

        batch_tokenized_inputs = tokenizer(
            batch_inputs, truncation=True, max_length=max_truncation
        )["input_ids"]
165
        return batch_tokenized_inputs
166

drbh's avatar
drbh committed
167
168
169
170
171
172
173
174
175
    @classmethod
    def from_tokenized(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        batch_tokenized_inputs,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
176
        sliding_window = get_sliding_windows()
177
        position_ids = []
178
        cu_seqlen_prefill = [0]
179
180
        start_slots = []
        slot_indices = []
181
        prefill_cache_indices = []
182
183

        input_lengths = []
184
185
        prefix_offsets = []
        read_offsets = []
186
        all_input_ids = []
187
        requests_idx_mapping = {}
188

189
190
191
192
193
194
        all_prefill_logprobs = True
        no_prefill_logprobs = True
        prefill_head_indices = []
        prefill_next_token_indices = []
        prefill_cu_outlens = [0]

195
        next_token_chooser_parameters = []
196
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
197
        top_n_tokens = []
198

drbh's avatar
drbh committed
199
200
201
        adapter_indices_list = []
        adapter_set = set()

202
203
        # Cumulative length
        cumulative_length = 0
204
        cumulative_max_length = 0
205
        prefill_out_cumulative_length = 0
206

207
        num_blocks = 0
208
        max_seqlen = 0
209
        max_length = 0
210
        max_blocks = 0
211

212
213
214
        block_tables = []
        slots = []

215
        # Parse batch
216
217
218
        for i, (r, tokenized_input) in enumerate(
            zip(pb.requests, batch_tokenized_inputs)
        ):
219
220
221
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

222
            tokenized_input = tokenized_input[-r.truncate :]
223
224
225
226
227
            if (
                tokenized_input[0] == tokenizer.bos_token_id
                and tokenized_input[1] == tokenizer.bos_token_id
            ):
                tokenized_input = tokenized_input[1:]
228

229
230
            input_length = len(tokenized_input)
            input_lengths.append(input_length)
231

232
            prefix_offsets.append(input_length - 5)
233
            read_offsets.append(input_length)
234

235
            all_input_ids.append(tokenized_input)
236
237

            # Position ids
238
239
            request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
            position_ids.append(request_position_ids)
240
241

            # Add cumulative lengths of all previous inputs
242
            cu_seqlen_prefill.append(cumulative_length + input_length)
243

244
            next_token_chooser_parameters.append(r.parameters)
245

246
247
248
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
249
            max_new_tokens = stopping_criteria.max_new_tokens
250
            stopping_criterias.append(stopping_criteria)
Nicolas Patry's avatar
Nicolas Patry committed
251
            top_n_tokens.append(r.top_n_tokens)
252

Nicolas Patry's avatar
Nicolas Patry committed
253
254
            ADAPTER_TO_INDEX = get_adapter_to_index()
            adapter_index = ADAPTER_TO_INDEX.get(r.adapter_id, 0)
drbh's avatar
drbh committed
255
256
257
            adapter_indices_list.append(torch.full((input_length,), adapter_index))
            adapter_set.add(adapter_index)

258
259
            # Paged attention
            # Remove one as the first token des not have a past
Nicolas Patry's avatar
Nicolas Patry committed
260
            speculative_length = get_speculate()
drbh's avatar
drbh committed
261
            speculative_length = 0 if speculative_length is None else speculative_length
Nicolas Patry's avatar
Nicolas Patry committed
262
            total_tokens = input_length + max_new_tokens - 1 + speculative_length
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

            # blocks and slots can be empty (for example in warmup)
            if not r.blocks:
                needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
                request_blocks = [
                    b for b in range(num_blocks, num_blocks + needed_blocks)
                ]
                request_slots = [
                    s
                    for b in request_blocks
                    for s in range(b * BLOCK_SIZE, (b + 1) * BLOCK_SIZE)
                ]
            else:
                request_blocks = r.blocks
                request_slots = r.slots

            block_tables.append(request_blocks)
            slots.extend(request_slots[:total_tokens])
            num_blocks += len(request_blocks)
282
283
284
285
286
287
288
289
290
            start_slots.append(cumulative_max_length)

            request_slot_indices = torch.arange(
                cumulative_max_length,
                cumulative_max_length + input_length,
                dtype=torch.int64,
            )
            slot_indices.append(request_slot_indices)

291
292
293
294
295
296
297
298
299
            # Create tensor to slice into the kv tensor in prefill
            if sliding_window is not None:
                request_prefill_cache_indices = torch.arange(
                    cumulative_length + max(0, input_length - sliding_window),
                    cumulative_length + input_length,
                    dtype=torch.int64,
                )
                prefill_cache_indices.append(request_prefill_cache_indices)

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
            all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
            no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs

            if r.prefill_logprobs:
                prefill_head_indices.append(request_position_ids + cumulative_length)
                prefill_next_token_indices.append(
                    prefill_out_cumulative_length + input_length - 1
                )
                prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
                prefill_out_cumulative_length += input_length
            else:
                prefill_head_indices.append(
                    torch.tensor(
                        [cumulative_length + input_length - 1], dtype=torch.int32
                    )
                )
                prefill_next_token_indices.append(prefill_out_cumulative_length)
                prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
                prefill_out_cumulative_length += 1

320
321
            # Update
            cumulative_length += input_length
322
323
            cumulative_max_length += total_tokens
            max_seqlen = max(max_seqlen, input_length)
324
            max_blocks = max(max_blocks, len(request_blocks))
OlivierDehaene's avatar
OlivierDehaene committed
325
326
327
            max_length = max(
                max_length, input_length + max_new_tokens + speculative_length
            )
328

drbh's avatar
drbh committed
329
330
331
332
        adapter_indices = torch.cat(adapter_indices_list).to(
            dtype=torch.int64, device=device
        )

333
        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
drbh's avatar
drbh committed
334
            next_token_chooser_parameters, dtype, device, tokenizer
335
        )
336
        start_slots = torch.tensor(start_slots, dtype=torch.int64)
337
338
339
340
341
342
343

        # Padded all_input_ids_tensor
        all_input_ids_tensor = np.zeros(
            (len(all_input_ids), max_length), dtype=np.int64
        )
        for i, input_ids in enumerate(all_input_ids):
            all_input_ids_tensor[i, : len(input_ids)] = input_ids
344

345
346
347
348
349
        # Create tensors on device
        all_input_ids_tensor = torch.tensor(
            all_input_ids_tensor, dtype=torch.int64, device=device
        )

350
351
352
        if len(pb.requests) > 1:
            input_ids = np.concatenate(all_input_ids, dtype=np.int64)
            position_ids = torch.cat(position_ids)
353
            slot_indices = torch.cat(slot_indices)
354
355
            if sliding_window is not None:
                prefill_cache_indices = torch.cat(prefill_cache_indices)
356
357
358
        else:
            input_ids = all_input_ids[0]
            position_ids = position_ids[0]
359
            slot_indices = slot_indices[0]
360
361
            if sliding_window is not None:
                prefill_cache_indices = prefill_cache_indices[0]
362

363
364
        cu_seqlen_prefill = torch.tensor(
            cu_seqlen_prefill, device=device, dtype=torch.int32
365
366
367
        )
        position_ids = position_ids.to(device)
        slot_indices = slot_indices.to(device)
368
369
370
        prefill_cache_indices = (
            prefill_cache_indices.to(device) if sliding_window is not None else None
        )
371
        input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
372
373
        input_lengths_tensor = torch.tensor(
            input_lengths, dtype=torch.int32, device=device
374
        )
375

drbh's avatar
drbh committed
376
377
378
379
380
        adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
        adapter_segments = torch.tensor(
            adapter_segments, dtype=torch.int32, device=device
        )

381
382
        if all_prefill_logprobs:
            prefill_head_indices = None
383
            prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
384
        elif no_prefill_logprobs:
385
            prefill_head_indices = cu_seqlen_prefill[1:] - 1
386
387
388
389
390
391
392
393
            prefill_next_token_indices = None
        else:
            prefill_head_indices = torch.tensor(
                torch.cat(prefill_head_indices), dtype=torch.int64, device=device
            )
            prefill_next_token_indices = torch.tensor(
                prefill_next_token_indices, dtype=torch.int64, device=device
            )
Nicolas Patry's avatar
Nicolas Patry committed
394
395
396
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )
397

398
399
400
401
402
403
404
405
        slots = torch.tensor(slots, dtype=torch.int64, device=device)
        block_tables_tensor = torch.zeros(
            (len(block_tables), max_blocks), dtype=torch.int32, device="cpu"
        )
        for i, request_blocks in enumerate(block_tables):
            block_tables_tensor[i, : len(request_blocks)] = torch.tensor(request_blocks)
        block_tables_tensor = block_tables_tensor.to(device)

406
407
408
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
409
            requests_idx_mapping=requests_idx_mapping,
410
411
            input_ids=input_ids,
            position_ids=position_ids,
412
            cu_seqlen_prefill=cu_seqlen_prefill,
413
            prefill_cache_indices=prefill_cache_indices,
414
415
            start_slots=start_slots,
            slot_indices=slot_indices,
416
417
418
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
419
            max_seqlen=max_seqlen,
420
421
422
            prefill_head_indices=prefill_head_indices,
            prefill_next_token_indices=prefill_next_token_indices,
            prefill_cu_outlens=prefill_cu_outlens,
423
            input_lengths=input_lengths,
424
            input_lengths_tensor=input_lengths_tensor,
425
426
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
427
            all_input_ids=all_input_ids,
428
429
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_chooser=next_token_chooser,
430
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
431
432
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
433
            num_blocks=num_blocks,
434
            max_blocks=max_blocks,
drbh's avatar
drbh committed
435
436
437
438
439
440
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
Nicolas Patry's avatar
Nicolas Patry committed
441
            speculative_ids=None,
442
443
        )

444
445
446
447
448
449
450
451
452
453
454
    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
        batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer)
        return cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)

455
    @tracer.start_as_current_span("filter")
456
457
    def filter(self, request_ids: List[int]) -> "FlashCausalLMBatch":
        if len(request_ids) == 0:
458
459
            raise ValueError("Batch must have at least one request")
        # We assume that if len(requests) == len(self) then the requests are the same
460
        if len(request_ids) == len(self):
461
462
            return self

463
        device = self.input_ids.device
464

465
466
467
        # New values after filtering
        requests_idx_mapping = {}

468
469
470
        # Used to index into tensors
        indices = []

471
472
473
        # slots to keep after filtering
        slot_filtering_indices = torch.zeros(
            self.slots.shape[0], dtype=torch.bool, device=device
474
475
        )

476
        # Create on CPU to only move to GPU once instead of at every copy
477
        slot_indices = torch.empty(len(request_ids), dtype=torch.int64)
478
479
        max_seqlen = 0

480
        requests = []
481
482
        start_slots = []
        block_tables = []
483
484
        all_input_ids = []

485
        input_lengths = []
486
487
        prefix_offsets = []
        read_offsets = []
488

489
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
490
        top_n_tokens = []
drbh's avatar
drbh committed
491
        adapter_set = set()
492

493
        num_blocks = 0
494
495
496
497
        max_blocks = 0
        # Cumulative length
        cumulative_max_length = 0

498
499
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
500
            indices.append(idx)
501
502
503
            requests_idx_mapping[request_id] = i

            requests.append(self.requests[idx])
504
505
506
507

            # Get length
            request_input_length = self.input_lengths[idx]
            max_seqlen = max(max_seqlen, request_input_length)
508

509
510
511
            all_input_ids.append(self.all_input_ids[idx])

            input_lengths.append(request_input_length)
512
513
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
514

515
516
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
517

Nicolas Patry's avatar
Nicolas Patry committed
518
519
            top_n_tokens.append(self.top_n_tokens[idx])

Nicolas Patry's avatar
Nicolas Patry committed
520
521
            ADAPTER_TO_INDEX = get_adapter_to_index()
            adapter_index = ADAPTER_TO_INDEX.get(self.requests[idx].adapter_id, 0)
drbh's avatar
drbh committed
522
523
            adapter_set.add(adapter_index)

524
            remaining_tokens = (
525
526
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
527

528
            request_block_table = self.block_tables[idx]
529
            num_blocks += len(request_block_table)
530
531
532
            block_tables.append(request_block_table)
            start_slots.append(cumulative_max_length)

533
            # Copy to tensor (CPU)
534
            slot_indices[i] = cumulative_max_length + request_input_length - 1
535
536

            # Set slice
537
538
539
540
541
            slot_filtering_indices[
                self.start_slots[idx] : self.start_slots[idx]
                + request_input_length
                + remaining_tokens
                - 1
542
543
544
            ] = True

            cumulative_max_length += request_input_length + remaining_tokens - 1
545

546
547
            max_blocks = max(max_blocks, len(request_block_table))

548
549
550
        # Index into tensors
        input_ids = self.input_ids[indices]
        position_ids = self.position_ids[indices]
drbh's avatar
drbh committed
551
        adapter_indices = self.adapter_meta.adapter_indices[indices]
552
        all_input_ids_tensor = self.all_input_ids_tensor[indices]
553
554
555
        block_tables_tensor = self.block_tables_tensor[indices]
        input_lengths_tensor = self.input_lengths_tensor[indices]
        slots = self.slots[slot_filtering_indices]
556
        next_token_chooser = self.next_token_chooser.filter(indices)
Nicolas Patry's avatar
Nicolas Patry committed
557
        top_n_tokens_tensor = self.top_n_tokens_tensor[indices]
OlivierDehaene's avatar
OlivierDehaene committed
558
559
560
        speculative_ids = (
            self.speculative_ids[indices] if self.speculative_ids is not None else None
        )
561
562

        start_slots = torch.tensor(start_slots, dtype=torch.int64)
563

564
        # Move to GPU now that we have the whole tensor
565
        slot_indices = slot_indices.to(device)
566

drbh's avatar
drbh committed
567
568
569
570
571
        adapter_segments, adapter_segment_indices = find_segments(adapter_indices)
        adapter_segments = torch.tensor(
            adapter_segments, dtype=torch.int32, device=device
        )

572
        return type(self)(
573
574
575
576
577
            batch_id=self.batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
578
            cu_seqlen_prefill=None,
579
            prefill_cache_indices=None,
580
581
582
583
584
            start_slots=start_slots,
            slot_indices=slot_indices,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
585
            max_seqlen=max_seqlen,
586
587
588
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
589
            input_lengths=input_lengths,
590
            input_lengths_tensor=input_lengths_tensor,
591
592
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
593
594
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
595
            next_token_chooser=next_token_chooser,
596
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
597
598
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
599
            num_blocks=num_blocks,
600
            max_blocks=max_blocks,
Nicolas Patry's avatar
Nicolas Patry committed
601
            speculative_ids=speculative_ids,
drbh's avatar
drbh committed
602
603
604
605
606
607
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
608
609
610
611
612
613
614
615
616
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
        # Batch attributes
        requests = []
        requests_idx_mapping = {}

617
        num_blocks = 0
618
619
620
621
622
623
624
625
        total_batch_size = 0
        total_slots = 0
        max_blocks = 0
        max_length = 0
        max_seqlen = 0
        for b in batches:
            total_batch_size += len(b)
            total_slots += len(b.slots)
626
            num_blocks += b.num_blocks
OlivierDehaene's avatar
OlivierDehaene committed
627
628
629
            speculative_length = (
                b.speculative_ids.shape[1] if b.speculative_ids is not None else 0
            )
630
631
632
633
634
635
636
            max_blocks = max(max_blocks, b.max_blocks)
            max_seqlen = max(max_seqlen, b.max_seqlen)
            max_length = max(
                max_length,
                max(
                    input_length
                    + stopping_criteria.max_new_tokens
Nicolas Patry's avatar
Nicolas Patry committed
637
                    + speculative_length
638
639
640
641
642
643
                    - stopping_criteria.current_tokens
                    for input_length, stopping_criteria in zip(
                        b.input_lengths, b.stopping_criterias
                    )
                ),
            )
644
645
646

        input_ids = batches[0].input_ids.new_empty(total_batch_size)
        position_ids = batches[0].position_ids.new_empty(total_batch_size)
647
648
649
650
651
652
653
654
655
656
        slots = batches[0].slots.new_empty(total_slots)
        slot_indices = batches[0].slot_indices.new_empty(total_batch_size)
        input_lengths_tensor = batches[0].input_lengths_tensor.new_empty(
            total_batch_size
        )
        block_tables_tensor = batches[0].block_tables_tensor.new_zeros(
            (total_batch_size, max_blocks)
        )
        all_input_ids_tensor = batches[0].all_input_ids_tensor.new_zeros(
            (total_batch_size, max_length)
657
        )
Nicolas Patry's avatar
Nicolas Patry committed
658
659
660
        top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
            total_batch_size,
        )
drbh's avatar
drbh committed
661
662
663
664
665
666
667
668
        total_indices_size = sum(
            b.adapter_meta.adapter_indices.shape[0] for b in batches
        )
        adapter_indices = batches[0].adapter_meta.adapter_indices.new_empty(
            total_indices_size
        )
        adapter_set = set()
        adapter_segment_builder = SegmentConcatBuilder()
669

670
671
        start_slots = []
        block_tables = []
672
673
674
        all_input_ids = []

        input_lengths = []
675
676
        prefix_offsets = []
        read_offsets = []
677

678
        next_token_chooser_parameters = []
679
        fsm_grammar_states = []
680
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
681
        top_n_tokens = []
682

683
        # Cumulative length
684
        cumulative_batch_size = 0
685
        cumulative_slots = 0
drbh's avatar
drbh committed
686
        cumulative_adapter_indices_size = 0
687
688
689

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
690
691
692
693
694
695
696
697

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + cumulative_batch_size

698
699
            start_index = cumulative_batch_size
            end_index = cumulative_batch_size + len(batch)
700
701
            slots_start_index = cumulative_slots
            slots_end_index = cumulative_slots + len(batch.slots)
702
703
704
705

            # Copy tensors (GPU)
            input_ids[start_index:end_index] = batch.input_ids
            position_ids[start_index:end_index] = batch.position_ids
706
707
            slot_indices[start_index:end_index] = batch.slot_indices + cumulative_slots
            input_lengths_tensor[start_index:end_index] = batch.input_lengths_tensor
Nicolas Patry's avatar
Nicolas Patry committed
708
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor
709
            slots[slots_start_index:slots_end_index] = batch.slots
710

drbh's avatar
drbh committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
            # Copy over adapter indices
            adapter_start_index = cumulative_adapter_indices_size
            adapter_end_index = (
                cumulative_adapter_indices_size
                + batch.adapter_meta.adapter_indices.shape[0]
            )
            adapter_indices[adapter_start_index:adapter_end_index] = (
                batch.adapter_meta.adapter_indices
            )
            cumulative_adapter_indices_size = adapter_end_index
            adapter_set.update(batch.adapter_meta.adapter_set)
            adapter_segment_builder.concat(
                batch.adapter_meta.adapter_segments, batch.adapter_meta.segment_indices
            )

726
727
728
            all_input_ids_tensor[
                start_index:end_index, : batch.all_input_ids_tensor.shape[1]
            ] = batch.all_input_ids_tensor[:, :max_length]
729

730
731
732
            block_tables_tensor[
                start_index:end_index, : batch.block_tables_tensor.shape[1]
            ] = batch.block_tables_tensor[:, :max_blocks]
733

734
735
736
            start_slots.append(batch.start_slots + cumulative_slots)

            block_tables.extend(batch.block_tables)
737
738
            all_input_ids.extend(batch.all_input_ids)

739
            input_lengths.extend(batch.input_lengths)
740
741
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
742

743
            next_token_chooser_parameters.extend([r.parameters for r in batch.requests])
744
            fsm_grammar_states.extend(batch.next_token_chooser.fsm_grammar_states)
745
746
            stopping_criterias.extend(batch.stopping_criterias)

Nicolas Patry's avatar
Nicolas Patry committed
747
748
            top_n_tokens.extend(batch.top_n_tokens)

749
            # Update
750
            cumulative_batch_size += len(batch)
751
            cumulative_slots += len(batch.slots)
752

753
        start_slots = torch.concat(start_slots)
754

755
        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
756
757
758
            next_token_chooser_parameters,
            dtype=batches[0].next_token_chooser.dtype,
            device=batches[0].next_token_chooser.device,
drbh's avatar
drbh committed
759
            tokenizer=batches[0].next_token_chooser.tokenizer,
760
            fsm_grammar_states=fsm_grammar_states,
761
762
        )

OlivierDehaene's avatar
OlivierDehaene committed
763
764
765
766
767
        speculative_ids = (
            torch.cat([b.speculative_ids for b in batches], dim=0)
            if batches[0].speculative_ids is not None
            else None
        )
Nicolas Patry's avatar
Nicolas Patry committed
768

drbh's avatar
drbh committed
769
770
        adapter_segments, adapter_segment_indices = adapter_segment_builder.build()

771
        return cls(
772
773
            batch_id=batches[0].batch_id,
            requests=requests,
774
            requests_idx_mapping=requests_idx_mapping,
775
776
            input_ids=input_ids,
            position_ids=position_ids,
777
            cu_seqlen_prefill=None,
778
            prefill_cache_indices=None,
779
780
781
782
783
            start_slots=start_slots,
            slot_indices=slot_indices,
            block_tables=block_tables,
            block_tables_tensor=block_tables_tensor,
            slots=slots,
784
            max_seqlen=max_seqlen,
785
786
787
            prefill_head_indices=None,
            prefill_next_token_indices=None,
            prefill_cu_outlens=None,
788
            input_lengths=input_lengths,
789
            input_lengths_tensor=input_lengths_tensor,
790
791
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
792
793
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
794
            next_token_chooser=next_token_chooser,
795
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
796
797
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
798
            num_blocks=num_blocks,
799
            max_blocks=max_blocks,
OlivierDehaene's avatar
OlivierDehaene committed
800
            speculative_ids=speculative_ids,
drbh's avatar
drbh committed
801
802
803
804
805
806
            adapter_meta=AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_segment_indices,
            ),
807
808
809
810
811
812
        )

    def __len__(self):
        return len(self.requests)


813
814
815
816
817
818
819
820
821
822
823
824
ADAPTER_LAYERS = [
    "q_proj",
    "k_proj",
    "v_proj",
    "o_proj",
    "gate_proj",
    "up_proj",
    "down_proj",
]
ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"}


825
826
827
class FlashCausalLM(Model):
    def __init__(
        self,
drbh's avatar
drbh committed
828
        model_id: str,
829
830
831
832
833
834
835
836
837
838
839
840
        model_class,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
        lora_adapter_ids: Optional[list] = [],
        tokenizer_class: PreTrainedTokenizerBase = AutoTokenizer,
        config_class: PreTrainedTokenizerBase = AutoConfig,
        default_dtype=torch.float16,
        aliases=None,
        # Used for Santacoder override of config
841
842
843
        num_kv_heads: Optional[int] = None,
        # Deepseek V2 uses different QK and V dims.
        head_size: Optional[int] = None,
844
        skip_special_tokens: bool = True,
845
    ):
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = default_dtype if dtype is None else dtype
        elif SYSTEM == "ipex":
            if hasattr(torch, "xpu") and torch.xpu.is_available():
                device = torch.device(f"xpu:{rank}")
                dtype = default_dtype if dtype is None else dtype
            else:
                device = torch.device("cpu")
                # Float16 doesn't exist on target.
                dtype = torch.bfloat16 if dtype is None else dtype
        else:
            raise NotImplementedError(f"{model_class} is only available on GPU")

        tokenizer = tokenizer_class.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        try:
            generation_config = GenerationConfig.from_pretrained(
                model_id, revision=revision, trust_remote_code=trust_remote_code
            )
            if isinstance(generation_config.eos_token_id, (list, set)):
                # TODO Huge hack
                tokenizer._eos_token_ids = set(generation_config.eos_token_id)
        except Exception:
            pass

        config = config_class.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
        config.speculator = speculator

        torch.distributed.barrier(group=self.process_group)

886
        weights_loader = get_loader(quantize, model_id, revision)
887
888
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(
889
890
891
892
893
894
            filenames,
            device,
            dtype,
            process_group=self.process_group,
            aliases=aliases,
            weights_loader=weights_loader,
895
896
897
898
899
900
901
902
903
904
        )

        prefix = ""
        model = model_class(prefix, config, weights)
        torch.distributed.barrier(group=self.process_group)

        # VLM models define the config we care about in their text_config
        text_config = getattr(config, "text_config", None)
        if text_config is not None:
            config = text_config
905
906
907
908
909
910

        if getattr(config, "sliding_window", None) is not None:
            set_sliding_window(config.sliding_window)
        else:
            config.sliding_window = None

911
912
913
        self.num_layers = config.num_hidden_layers
        # Validation is done in the model itself
        if num_kv_heads is None:
914
915
            num_kv_heads = getattr(config, "num_key_value_heads", None)
            # GPT-2 workaround
916
            if num_kv_heads is None:
917
918
919
                num_kv_heads = getattr(config, "n_head", None)
        if num_kv_heads is None:
            raise ValueError("Cannot get the number of key/value heads")
920
921
922
923
924
925
        self.num_kv_heads = (
            num_kv_heads // self.process_group.size()
            if num_kv_heads > 1
            else num_kv_heads
        )
        assert self.num_kv_heads > 0
926
927
928
929
930

        if head_size is None:
            self.head_size = config.hidden_size // config.num_attention_heads
        else:
            self.head_size = head_size
931

932
        self.cuda_graphs = {}
933
        self.kv_cache = []
934

935
        super().__init__(
drbh's avatar
drbh committed
936
            model_id=model_id,
937
            model=model,
938
939
940
941
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
942
943
            rank=rank,
            world_size=world_size,
944
            sliding_window=config.sliding_window,
945
946
947
948
949
950
        )

    @property
    def batch_type(self) -> Type[FlashCausalLMBatch]:
        return FlashCausalLMBatch

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
    def max_past(self) -> int:
        return getattr(self.model, "max_past", None)

    def init_kv_cache(
        self,
        num_blocks: int,
        num_layers: int,
        num_heads: int,
        head_size: int,
        dtype: torch.dtype,
        device: torch.device,
    ):
        self.kv_cache = []
        empty_cache()

        element_size = torch.tensor([], dtype=dtype).element_size()
Wang, Yi's avatar
Wang, Yi committed
967
968
969
970
        if SYSTEM == "ipex" and device.type == "xpu":
            x = 1
        else:
            x = BLOCK_SIZE // element_size
971

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
        if FLASH_DECODING:
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, BLOCK_SIZE, num_heads, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, BLOCK_SIZE, num_heads, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
        elif SYSTEM == "ipex" and device == torch.device("cpu"):
Wang, Yi's avatar
Wang, Yi committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, num_heads, BLOCK_SIZE, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, num_heads, BLOCK_SIZE, head_size),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
        else:
            self.kv_cache = [
                (
                    torch.empty(
                        (num_blocks, num_heads, head_size // x, BLOCK_SIZE, x),
                        dtype=dtype,
                        device=device,
                    ),
                    torch.empty(
                        (num_blocks, num_heads, head_size, BLOCK_SIZE),
                        dtype=dtype,
                        device=device,
                    ),
                )
                for _ in range(num_layers)
            ]
1020

1021
1022
1023
    def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
        input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
1024
        slots = torch.arange(bs, dtype=torch.int64, device=self.device)
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
        input_lengths = torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
        block_tables = (
            torch.arange(max_bt, dtype=torch.int32, device=self.device)
            .repeat(bs)
            .reshape((bs, max_bt))
        )

        self.cuda_graphs[bs] = {
            "input_ids": input_ids,
            "position_ids": position_ids,
1035
            "kv_cache": self.kv_cache,
1036
1037
1038
1039
            "block_tables": block_tables,
            "slots": slots,
            "input_lengths": input_lengths,
        }
1040
        input_lengths_ = Seqlen(input_lengths=input_lengths)
1041
1042
1043
1044
1045
1046
1047
1048
1049
        graph = torch.cuda.CUDAGraph()
        self.cuda_graphs[bs]["graph"] = graph

        torch.cuda.synchronize()
        # Run once outside to warmup
        self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=None,
1050
            kv_cache=self.kv_cache,
1051
1052
            block_tables=block_tables,
            slots=slots,
1053
            input_lengths=input_lengths_,
1054
            max_s=max_s,
1055
            prefill_cache_indices=None,
1056
1057
1058
1059
1060
            lm_head_indices=None,
        )
        torch.cuda.synchronize()

        with torch.cuda.graph(graph, pool=MEM_POOL):
1061
            input_lengths = Seqlen(input_lengths=input_lengths)
1062
            logits, speculative_logits = self.model.forward(
1063
1064
1065
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=None,
1066
                kv_cache=self.kv_cache,
1067
1068
1069
1070
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
1071
                prefill_cache_indices=None,
1072
1073
                lm_head_indices=None,
            )
1074
1075
            self.cuda_graphs[bs]["logits"] = logits
            self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
1076
1077
        torch.cuda.synchronize()

1078
    def warmup(self, batch: FlashCausalLMBatch):
1079
        # The warmup batch is the biggest batch we could ever receive
Nicolas Patry's avatar
Nicolas Patry committed
1080
1081
        empty_cache()

1082
        try:
1083
1084
            self.init_kv_cache(
                batch.num_blocks,
1085
1086
1087
1088
1089
1090
                self.num_layers,
                self.num_kv_heads,
                self.head_size,
                self.dtype,
                self.device,
            )
1091
            max_bt = batch.max_blocks
1092
            max_s = max_bt * BLOCK_SIZE
fxmarty's avatar
fxmarty committed
1093
1094
1095

            if SYSTEM == "rocm" and os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False):
                torch.cuda.tunable.tuning_enable(False)
1096
            _, batch, _ = self.generate_token(batch)
OlivierDehaene's avatar
OlivierDehaene committed
1097
        except torch.cuda.OutOfMemoryError as e:
1098
            raise RuntimeError(
1099
1100
                f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
                f"You need to decrease `--max-batch-prefill-tokens`"
1101
            ) from e
1102

Nicolas Patry's avatar
Nicolas Patry committed
1103
        synchronize(self.device)
1104

1105
1106
        # Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm)
        # Calculate the number of blocks that can be allocated with the free memory
1107
1108
1109
1110
        dtype_size = torch.tensor([], dtype=self.dtype).element_size()
        cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size
        total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size

Nicolas Patry's avatar
Nicolas Patry committed
1111
        free_memory = get_free_memory(self.device, MEMORY_FRACTION)
drbh's avatar
drbh committed
1112
        batch_num_blocks = batch.num_blocks if batch is not None else 0
1113
1114

        num_blocks = (
1115
1116
            # Leave 5% for some wiggle room
            int((free_memory * 0.95) // total_cache_size)
1117
            # Add batch.num_blocks as we allocated it above, so it is included in the peak memory.
drbh's avatar
drbh committed
1118
            + batch_num_blocks
1119
1120
        )

1121
        del batch
1122

1123
        self.init_kv_cache(
1124
1125
1126
1127
1128
1129
1130
1131
            num_blocks,
            self.num_layers,
            self.num_kv_heads,
            self.head_size,
            self.dtype,
            self.device,
        )

fxmarty's avatar
fxmarty committed
1132
1133
1134
1135
1136
        if SYSTEM == "rocm":
            if (
                os.environ.get("PYTORCH_TUNABLEOP_ENABLED") is None
                or os.environ.get("PYTORCH_TUNABLEOP_ENABLED") == "1"
            ):
1137
1138
                torch.cuda.tunable.enable()

fxmarty's avatar
fxmarty committed
1139
1140
1141
1142
1143
1144
1145
1146
                if os.environ.get("PYTORCH_TUNABLEOP_TUNING") != "0":
                    torch.cuda.tunable.tuning_enable(True)

                if os.environ.get("PYTORCH_TUNABLEOP_SEQLENS") is not None:
                    tuning_sequences = [
                        int(val)
                        for val in os.environ["PYTORCH_TUNABLEOP_SEQLENS"].split(",")
                    ]
1147
                elif CUDA_GRAPHS is not None:
fxmarty's avatar
fxmarty committed
1148
                    tuning_sequences = CUDA_GRAPHS
1149
1150
1151
                else:
                    # For seqlen = 1, we dispatch to LLMM1 kernel.
                    tuning_sequences = [2, 3, 4, 5, 6, 7]
fxmarty's avatar
fxmarty committed
1152
1153
1154

                tunableop_filepath = os.path.join(
                    HUGGINGFACE_HUB_CACHE,
Nicolas Patry's avatar
Nicolas Patry committed
1155
                    f"tunableop_{MODEL_ID.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv",
fxmarty's avatar
fxmarty committed
1156
1157
                )

1158
1159
1160
                log_master(
                    logger.info,
                    f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`.",
fxmarty's avatar
fxmarty committed
1161
1162
1163
                )

                if os.path.isfile(tunableop_filepath):
1164
1165
1166
                    log_master(
                        logger.info,
                        f"The file {tunableop_filepath} already exists and will be reused.",
fxmarty's avatar
fxmarty committed
1167
1168
1169
1170
1171
1172
                    )
                    torch.cuda.tunable.read_file(tunableop_filepath)

                os.makedirs(HUGGINGFACE_HUB_CACHE, exist_ok=True)

                for seqlen in tuning_sequences:
1173
                    log_master(logger.info, f"Warming up TunableOp for seqlen={seqlen}")
fxmarty's avatar
fxmarty committed
1174
1175
1176
1177
                    self.tunableop_warmup(seqlen)
                    torch.cuda.tunable.write_file(tunableop_filepath)
                torch.cuda.tunable.tuning_enable(False)
            else:
1178
1179
1180
                log_master(
                    logger.info,
                    "PyTorch ROCm TunableOp (https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable) is disabled. TunableOp brings an additional 5-8% latency improvement for small sequence lengths but requires a warmup. If necessary, please use the environment variable PYTORCH_TUNABLEOP_ENABLED=1 to enable TunableOp.",
fxmarty's avatar
fxmarty committed
1181
1182
                )

1183
        if CUDA_GRAPHS:
1184
            try:
1185
1186
1187
                log_master(
                    logger.info, f"Cuda Graphs are enabled for sizes {CUDA_GRAPHS}"
                )
1188
                # Warmup cuda graphs
1189
                for bs in CUDA_GRAPHS:
1190
1191
                    if self.speculate is None or self.speculate + 1 <= bs:
                        self.cuda_graph_warmup(bs, max_s, max_bt)
OlivierDehaene's avatar
OlivierDehaene committed
1192
            except torch.cuda.OutOfMemoryError:
1193
                logger.exception(f"Decode cuda graph warmup failed")
1194
        else:
1195
1196
1197
            log_master(
                logger.info, f"Cuda Graphs are disabled (CUDA_GRAPHS={CUDA_GRAPHS})."
            )
1198

1199
        return int(num_blocks * BLOCK_SIZE)
1200

fxmarty's avatar
fxmarty committed
1201
1202
1203
1204
1205
    def tunableop_warmup(self, seqlen: int):
        input_ids = torch.zeros(seqlen, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(seqlen, dtype=torch.int32, device=self.device)
        slots = torch.arange(seqlen, dtype=torch.int64, device=self.device)

fxmarty's avatar
fxmarty committed
1206
1207
        # Dummy value, some models (starcoder2) don't accept `None`.
        input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device)
1208
        input_lengths = Seqlen(input_lengths=input_lengths)
fxmarty's avatar
fxmarty committed
1209

fxmarty's avatar
fxmarty committed
1210
1211
1212
1213
1214
1215
1216
        # We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
        self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=torch.tensor(
                [0, seqlen], device=self.device, dtype=torch.int32
            ),
1217
            kv_cache=self.kv_cache,
fxmarty's avatar
fxmarty committed
1218
            block_tables=None,
fxmarty's avatar
fxmarty committed
1219
            input_lengths=input_lengths,
fxmarty's avatar
fxmarty committed
1220
1221
1222
            slots=slots,
            max_s=seqlen,
            lm_head_indices=None,
1223
            prefill_cache_indices=None,
fxmarty's avatar
fxmarty committed
1224
1225
        )

1226
    def forward(
drbh's avatar
drbh committed
1227
        self, batch: FlashCausalLMBatch, adapter_data: AdapterBatchData
1228
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
1229
        # Model Forward
Nicolas Patry's avatar
Nicolas Patry committed
1230
        if batch.speculative_ids is not None:
OlivierDehaene's avatar
OlivierDehaene committed
1231
1232
1233
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
1234
            kv_cache = self.kv_cache
OlivierDehaene's avatar
OlivierDehaene committed
1235
1236
1237
1238
1239
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
1240
1241
1242

            speculative_ids = batch.speculative_ids

OlivierDehaene's avatar
OlivierDehaene committed
1243
            B, speculative_length = speculative_ids.shape
Nicolas Patry's avatar
Nicolas Patry committed
1244
            new_length = speculative_length + 1
OlivierDehaene's avatar
OlivierDehaene committed
1245
1246
1247
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1248
1249
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
OlivierDehaene's avatar
OlivierDehaene committed
1250
1251
1252
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1253
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
OlivierDehaene's avatar
OlivierDehaene committed
1254
1255
1256
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
1257
1258

            # Add Copy the block tables for all members
OlivierDehaene's avatar
OlivierDehaene committed
1259
1260
1261
1262
1263
1264
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
Nicolas Patry's avatar
Nicolas Patry committed
1265
1266
1267
1268
1269
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
OlivierDehaene's avatar
OlivierDehaene committed
1270
1271
1272
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
1273
            kv_cache = self.kv_cache
OlivierDehaene's avatar
OlivierDehaene committed
1274
1275
1276
1277
1278
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
1279

1280
1281
1282
1283
1284
1285
        if cu_seqlen_prefill is None and self.max_past() is not None:
            # In decode, not prefill, we're actually overwriting the KV-cache
            # in a circular buffer mode.
            # This makes sure the max_s for the decode pass is correct.
            max_s = min(self.max_past(), max_s)

1286
        bs = input_ids.shape[0]
OlivierDehaene's avatar
OlivierDehaene committed
1287
1288
1289
1290
1291
1292
1293
1294
        sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
        if sorted_padded_bs:
            # Get associated cuda graph
            cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
        else:
            cuda_graph = None

        if cu_seqlen_prefill is not None or cuda_graph is None:
1295
            input_lengths = Seqlen(input_lengths=input_lengths)
1296
            logits, speculative_logits = self.model.forward(
1297
1298
1299
1300
1301
1302
1303
1304
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=cu_seqlen_prefill,
                kv_cache=kv_cache,
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
1305
                prefill_cache_indices=batch.prefill_cache_indices,
1306
                lm_head_indices=lm_head_indices,
drbh's avatar
drbh committed
1307
                adapter_data=adapter_data,
1308
            )
1309
1310
1311
            if batch.prefill_cache_indices is not None:
                batch.prefill_cache_indices = None
            return logits, speculative_logits
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
        cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
        cuda_graph["block_tables"][
            : block_tables.shape[0], : block_tables.shape[1]
        ] = block_tables
        cuda_graph["slots"].fill_(-1)
        cuda_graph["slots"][: slots.shape[0]] = slots
        cuda_graph["input_lengths"].zero_()
        cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths

        # Replay the graph
        cuda_graph["graph"].replay()
        # Slice output to the correct shape
1328
1329
1330
1331
1332
1333
1334
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits
1335
1336
1337
1338

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashCausalLMBatch
1339
1340
    ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch], Tuple[int, int]]:
        start = time.time_ns()
1341
        prefill = batch.cu_seqlen_prefill is not None
1342
        prefill_logprobs = batch.prefill_next_token_indices is not None
1343

drbh's avatar
drbh committed
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
        # Update adapter indices for speculative tokens (if present)
        adapter_meta = batch.adapter_meta
        if batch.speculative_ids is not None:
            B, speculative_length = batch.speculative_ids.shape
            new_length = speculative_length + 1
            adapter_indices = (
                adapter_meta.adapter_indices.unsqueeze(-1)
                .expand(B, new_length)
                .reshape(-1)
            )
            adapter_segments = adapter_meta.adapter_segments * new_length
            adapter_meta = AdapterBatchMetadata(
                adapter_indices=adapter_indices,
                adapter_set=adapter_meta.adapter_set,
                adapter_segments=adapter_segments,
                segment_indices=adapter_meta.segment_indices,
            )

        # Assign pointers to adapter weights
        # TODO(travis): don't update this if indices haven't changed
        adapter_data = AdapterBatchData.from_meta(
            adapter_meta,
            self.layer_to_adapter_weights,
            prefill,
            batch.prefill_head_indices,
        )

        out, speculative_logits = self.forward(batch, adapter_data)
1372

1373
1374
        if prefill:
            next_token_logits = (
1375
                out[batch.prefill_next_token_indices] if prefill_logprobs else out
1376
            )
Nicolas Patry's avatar
Nicolas Patry committed
1377
1378
            if speculative_logits is not None:
                speculative_logits = (
OlivierDehaene's avatar
OlivierDehaene committed
1379
1380
1381
                    speculative_logits[batch.prefill_next_token_indices]
                    if prefill_logprobs
                    else speculative_logits
Nicolas Patry's avatar
Nicolas Patry committed
1382
                )
drbh's avatar
drbh committed
1383
1384
1385
1386
            next_adapter_indices = batch.adapter_meta.adapter_indices.new_empty(
                len(batch)
            )

1387
1388
        else:
            next_token_logits = out
drbh's avatar
drbh committed
1389
            next_adapter_indices = batch.adapter_meta.adapter_indices
1390

Nicolas Patry's avatar
Nicolas Patry committed
1391
        speculate = get_speculate()
OlivierDehaene's avatar
OlivierDehaene committed
1392
1393
1394
1395
1396
1397
1398
1399
1400
        (
            next_input_ids,
            next_token_logprobs,
            logprobs,
            accepted_ids,
            speculative_ids,
        ) = batch.next_token_chooser(
            batch.all_input_ids_tensor[:, : batch.max_seqlen],
            next_token_logits,
Nicolas Patry's avatar
Nicolas Patry committed
1401
            speculate,
OlivierDehaene's avatar
OlivierDehaene committed
1402
1403
            batch.speculative_ids,
            speculative_logits,
1404
1405
        )

Nicolas Patry's avatar
Nicolas Patry committed
1406
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
Nicolas Patry's avatar
Nicolas Patry committed
1407
            batch.top_n_tokens, batch.top_n_tokens_tensor, logprobs, accepted_ids
Nicolas Patry's avatar
Nicolas Patry committed
1408
1409
        )

1410
        if prefill:
1411
            if len(batch) > 1 and prefill_logprobs:
1412
1413
                # We create the prefill_tokens_indices tensor that will be used to gather prefill logprobs
                # When batch == 1, we will just use the batch.input_ids values directly
1414
                prefill_tokens_indices = batch.input_ids.new_zeros(len(out))
1415
1416

            next_position_ids = batch.position_ids.new_empty(len(batch))
1417
1418
1419
            batch.slot_indices = batch.slot_indices[batch.cu_seqlen_prefill[1:] - 1]
            # We do not need cu_seqlen_prefill anymore
            batch.cu_seqlen_prefill = None
1420
1421
1422
1423
        else:
            prefill_logprobs = None
            next_position_ids = batch.position_ids

1424
1425
1426
1427
1428
        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []
1429
        stopped = True
1430
1431

        # Zipped iterator
OlivierDehaene's avatar
OlivierDehaene committed
1432
        iterator = zip(batch.input_lengths, batch.all_input_ids, accepted_ids)
1433

1434
1435
1436
1437
        # We do two for loops as the first one can run completely asynchronously from the GPU while for the second
        # one, we need to first do a GPU <-> CPU sync
        # It is faster if we delay this sync for the maximum amount of time

1438
        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
1439
        index = 0
OlivierDehaene's avatar
OlivierDehaene committed
1440
        for i, (input_length, all_input_ids, n_accepted_ids) in enumerate(iterator):
1441
            # Indexing metadata
1442
1443
1444
            start_index = cumulative_length
            end_index = cumulative_length + input_length

1445
            if prefill:
1446
1447
1448
1449
1450
                # Indexing metadata
                out_start_index = batch.prefill_cu_outlens[i]
                out_end_index = batch.prefill_cu_outlens[i + 1]
                out_length = out_end_index - out_start_index

1451
1452
1453
1454
                # Initialize position_ids
                # In decode, we do not need this as we can just increment position ids
                next_position_ids[i] = batch.position_ids[end_index - 1]

drbh's avatar
drbh committed
1455
1456
1457
1458
1459
1460
                # Initialize adapter indices
                # In decode, we only have one token per row in the batch, so grab last index
                next_adapter_indices[i] = batch.adapter_meta.adapter_indices[
                    end_index - 1
                ]

1461
1462
                # Used to gather prefill logprobs
                # Copy batch.input_ids to prefill_token_indices
1463
1464
                if prefill_logprobs:
                    if len(batch) > 1:
drbh's avatar
drbh committed
1465
1466
1467
                        prefill_tokens_indices[out_start_index : out_end_index - 1] = (
                            batch.input_ids[start_index + 1 : start_index + out_length]
                        )
1468
1469
1470
1471
1472
                    else:
                        # Set prefill_tokens_indices to the correct slice
                        prefill_tokens_indices = batch.input_ids[
                            start_index + 1 : start_index + out_length
                        ]
1473

Nicolas Patry's avatar
Nicolas Patry committed
1474
1475
1476
            for j in range(n_accepted_ids):
                batch.all_input_ids_tensor[i, input_length + j] = next_input_ids[index]
                index += 1
1477
1478
1479

            cumulative_length += input_length

drbh's avatar
drbh committed
1480
        # Update values
Nicolas Patry's avatar
Nicolas Patry committed
1481
1482
1483
1484
1485
        batch.input_ids = next_input_ids[accepted_ids.cumsum(dim=-1) - 1]
        batch.speculative_ids = speculative_ids
        batch.position_ids = next_position_ids + accepted_ids
        batch.input_lengths_tensor += accepted_ids
        batch.slot_indices += accepted_ids
drbh's avatar
drbh committed
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
        batch.adapter_meta.adapter_indices = next_adapter_indices

        if prefill:
            # adjust segment lengths to account for all request lengths being 1 during decoding
            adapter_segments, _ = find_segments(batch.adapter_meta.adapter_indices)
            batch.adapter_meta.adapter_segments = torch.tensor(
                adapter_segments,
                dtype=torch.int32,
                device=batch.adapter_meta.adapter_segments.device,
            )
1496

1497
        if prefill and prefill_logprobs:
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
            # Get prefill logprobs
            prefill_logprobs_tensor = torch.log_softmax(out, -1)
            prefill_logprobs = torch.gather(
                prefill_logprobs_tensor, 1, prefill_tokens_indices.view(-1, 1)
            )
            # GPU <-> CPU sync
            prefill_logprobs = prefill_logprobs.view(-1).tolist()

        # GPU <-> CPU sync
        next_token_logprobs = next_token_logprobs.tolist()
Nicolas Patry's avatar
Nicolas Patry committed
1508
        next_token_ids = next_input_ids.tolist()
1509
1510
        accepted_ids = accepted_ids.tolist()
        start_decode = time.time_ns()
1511
1512
1513
1514
1515

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
1516
1517
            batch.prefix_offsets,
            batch.read_offsets,
1518
1519
            batch.stopping_criterias,
            batch.all_input_ids,
1520
1521
            batch.next_token_chooser.do_sample,
            batch.next_token_chooser.seeds,
Nicolas Patry's avatar
Nicolas Patry committed
1522
            batch.top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1523
            accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1524
1525
            batch_top_token_ids,
            batch_top_token_logprobs,
1526
1527
1528
        )

        # For each member of the batch
Nicolas Patry's avatar
Nicolas Patry committed
1529
        index = 0
1530
1531
1532
        for i, (
            request,
            input_length,
1533
1534
            prefix_offset,
            read_offset,
1535
1536
            stopping_criteria,
            all_input_ids,
1537
1538
            do_sample,
            seed,
Nicolas Patry's avatar
Nicolas Patry committed
1539
            top_n_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1540
            n_accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
1541
1542
            top_token_ids,
            top_token_logprobs,
1543
        ) in enumerate(iterator):
1544
            # Append next token to all tokens
Nicolas Patry's avatar
Nicolas Patry committed
1545
1546
1547
            next_token_texts = []
            left = 0

1548
            if n_accepted_ids > 1:
1549
                log_master(logger.debug, f"Speculated ids {n_accepted_ids - 1}")
1550

Nicolas Patry's avatar
Nicolas Patry committed
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
            current_stopped = False
            for j in range(index, index + n_accepted_ids):
                # Generated token
                next_token_id = next_token_ids[j]
                all_input_ids.append(next_token_id)
                next_token_text, prefix_offset, read_offset = self.decode_token(
                    all_input_ids,
                    prefix_offset,
                    read_offset,
                )
                next_token_texts.append(next_token_text)
1562

Nicolas Patry's avatar
Nicolas Patry committed
1563
1564
1565
1566
                stop, reason = stopping_criteria(
                    next_token_id,
                    next_token_text,
                )
1567

Nicolas Patry's avatar
Nicolas Patry committed
1568
1569
1570
1571
1572
1573
1574
                if stop:
                    left = index + n_accepted_ids - j - 1
                    current_stopped = True
                    break
                else:
                    current_stopped = False
            stopped = stopped and current_stopped
1575

OlivierDehaene's avatar
OlivierDehaene committed
1576
1577
1578
1579
            _next_token_ids = next_token_ids[index : index + n_accepted_ids - left]
            _next_token_logprobs = next_token_logprobs[
                index : index + n_accepted_ids - left
            ]
Nicolas Patry's avatar
Nicolas Patry committed
1580
            index += n_accepted_ids
1581

1582
1583
1584
1585
1586
            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
1587
1588
                    output_text, _, _ = self.decode_token(
                        all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1589
1590
1591
1592
1593
1594
                        prefix_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens
                        - 1,
                        read_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens,
                        skip_special_tokens=True,
1595
1596
                    )
                    generated_text = GeneratedText(
1597
1598
1599
1600
                        output_text,
                        stopping_criteria.current_tokens,
                        reason,
                        seed if do_sample else None,
1601
1602
1603
1604
1605
                    )
                else:
                    generated_text = None

                # Prefill
1606
1607
1608
1609
                if prefill and request.prefill_logprobs:
                    out_start_index = batch.prefill_cu_outlens[i]
                    out_end_index = batch.prefill_cu_outlens[i + 1]

1610
1611
                    # Remove generated token to only have prefill and add nan for first prompt token
                    request_prefill_logprobs = [float("nan")] + prefill_logprobs[
1612
                        out_start_index : out_end_index - 1
1613
1614
1615
1616
1617
1618
1619
                    ]
                    prefill_token_ids = all_input_ids[:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
1620
1621

                    prefill_tokens = Tokens(
OlivierDehaene's avatar
OlivierDehaene committed
1622
1623
1624
1625
                        prefill_token_ids,
                        request_prefill_logprobs,
                        prefill_texts,
                        is_special=[],
1626
1627
1628
1629
                    )
                else:
                    prefill_tokens = None

Nicolas Patry's avatar
Nicolas Patry committed
1630
                if top_n_tokens > 0:
Nicolas Patry's avatar
Nicolas Patry committed
1631
                    all_top_tokens = []
drbh's avatar
drbh committed
1632
                    for top_token_ids, top_token_logprobs in zip(
1633
1634
                        top_token_ids, top_token_logprobs
                    ):
Nicolas Patry's avatar
Nicolas Patry committed
1635
1636
1637
1638
1639
1640
                        toptoken_texts = self.tokenizer.batch_decode(
                            top_token_ids,
                            clean_up_tokenization_spaces=False,
                            skip_special_tokens=False,
                        )
                        special_toptokens = [
1641
1642
                            token_id in self.all_special_ids
                            for token_id in top_token_ids
Nicolas Patry's avatar
Nicolas Patry committed
1643
1644
1645
1646
1647
1648
1649
1650
1651
                        ]
                        top_tokens = Tokens(
                            top_token_ids,
                            top_token_logprobs,
                            toptoken_texts,
                            special_toptokens,
                        )
                        all_top_tokens.append(top_tokens)
                    top_tokens = all_top_tokens
Nicolas Patry's avatar
Nicolas Patry committed
1652
1653
1654
                else:
                    top_tokens = None

1655
1656
1657
                generation = Generation(
                    request.id,
                    prefill_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
1658
1659
1660
1661
1662
1663
                    Tokens(
                        _next_token_ids,
                        _next_token_logprobs,
                        next_token_texts,
                        [nid in self.all_special_ids for nid in _next_token_ids],
                    ),
1664
                    generated_text,
Nicolas Patry's avatar
Nicolas Patry committed
1665
                    top_tokens,
1666
1667
                )

1668
                generations.append(generation)
1669

drbh's avatar
drbh committed
1670
1671
1672
            # accept each new token for this specific request since we may
            # have more than one new token per request with speculative decoding
            for next_token_id in _next_token_ids:
OlivierDehaene's avatar
OlivierDehaene committed
1673
1674
1675
                batch.next_token_chooser = (
                    batch.next_token_chooser.advance_grammar_single(i, next_token_id)
                )
drbh's avatar
drbh committed
1676

1677
            # Update values
1678
            batch.input_lengths[i] = input_length + n_accepted_ids
Nicolas Patry's avatar
Nicolas Patry committed
1679
1680
            if batch.input_lengths[i] > batch.max_seqlen:
                batch.max_seqlen = batch.input_lengths[i]
1681
1682
            batch.prefix_offsets[i] = prefix_offset
            batch.read_offsets[i] = read_offset
1683
1684
            batch.all_input_ids[i] = all_input_ids

1685
1686
        if stopped:
            # No need to return a batch if we know that all requests stopped
1687
1688
1689
            forward_ns = start_decode - start
            decode_ns = time.time_ns() - start_decode
            return generations, None, (forward_ns, decode_ns)
1690

1691
1692
1693
        batch.prefill_cu_outlens = None
        batch.prefill_head_indices = None
        batch.prefill_next_token_indices = None
1694

1695
1696
1697
        forward_ns = start_decode - start
        decode_ns = time.time_ns() - start_decode
        return generations, batch, (forward_ns, decode_ns)
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766

    @property
    def supports_adapter_loading(self) -> bool:
        return True

    def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]:
        layer_weights = {}

        prefix = "model.layers"

        # This accounts for VLMs (e.g. LlavaNext, Idefics2)
        # that have a language_model inside of the larger model.
        if hasattr(self.model, "language_model"):
            _model = self.model.language_model
        elif hasattr(self.model, "text_model"):
            _model = self.model.text_model
        else:
            _model = self.model

        for i, layer in enumerate(_model.model.layers):
            layer_weights[(i, "q_proj")] = (
                f"{prefix}.{i}.self_attn.q_proj",
                layer.self_attn.query_key_value,
            )
            layer_weights[(i, "k_proj")] = (
                f"{prefix}.{i}.self_attn.k_proj",
                layer.self_attn.query_key_value,
            )
            layer_weights[(i, "v_proj")] = (
                f"{prefix}.{i}.self_attn.v_proj",
                layer.self_attn.query_key_value,
            )
            layer_weights[(i, "o_proj")] = (
                f"{prefix}.{i}.self_attn.o_proj",
                layer.self_attn.o_proj,
            )

            # TODO: this is a hack to avoid the gate_proj for
            # FlashStarcoder2 that doesnt have these layers
            if hasattr(layer, "mlp") and hasattr(layer.mlp, "gate_up_proj"):
                layer_weights[(i, "gate_proj")] = (
                    f"{prefix}.{i}.mlp.gate_proj",
                    layer.mlp.gate_up_proj,
                )
                layer_weights[(i, "up_proj")] = (
                    f"{prefix}.{i}.mlp.up_proj",
                    layer.mlp.gate_up_proj,
                )
                layer_weights[(i, "down_proj")] = (
                    f"{prefix}.{i}.mlp.down_proj",
                    layer.mlp.down_proj,
                )

        layer_weights[(0, "lm_head")] = ("lm_head", _model.lm_head)
        return layer_weights

    @property
    def adapter_layers(self) -> List[str]:
        return ADAPTER_LAYERS

    @property
    def default_traced_adapter_layers(self) -> List[str]:
        return ["q_proj", "v_proj"]

    def get_num_layers_for_type(self, layer_type: str) -> int:
        return 1 if layer_type == "lm_head" else len(self.model.model.layers)

    def is_row_parallel(self, layer_type: str) -> bool:
        return layer_type in ROW_PARALLEL