flash_causal_lm.py 19.9 KB
Newer Older
1
2
3
4
5
6
7
8
import torch
import torch.distributed

from torch.nn import functional as F

from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer, PreTrainedTokenizerBase, PreTrainedModel
9
from typing import Optional, Tuple, List, Type, Union, Dict
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

from text_generation_server.models import Model
from text_generation_server.models.types import (
    Batch,
    PrefillTokens,
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import (
    NextTokenChooser,
    StoppingCriteria,
    Sampling,
)

tracer = trace.get_tracer(__name__)


@dataclass
class FlashCausalLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
32
33
    # request id -> idx in list mapping
    requests_idx_mapping: Dict[int, int]
34
35

    # Decoder values
36
37
    input_ids: List[torch.Tensor]
    position_ids: List[torch.Tensor]
38
    # cumulative sequence lengths
39
    cu_seqlens: List[int]
40
    max_seqlen: int
41
    past_key_values: Optional[Union[torch.Tensor, List[torch.Tensor]]]
42
43
44
45
46
47
48

    # All tokens
    all_input_ids: List[List[int]]
    all_input_ids_tensor: List[torch.Tensor]

    # Lengths of all generations present in the batch
    input_lengths: List[int]
49
50
    offsets: List[Optional[int]]
    token_offsets: List[Optional[int]]
51
52
53
54
55

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]

56
57
58
    # Constant shared tensor, ref here just so that it's accessible in concatentate()
    past_pad: Optional[torch.Tensor]

59
60
61
62
63
64
65
66
67
68
69
    def to_pb(self) -> generate_pb2.Batch:
        return generate_pb2.Batch(
            id=self.batch_id, requests=self.requests, size=len(self)
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
70
    ) -> "FlashCausalLMBatch":
71
72
73
74
75
76
        input_ids = []
        position_ids = []
        cu_seqlens = [0]
        max_seqlen = 0

        input_lengths = []
77
78
        offsets = []
        token_offsets = []
79
80
        all_input_ids = []
        all_input_ids_tensor = []
81
        requests_idx_mapping = {}
82
83
84
85
86
87
88
89

        next_token_choosers = []
        stopping_criterias = []

        # Cumulative length
        cumulative_length = 0

        # Parse batch
90
91
92
93
        for i, r in enumerate(pb.requests):
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

94
95
96
            tokenized_input = tokenizer(
                r.inputs, truncation=True, max_length=r.truncate
            )["input_ids"]
97

98
99
100
            input_length = len(tokenized_input)
            max_seqlen = max(max_seqlen, input_length)
            input_lengths.append(input_length)
101

102
103
            offsets.append(None)
            token_offsets.append(None)
104
105
106
107
108
109
            all_input_ids.append(tokenized_input)

            tokenized_input = torch.tensor(tokenized_input, device=device)
            input_ids.append(tokenized_input)

            # Position ids
110
111
112
            position_ids.append(
                torch.arange(0, input_length, dtype=torch.int32, device=device)
            )
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

            # Add cumulative lengths of all previous inputs
            cu_seqlens.append(cumulative_length + input_length)

            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            all_input_ids_tensor.append(
                F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
            )

            # Update
            cumulative_length += input_length

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
132
            requests_idx_mapping=requests_idx_mapping,
133
134
135
136
137
138
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=None,
            input_lengths=input_lengths,
139
140
            offsets=offsets,
            token_offsets=token_offsets,
141
142
143
144
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
145
            past_pad=None,
146
147
        )

148
149
150
151
152
153
154
155
    @tracer.start_as_current_span("filter")
    def filter(self, requests: List[generate_pb2.Request]) -> "FlashCausalLMBatch":
        if len(requests) == 0:
            raise ValueError("Batch must have at least one request")
        # We assume that if len(requests) == len(self) then the requests are the same
        if len(requests) == len(self):
            return self

156
157
        single_request = len(requests) == 1

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        # Cumulative length
        cumulative_length = 0

        # New values after filtering
        requests_idx_mapping = {}

        input_ids = []
        position_ids = []
        cu_seqlens = [0]
        max_seqlen = 0
        past_key_values = []

        all_input_ids = []
        all_input_ids_tensor = []

173
        input_lengths = []
174
175
        offsets = []
        token_offsets = []
176

177
178
179
        next_token_choosers = []
        stopping_criterias = []

180
181
182
183
184
185
186
187
188
189
190
        for i, r in enumerate(requests):
            idx = self.requests_idx_mapping[r.id]
            requests_idx_mapping[r.id] = i

            # Get length
            request_input_length = self.input_lengths[idx]

            input_ids.append(self.input_ids[idx])
            position_ids.append(self.position_ids[idx])
            cu_seqlens.append(cumulative_length + request_input_length)
            max_seqlen = max(max_seqlen, request_input_length)
191
            if not single_request:
192
                # True index for past
193
                past_key_values.append(self.past_key_values[2 * idx])
194
195
                # Add one padding
                past_key_values.append(self.past_pad)
196
197
198
199
200
201
202
203
204
205
206
207
208

            all_input_ids.append(self.all_input_ids[idx])
            all_input_ids_tensor.append(self.all_input_ids_tensor[idx])

            input_lengths.append(request_input_length)
            offsets.append(self.offsets[idx])
            token_offsets.append(self.token_offsets[idx])

            next_token_choosers.append(self.next_token_choosers[idx])
            stopping_criterias.append(self.stopping_criterias[idx])

            cumulative_length += request_input_length

209
210
211
212
        if single_request:
            # Preallocate tensor for bs = 1 case
            past_key_values = torch.nn.functional.pad(
                self.past_key_values[0],
213
214
215
216
217
218
219
220
221
222
223
                (
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    0,
                    stopping_criterias[0].max_new_tokens
                    - stopping_criterias[0].current_tokens,
                ),
224
225
            )

226
227
        return FlashCausalLMBatch(
            batch_id=self.batch_id,
228
            past_pad=self.past_pad,
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            offsets=offsets,
            token_offsets=token_offsets,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
        )

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["FlashCausalLMBatch"]) -> "FlashCausalLMBatch":
        # Batch attributes
        requests = []
        requests_idx_mapping = {}

252
253
        input_ids = []
        position_ids = []
254
        cu_seqlens = [0]
255
256
257
        max_seqlen = 0
        past_key_values = []

258
259
260
261
262
263
264
265
266
267
        all_input_ids = []
        all_input_ids_tensor = []

        input_lengths = []
        offsets = []
        token_offsets = []

        next_token_choosers = []
        stopping_criterias = []

268
        # Cumulative length
269
270
        cumulative_batch_size = 0
        cumulative_length = 0
271
272
273

        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
274
275
276
277
278
279
280
281
282
283
284
285
286

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + cumulative_batch_size

            input_ids.extend(batch.input_ids)
            position_ids.extend(batch.position_ids)
            # Add cumulative lengths of all previous inputs
            cu_seqlens.extend([l + cumulative_length for l in batch.cu_seqlens[1:]])
            max_seqlen = max(max_seqlen, batch.max_seqlen)
287

288
289
290
            if len(batch) != 1:
                past_key_values.extend(batch.past_key_values)
            else:
291
292
293
294
295
296
                # past was pre-allocated for this batch
                # We need to slice to remove the padding
                past_key_values.append(
                    batch.past_key_values[:, : batch.input_lengths[0]]
                )
                # Add one padding
297
                past_key_values.append(batch.past_pad)
298
299
300
301

            all_input_ids.extend(batch.all_input_ids)
            all_input_ids_tensor.extend(batch.all_input_ids_tensor)

302
            input_lengths.extend(batch.input_lengths)
303
304
            offsets.extend(batch.offsets)
            token_offsets.extend(batch.token_offsets)
305

306
307
308
309
310
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Update
            cumulative_length += batch.cu_seqlens[-1]
311
            cumulative_batch_size += len(batch)
312
313
314

        return FlashCausalLMBatch(
            batch_id=batches[0].batch_id,
315
            past_pad=batches[0].past_pad,
316
            requests=requests,
317
            requests_idx_mapping=requests_idx_mapping,
318
319
320
321
322
323
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_seqlen=max_seqlen,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
324
325
            offsets=offsets,
            token_offsets=token_offsets,
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
        )

    def __len__(self):
        return len(self.requests)


class FlashCausalLM(Model):
    def __init__(
        self,
        model_cls: Type[PreTrainedModel],
        model_id: str,
        revision: Optional[str] = None,
342
343
        quantize: bool = False,
        decode_buffer: int = 3,
344
    ):
345
        self.past_pad = None
346
347
348
349
350
351
352
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
        else:
            raise NotImplementedError("FlashCausalLM is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
353
            model_id, revision=revision, padding_side="left", truncation_side="left"
354
355
356
357
358
359
        )
        self.model = (
            model_cls.from_pretrained(
                model_id,
                revision=revision,
                torch_dtype=dtype,
360
                load_in_8bit=quantize,
361
362
            )
            .eval()
363
            .to(device)
364
365
366
        )

        super(FlashCausalLM, self).__init__(
367
368
369
370
371
            tokenizer=tokenizer,
            requires_padding=False,
            dtype=dtype,
            device=device,
            decode_buffer=decode_buffer,
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
        )

    @property
    def batch_type(self) -> Type[FlashCausalLMBatch]:
        return FlashCausalLMBatch

    def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
        return self.tokenizer.decode(
            generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
        )

    def forward(
        self,
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
        cu_seqlens: torch.Tensor,
        max_s: int,
        past_key_values: Optional = None,
390
        pre_allocate_past_size: Optional[int] = None,
391
392
393
394
395
396
397
398
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Model Forward
        return self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlens=cu_seqlens,
            max_s=max_s,
            past_key_values=past_key_values,
399
            pre_allocate_past_size=pre_allocate_past_size,
400
401
402
403
404
405
        )

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: FlashCausalLMBatch
    ) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
406
407
        # Shortcut when batch_size == 1
        if len(batch) == 1:
408
            input_ids = batch.input_ids[0].view(-1)
409
            # No need to slice as flash attention will take care of it with cu_seqlens
410
            past_key_values = batch.past_key_values
411
412
413
414
415
416
417
418
419
        else:
            # Concatenate tensors
            input_ids = torch.cat(batch.input_ids).view(-1)
            past_key_values = (
                torch.cat(batch.past_key_values, dim=1)
                if batch.past_key_values is not None
                else None
            )

420
421
422
423
424
425
426
427
428
429
        # if prefill and bs == 1
        if past_key_values is None and len(batch) == 1:
            # Ask to pre-allocate kv to its max size
            # == number of tokens + max_new_tokens
            pre_allocate_past_size = (
                batch.input_lengths[0] + batch.stopping_criterias[0].max_new_tokens
            )
        else:
            pre_allocate_past_size = None

430
431
432
433
434
435
436
437
438
        # Concatenate when prefill, torch.tensor when decode
        position_ids = (
            torch.tensor(batch.position_ids, device=self.device)
            if batch.past_key_values is not None
            else torch.cat(batch.position_ids)
        )
        cu_seqlens = torch.tensor(
            batch.cu_seqlens, device=self.device, dtype=torch.int32
        )
439
440

        out, present = self.forward(
441
            input_ids,
442
443
444
            position_ids,
            cu_seqlens,
            batch.max_seqlen,
445
            past_key_values,
446
            pre_allocate_past_size,
447
448
        )

449
450
        # Initialize past_key_values in prefill
        if batch.past_key_values is None:
451
452
            # Initialize past padding tensor
            if self.past_pad is None:
453
454
455
                self.past_pad = present.new_zeros(
                    present.shape[0], 1, *present.shape[2:]
                )
456
457
            # Set in batch in case it needs to be used later in concatenate()
            batch.past_pad = self.past_pad
458
459
460
461
            if len(batch) == 1:
                # present is already pre-padded
                batch.past_key_values = present
            else:
462
463
464
                # Add padding after each sequence
                # This will have the correct shape after the final past_key_values concatenation before the model
                # forward
465
                batch.past_key_values = [None, self.past_pad] * len(batch)
466
467
468
469
470
471

        # Cumulative length
        cumulative_length = 0

        # Results
        generations: List[Generation] = []
472
        stopped = True
473
474
475
476
477

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
478
479
            batch.offsets,
            batch.token_offsets,
480
481
482
483
484
485
486
487
488
489
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
            batch.all_input_ids_tensor,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
490
491
            offset,
            token_offset,
492
493
494
495
496
497
498
499
500
            next_token_chooser,
            stopping_criteria,
            all_input_ids,
            all_input_ids_tensor,
        ) in enumerate(iterator):
            # Indexing metadata
            start_index = cumulative_length
            end_index = cumulative_length + input_length

501
502
            prefill = stopping_criteria.current_tokens == 0
            if prefill:
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
                # Prefill mode
                # out is of shape [cumulative_sequence_lengths, vocab_size]
                logits = out[start_index:end_index]
            else:
                # Decode mode
                # out is of shape [batch_size, vocab_size]
                logits = out[i].unsqueeze(0)

            # Select next token
            next_token_id, logprobs = next_token_chooser(
                all_input_ids_tensor[None, :input_length], logits
            )
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_id_item = next_token_id_squeezed.item()

            # Append next token to all tokens
            all_input_ids.append(next_token_id_item)
            all_input_ids_tensor[input_length] = next_token_id_item

            # Generated token
            next_token_logprob = logprobs[-1, next_token_id_item]
524
525
526
527
            next_token_text, offset, token_offset = self.decode_token(
                all_input_ids,
                offset,
                token_offset,
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(
                next_token_id_item,
                next_token_text,
            )

            if stop:
                # Decode generated tokens
                output_text = self.decode(
                    all_input_ids[-stopping_criteria.current_tokens :]
                )
                # Get seed
                if isinstance(next_token_chooser.choice, Sampling):
                    seed = next_token_chooser.choice.seed
                else:
                    seed = None

                generated_text = GeneratedText(
                    output_text, stopping_criteria.current_tokens, reason, seed
                )
            else:
551
                stopped = False
552
553
554
                generated_text = None

            # Prefill
555
            if prefill:
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
                # Remove generated token to only have prefill and add nan for first prompt token
                prefill_logprobs = [float("nan")] + logprobs.gather(
                    1, all_input_ids_tensor[1:input_length].unsqueeze(1)
                ).squeeze(1)[:-1].tolist()
                prefill_token_ids = all_input_ids[:-1]
                prefill_texts = self.tokenizer.batch_decode(
                    prefill_token_ids,
                    clean_up_tokenization_spaces=False,
                    skip_special_tokens=False,
                )
                prefill_tokens = PrefillTokens(
                    prefill_token_ids, prefill_logprobs, prefill_texts
                )
            else:
                prefill_tokens = None

            generation = Generation(
                request.id,
                prefill_tokens,
                next_token_id_item,
                next_token_logprob,
                next_token_text,
                next_token_id_item in self.all_special_ids,
                generated_text,
            )

            generations.append(generation)
            cumulative_length += input_length
584
            new_input_length = input_length + 1
585

586
587
588
589
590
591
592
593
594
            # Update values
            batch.input_ids[i] = next_token_id
            batch.position_ids[i] = input_length
            batch.input_lengths[i] = new_input_length
            batch.offsets[i] = offset
            batch.token_offsets[i] = token_offset
            batch.all_input_ids[i] = all_input_ids
            batch.all_input_ids_tensor[i] = all_input_ids_tensor
            batch.max_seqlen = max(batch.max_seqlen, new_input_length)
595
            if len(batch) != 1:
596
                # Add each sequence before its padding
597
                batch.past_key_values[i * 2] = present[:, start_index:end_index]
598
599
600
601
602
            # Cumulative sum
            batch.cu_seqlens[(i + 1)] = batch.cu_seqlens[i] + new_input_length

        # No need to return a batch if we know that all requests stopped
        return generations, batch if not stopped else None