__init__.py 49.7 KB
Newer Older
1
2
3
# ruff: noqa: F821
# the above line disables the `undefined-name` rule for the model type variables

4
import torch
5
import enum
Nicolas Patry's avatar
Nicolas Patry committed
6
import os
7

8
from loguru import logger
9
from transformers.configuration_utils import PretrainedConfig
10
from transformers.models.auto import modeling_auto
Nicolas Patry's avatar
Nicolas Patry committed
11
from huggingface_hub import hf_hub_download, HfApi
12
from typing import Optional, List, Dict
13
from pathlib import Path
14

Nicolas Patry's avatar
Nicolas Patry committed
15
from text_generation_server.utils.speculate import get_speculate, set_speculate
16
from text_generation_server.models.model import Model
17
18
19
20
21
from text_generation_server.models.causal_lm import CausalLM, CausalLMBatchKeysLast
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
from text_generation_server.models.custom_modeling.mpt_modeling import (
    MPTForCausalLM,
)
22
from text_generation_server.models.bloom import BloomCausalLMBatch
23
24
25
from text_generation_server.models.custom_modeling.bloom_modeling import (
    BloomForCausalLM,
)
26
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
27
28
29
30
31
32
33
34
from text_generation_server.models.galactica import GalacticaCausalLMBatch
from text_generation_server.models.custom_modeling.neox_modeling import (
    GPTNeoxForCausalLM,
)
from text_generation_server.models.custom_modeling.phi_modeling import (
    PhiConfig,
    PhiForCausalLM,
)
drbh's avatar
drbh committed
35
36
37
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
    PhiMoEConfig,
)
38
39
40
from text_generation_server.models.custom_modeling.t5_modeling import (
    T5ForConditionalGeneration,
)
41

42
43
44
45
46
47
48
49
50
51

from text_generation_server.utils.adapter import (
    AdapterParameters,
    build_layer_weight_lookup,
    load_and_merge_adapters,
    AdapterInfo,
)
from text_generation_server.adapters.lora import LoraWeights


52
from text_generation_server.utils.import_utils import SYSTEM
53
from text_generation_server.utils.log import log_master
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True

# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True

# Disable gradients
torch.set_grad_enabled(False)

__all__ = [
    "Model",
    "CausalLM",
    "Seq2SeqLM",
69
    "get_model_with_lora_adapters",
70
71
]

72
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
73

74
FLASH_ATTENTION = True
75

76
try:
77
    from text_generation_server.models.flash_causal_lm import FlashCausalLM
78
    from text_generation_server.models.vlm_causal_lm import VlmCausalLM
Nicolas Patry's avatar
Nicolas Patry committed
79
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLM
80
81
82
83
    from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
        FlashDeepseekV2ForCausalLM,
        DeepseekV2Config,
    )
84
85
    from text_generation_server.models.custom_modeling.flash_llama_modeling import (
        FlashLlamaForCausalLM,
86
    )
87
88
    from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
        FlashCohereForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
89
    )
90
91
    from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
        FlashGemmaForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
92
    )
93
94
    from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
        FlashGemma2ForCausalLM,
95
    )
96
97
98
99
100
101
102
103
104
105
    from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
        FlashDbrxForCausalLM,
        DbrxConfig,
    )
    from text_generation_server.models.custom_modeling.flash_rw_modeling import (
        RWConfig,
        FlashRWForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_neox_modeling import (
        FlashGPTNeoXForCausalLM,
Nicolas Patry's avatar
Nicolas Patry committed
106
    )
drbh's avatar
drbh committed
107
    from text_generation_server.models.pali_gemma import (
108
        PaliGemmaBatch,
drbh's avatar
drbh committed
109
    )
110
111
112
113
114
    from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
        PaliGemmaForConditionalGeneration,
    )
    from text_generation_server.models.custom_modeling.flash_phi_modeling import (
        FlashPhiForCausalLM,
115
    )
Nicolas Patry's avatar
Nicolas Patry committed
116
117
118
119
120
    from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
    from text_generation_server.models.custom_modeling.mllama import (
        MllamaForConditionalGeneration,
    )
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    from text_generation_server.models.custom_modeling.llava_next import (
        LlavaNextForConditionalGeneration,
    )

    from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
        FlashSantacoderForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import (
        FlashStarcoder2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
        Qwen2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
        FlashMistralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mixtral_modeling import (
        FlashMixtralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
        FlashGPT2ForCausalLM,
    )
143
144
145
    from text_generation_server.models.custom_modeling.flash_gptj_modeling import (
        FlashGPTJForCausalLM,
    )
146
147
148
    from text_generation_server.models.custom_modeling.idefics2 import (
        Idefics2ForConditionalGeneration,
    )
drbh's avatar
drbh committed
149
150
151
    from text_generation_server.models.custom_modeling.qwen2_vl import (
        Qwen2VLForConditionalGeneration,
    )
152
    from text_generation_server.layers.attention import SUPPORTS_WINDOWING
153
except ImportError as e:
154
    log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
155
    SUPPORTS_WINDOWING = False
156
    FLASH_ATTENTION = False
157

158
if FLASH_ATTENTION:
159
    __all__.append(FlashCausalLM)
Nicolas Patry's avatar
Nicolas Patry committed
160
    __all__.append(IdeficsCausalLM)
OlivierDehaene's avatar
OlivierDehaene committed
161

drbh's avatar
drbh committed
162
163
164
165
MAMBA_AVAILABLE = True
try:
    from text_generation_server.models.mamba import Mamba
except ImportError as e:
166
    log_master(logger.warning, f"Could not import Mamba: {e}")
drbh's avatar
drbh committed
167
168
169
170
    MAMBA_AVAILABLE = False

if MAMBA_AVAILABLE:
    __all__.append(Mamba)
OlivierDehaene's avatar
OlivierDehaene committed
171

172

173
class ModelType(enum.Enum):
174
175
176
177
178
    DEEPSEEK_V2 = {
        "type": "deepseek_v2",
        "name": "Deepseek V2",
        "url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
    }
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    IDEFICS2 = {
        "type": "idefics2",
        "name": "Idefics 2",
        "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
        "multimodal": True,
    }
    LLAVA_NEXT = {
        "type": "llava_next",
        "name": "Llava Next (1.6)",
        "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
        "multimodal": True,
    }
    LLAMA = {
        "type": "llama",
        "name": "Llama",
194
        "url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
195
196
197
198
199
200
    }
    PHI3 = {
        "type": "phi3",
        "name": "Phi 3",
        "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
    }
201
202
203
204
205
    GRANITE = {
        "type": "granite",
        "name": "Granite",
        "url": "https://huggingface.co/ibm-granite/granite-3.0-8b-instruct",
    }
206
207
208
209
210
    GEMMA = {
        "type": "gemma",
        "name": "Gemma",
        "url": "https://huggingface.co/google/gemma-7b",
    }
211
212
213
214
215
    PALIGEMMA = {
        "type": "paligemma",
        "name": "PaliGemma",
        "url": "https://huggingface.co/google/paligemma-3b-pt-224",
    }
Nicolas Patry's avatar
Nicolas Patry committed
216
217
218
    GEMMA2 = {
        "type": "gemma2",
        "name": "Gemma2",
219
        "url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315",
Nicolas Patry's avatar
Nicolas Patry committed
220
    }
221
222
223
224
225
226
227
228
229
230
231
    COHERE = {
        "type": "cohere",
        "name": "Cohere",
        "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    }
    DBRX = {
        "type": "dbrx",
        "name": "Dbrx",
        "url": "https://huggingface.co/databricks/dbrx-instruct",
    }
    MAMBA = {
232
        "type": "mamba",
233
234
235
236
237
238
        "name": "Mamba",
        "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
    }
    MISTRAL = {
        "type": "mistral",
        "name": "Mistral",
239
        "url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
    }
    MIXTRAL = {
        "type": "mixtral",
        "name": "Mixtral",
        "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
    }
    GPT_BIGCODE = {
        "type": "gpt_bigcode",
        "name": "Gpt Bigcode",
        "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
    }
    PHI = {
        "type": "phi",
        "name": "Phi",
        "url": "https://huggingface.co/microsoft/phi-1_5",
    }
drbh's avatar
drbh committed
256
257
258
259
260
    PHI_MOE = {
        "type": "phimoe",
        "name": "PhiMoe",
        "url": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct",
    }
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    BAICHUAN = {
        "type": "baichuan",
        "name": "Baichuan",
        "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
    }
    FALCON = {
        "type": "falcon",
        "name": "Falcon",
        "url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
    }
    STARCODER2 = {
        "type": "starcoder2",
        "name": "StarCoder 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    QWEN2 = {
        "type": "qwen2",
        "name": "Qwen 2",
279
        "url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f",
280
    }
drbh's avatar
drbh committed
281
282
283
284
285
    QWEN2_VL = {
        "type": "qwen2_vl",
        "name": "Qwen 2 VL",
        "url": "https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d",
    }
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    OPT = {
        "type": "opt",
        "name": "Opt",
        "url": "https://huggingface.co/facebook/opt-6.7b",
    }
    T5 = {
        "type": "t5",
        "name": "T5",
        "url": "https://huggingface.co/google/flan-t5-xxl",
    }
    GALACTICA = {
        "type": "galactica",
        "name": "Galactica",
        "url": "https://huggingface.co/facebook/galactica-120b",
    }
    SANTACODER = {
        "type": "santacoder",
        "name": "SantaCoder",
        "url": "https://huggingface.co/bigcode/santacoder",
    }
    BLOOM = {
        "type": "bloom",
        "name": "Bloom",
        "url": "https://huggingface.co/bigscience/bloom-560m",
    }
    MPT = {
        "type": "mpt",
        "name": "Mpt",
        "url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
    }
    GPT2 = {
        "type": "gpt2",
        "name": "Gpt2",
        "url": "https://huggingface.co/openai-community/gpt2",
    }
    GPT_NEOX = {
        "type": "gpt_neox",
        "name": "Gpt Neox",
        "url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
    }
326
327
328
329
330
    GPTJ = {
        "type": "gptj",
        "name": "Gptj",
        "url": "https://huggingface.co/EleutherAI/gpt-j-6b",
    }
331
332
333
334
335
336
    IDEFICS = {
        "type": "idefics",
        "name": "Idefics",
        "url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
        "multimodal": True,
    }
Nicolas Patry's avatar
Nicolas Patry committed
337
338
339
340
341
342
    MLLAMA = {
        "type": "mllama",
        "name": "Mllama",
        "url": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct",
        "multimodal": True,
    }
343
344
345
346
347
348
349


__GLOBALS = locals()
for data in ModelType:
    __GLOBALS[data.name] = data.value["type"]


350
def get_model(
351
    model_id: str,
drbh's avatar
drbh committed
352
    lora_adapter_ids: Optional[List[str]],
353
354
355
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
356
    speculate: Optional[int],
357
    dtype: Optional[str],
358
    kv_cache_dtype: Optional[str],
359
    trust_remote_code: bool,
360
    max_input_tokens: int,
361
) -> Model:
362
    global FLASH_ATTENTION
363
364
365
366
367
368
369

    config_dict, _ = PretrainedConfig.get_config_dict(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
    model_type = config_dict.get("model_type", None)

    quantization_config = config_dict.get("quantization_config", None)
370
    compression_config = config_dict.get("compression_config", None)
371
372
373
374
375
    if quantization_config is not None and quantize is None:
        method = quantization_config.get("quant_method", None)
        if method in {"gptq", "awq", "exl2"}:
            log_master(logger.info, f"Auto selecting quantization method {method}")
            quantize = method
376
        elif method == "fbgemm_fp8" or method == "fp8":
377
378
            log_master(logger.info, "Auto selecting quantization method fp8")
            quantize = "fp8"
379
380
381
382
383
        if method == "compressed-tensors":
            log_master(
                logger.info, "Auto selecting quantization method compressed-tensors"
            )
            quantize = "compressed-tensors"
384
385
        else:
            log_master(logger.warning, f"Unknown quantization method {method}")
386
    elif compression_config is not None:
387
        # `compression_config` renamed to `quantization_config`; support retained for backward compatibility.
388
389
        log_master(logger.info, "Auto selecting quantization method compressed-tensors")
        quantize = "compressed-tensors"
390

391
    if dtype is None:
392
        if quantize in ["awq", "exl2", "gptq", "marlin"]:
393
394
395
            if SYSTEM == "ipex" and not (
                hasattr(torch, "xpu") and torch.xpu.is_available()
            ):
Nicolas Patry's avatar
Nicolas Patry committed
396
397
398
399
                dtype = torch.bfloat16
            else:
                # These quantizers only work with float16 params.
                dtype = torch.float16
400
401
402
403
        else:
            # Keep it as default for now and let
            # every model resolve their own default dtype.
            dtype = None
404
405
406
407
408
409
410
    elif dtype == "float16":
        dtype = torch.float16
    elif dtype == "bfloat16":
        dtype = torch.bfloat16
    else:
        raise RuntimeError(f"Unknown dtype {dtype}")

411
412
    if kv_cache_dtype is None:
        kv_cache_dtype = dtype
413
414
    elif kv_cache_dtype == "fp8_e4m3fn":
        kv_cache_dtype = torch.float8_e4m3fn
415
416
417
418
419
    elif kv_cache_dtype == "fp8_e5m2":
        kv_cache_dtype = torch.float8_e5m2
    else:
        raise RuntimeError(f"Unknown kv_cache_dtype: {kv_cache_dtype}")

Nicolas Patry's avatar
Nicolas Patry committed
420
421
422
423
424
    if speculate is not None:
        set_speculate(speculate)
    else:
        set_speculate(0)

Nicolas Patry's avatar
Nicolas Patry committed
425
    speculator = None
Nicolas Patry's avatar
Nicolas Patry committed
426
    if "medusa_num_heads" in config_dict:
427
428
        medusa_model_id = model_id
        medusa_revision = revision
Nicolas Patry's avatar
Nicolas Patry committed
429
430
431
432
433
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_medusa = config_dict["medusa_num_heads"]
        if speculate is not None:
            if speculate > speculate_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
434
                raise RuntimeError(
OlivierDehaene's avatar
OlivierDehaene committed
435
                    f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
OlivierDehaene's avatar
OlivierDehaene committed
436
                )
Nicolas Patry's avatar
Nicolas Patry committed
437
438
439
440
441
442
443
444
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_medusa)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
Nicolas Patry's avatar
Nicolas Patry committed
445
446
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
447
448
449
450
451
452
453
454
455
456
        is_local = Path(medusa_model_id).exists()
        if not is_local:
            medusa_config = hf_hub_download(
                medusa_model_id, revision=medusa_revision, filename="config.json"
            )
            hf_hub_download(
                medusa_model_id,
                revision=medusa_revision,
                filename="medusa_lm_head.safetensors",
            )
Nicolas Patry's avatar
Nicolas Patry committed
457
458
459
460
            speculator = {
                "path": Path(medusa_config).parent,
                "model_paths": ["medusa_lm_head.safetensors"],
            }
461
        else:
Nicolas Patry's avatar
Nicolas Patry committed
462
463
464
465
            speculator = {
                "path": Path(medusa_model_id),
                "model_paths": ["medusa_lm_head.safetensors"],
            }
466

Nicolas Patry's avatar
Nicolas Patry committed
467
        method = "medusa"
Nicolas Patry's avatar
Nicolas Patry committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    elif model_type == "mlp_speculator":
        mlp_model_id = model_id
        mlp_revision = revision
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_mlp = config_dict["n_predict"]
        if speculate is not None:
            if speculate > speculate_mlp:
                raise RuntimeError(
                    f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
                )
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_mlp)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
        is_local = Path(mlp_model_id).exists()
        extension = ".safetensors"
        if not is_local:
            mlp_speculator_config = hf_hub_download(
                mlp_model_id, revision=mlp_revision, filename="config.json"
            )
            api = HfApi()
            info = api.model_info(mlp_model_id, revision=mlp_revision)
            filenames = [
                s.rfilename
                for s in info.siblings
                if s.rfilename.endswith(extension)
                and len(s.rfilename.split("/")) == 1
                and "arguments" not in s.rfilename
                and "args" not in s.rfilename
                and "training" not in s.rfilename
            ]
            for filename in filenames:
                hf_hub_download(
                    mlp_model_id,
                    revision=mlp_revision,
                    filename=filename,
                )
512
513
514
515
516
            speculator_dir_path = Path(mlp_speculator_config).parent
            # if these are downloaded, they get converted to safetensors
            filenames.extend(
                [p for p in os.listdir(speculator_dir_path) if p.endswith(extension)]
            )
Nicolas Patry's avatar
Nicolas Patry committed
517
518
519
520
521
522
523
524
525
            speculator = {
                "path": Path(mlp_speculator_config).parent,
                "model_paths": filenames,
            }
        else:
            speculator = Path(mlp_model_id)
            filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
            speculator = {"path": speculator, "model_paths": filenames}
        method = "mlp_speculator"
Nicolas Patry's avatar
Nicolas Patry committed
526
527
528
529
530
    else:
        method = "n-gram"

    speculate = get_speculate()
    if speculate > 0:
531
532
533
        log_master(
            logger.info, f"Using speculation {method} with {speculate} input ids."
        )
Nicolas Patry's avatar
Nicolas Patry committed
534

drbh's avatar
drbh committed
535
536
537
538
    if model_type is None:
        # TODO: fix how we determine model type for Mamba
        if "ssm_cfg" in config_dict:
            # *only happens in Mamba case
539
            model_type = "mamba"
drbh's avatar
drbh committed
540
541
542
543
544
        else:
            raise RuntimeError(
                f"Could not determine model type for {model_id} revision {revision}"
            )

545
546
547
548
    if quantize == "exl2" and sharded:
        raise RuntimeError(
            "Sharding is currently not supported with `exl2` quantization"
        )
drbh's avatar
drbh committed
549
550
551
552
553
554

    sliding_window = (
        config_dict.get("sliding_window")
        if config_dict.get("sliding_window") is not None
        else -1
    )
555

556
557
558
    use_sliding_window = sliding_window is not None and sliding_window != -1
    needs_sliding_window = (
        max_input_tokens is not None and max_input_tokens > sliding_window
559
    )
560
561
562
563
    if use_sliding_window and needs_sliding_window and not SUPPORTS_WINDOWING:
        raise ValueError(
            f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
        )
564

565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
    if model_type == DEEPSEEK_V2:
        if FLASH_ATTENTION:
            head_size = max(
                config_dict.get("qk_nope_dim", 128)
                + config_dict.get("qk_rope_dim", 64),
                config_dict.get("v_head_dim", 128),
            )
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDeepseekV2ForCausalLM,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                default_dtype=torch.bfloat16,
                dtype=dtype,
580
                kv_cache_dtype=kv_cache_dtype,
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
                config_class=DeepseekV2Config,
                head_size=head_size,
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Deepseek V2")
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
    elif model_type == MAMBA:
drbh's avatar
drbh committed
600
601
602
603
        return Mamba(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
604
            speculator=speculator,
drbh's avatar
drbh committed
605
606
607
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )
608
609
610
611
    elif model_type == "ssm":
        raise RuntimeError(
            "`ssm` models have been deprecated in favor of `mamba` models, which follow standard HF formats. Check out a list here: https://huggingface.co/models?search=mamba%20-hf"
        )
612

OlivierDehaene's avatar
OlivierDehaene committed
613
    if model_id.startswith("facebook/galactica"):
614
615
616
617
618
        return CausalLM(
            model_id=model_id,
            # Yes galactica is just an OPT model.
            model_class=OPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
619
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
620
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
621
622
            dtype=dtype,
            trust_remote_code=trust_remote_code,
623
            batch_class=GalacticaCausalLMBatch,
OlivierDehaene's avatar
OlivierDehaene committed
624
625
        )

626
    if (
627
628
        model_type == GPT_BIGCODE
        or model_type == GPT2
629
630
        and model_id.startswith("bigcode/")
    ):
631
        if FLASH_ATTENTION:
632
633
634
635
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashSantacoderForCausalLM,
                revision=revision,
636
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
637
                speculator=speculator,
638
                dtype=dtype,
639
                kv_cache_dtype=kv_cache_dtype,
640
                trust_remote_code=trust_remote_code,
641
642
643
                lora_adapter_ids=lora_adapter_ids,
                aliases={"transformer.wte.weight": ["lm_head.weight"]},
                num_kv_heads=1,
644
            )
645
646
647
648
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder")
            )
649
        else:
650
651
652
            return CausalLM.fallback(
                model_id=model_id,
                revision=revision,
653
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
654
                speculator=speculator,
655
                dtype=dtype,
656
657
                trust_remote_code=trust_remote_code,
            )
658

659
    if model_type == BLOOM:
660
661
662
663
        return CausalLM(
            model_id=model_id,
            model_class=BloomForCausalLM,
            revision=revision,
664
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
665
            speculator=speculator,
666
667
            dtype=dtype,
            trust_remote_code=trust_remote_code,
668
            batch_class=BloomCausalLMBatch,
669
        )
670
    elif model_type == MPT:
671
672
673
674
        return CausalLM(
            model_id=model_id,
            model_class=MPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
675
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
676
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
677
678
            dtype=dtype,
            trust_remote_code=trust_remote_code,
679
            batch_class=CausalLMBatchKeysLast,
680
        )
681
    elif model_type == GPT2:
682
        if FLASH_ATTENTION:
683
            try:
684
685
686
687
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPT2ForCausalLM,
                    revision=revision,
688
689
690
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
691
                    kv_cache_dtype=kv_cache_dtype,
692
                    trust_remote_code=trust_remote_code,
693
                    lora_adapter_ids=lora_adapter_ids,
694
695
696
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
697
                log_master(logger.warning, f"Couldn't load flash gpt2 variant: {e}")
698
                return CausalLM.fallback(
699
700
701
702
703
704
705
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
706
707
708
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
        else:
709
            return CausalLM.fallback(
710
711
712
713
714
715
716
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
717
718
719
720
721
722
723
724
725
726
    elif model_type == GPTJ:
        if FLASH_ATTENTION:
            try:
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPTJForCausalLM,
                    revision=revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
727
                    kv_cache_dtype=kv_cache_dtype,
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
                    trust_remote_code=trust_remote_code,
                    lora_adapter_ids=lora_adapter_ids,
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
                log_master(logger.warning, f"Couldn't load flash gptj variant: {e}")
                return CausalLM.fallback(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-J"))
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
753
    elif model_type == GPT_NEOX:
754
        if FLASH_ATTENTION:
755
756
757
758
            from text_generation_server.models.custom_modeling.flash_neox_modeling import (
                GPTNeoXConfig,
            )

759
760
761
762
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGPTNeoXForCausalLM,
                revision=revision,
763
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
764
                speculator=speculator,
765
                dtype=dtype,
766
                kv_cache_dtype=kv_cache_dtype,
767
                trust_remote_code=trust_remote_code,
768
                lora_adapter_ids=lora_adapter_ids,
769
                config_class=GPTNeoXConfig,
770
771
            )
        elif sharded:
772
773
774
775
            return CausalLM(
                model_id=model_id,
                model_class=GPTNeoxForCausalLM,
                revision=revision,
776
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
777
                speculator=speculator,
778
                dtype=dtype,
779
780
                trust_remote_code=trust_remote_code,
            )
781
        else:
782
            return CausalLM.fallback(
783
784
785
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
786
                speculator=speculator,
787
                dtype=dtype,
788
789
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
790

791
    elif model_type == PHI:
drbh's avatar
drbh committed
792
        if FLASH_ATTENTION:
793
794
795
796
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashPhiForCausalLM,
                revision=revision,
drbh's avatar
drbh committed
797
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
798
                speculator=speculator,
drbh's avatar
drbh committed
799
                dtype=dtype,
800
                kv_cache_dtype=kv_cache_dtype,
drbh's avatar
drbh committed
801
                trust_remote_code=trust_remote_code,
802
                lora_adapter_ids=lora_adapter_ids,
drbh's avatar
drbh committed
803
804
            )
        else:
805
            return CausalLM.fallback(
drbh's avatar
drbh committed
806
807
808
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
809
                speculator=speculator,
drbh's avatar
drbh committed
810
811
812
813
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
814
815
816
817
818
819
820
821
822
823
    elif model_type == PHI_MOE:
        if FLASH_ATTENTION:
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                config_class=PhiMoEConfig,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
824
                kv_cache_dtype=kv_cache_dtype,
drbh's avatar
drbh committed
825
826
827
828
829
830
831
832
833
834
835
836
837
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
838
839
    elif model_type == "phi-msft":
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
840
841
842
            raise NotImplementedError(
                "Legacy phi-msft is not supported with Flash Attention"
            )
drbh's avatar
drbh committed
843
        else:
844
845
846
847
848
            return CausalLM(
                model_id=model_id,
                model_class=PhiForCausalLM,
                config_class=PhiConfig,
                revision=revision,
drbh's avatar
drbh committed
849
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
850
                speculator=speculator,
drbh's avatar
drbh committed
851
852
853
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
854

855
856
857
858
859
860
    elif (
        model_type == LLAMA
        or model_type == BAICHUAN
        or model_type == PHI3
        or model_type == GRANITE
    ):
861
        if FLASH_ATTENTION:
862
863
864
865
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                revision=revision,
866
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
867
                speculator=speculator,
868
                dtype=dtype,
869
                kv_cache_dtype=kv_cache_dtype,
870
                trust_remote_code=trust_remote_code,
drbh's avatar
drbh committed
871
                lora_adapter_ids=lora_adapter_ids,
872
            )
873
        elif sharded:
874
875
876
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format(f"Sharded {model_type}")
            )
877
        else:
878
            return CausalLM.fallback(
879
880
881
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
882
                speculator=speculator,
883
                dtype=dtype,
884
885
                trust_remote_code=trust_remote_code,
            )
886
    if model_type == GEMMA:
887
        if FLASH_ATTENTION:
888
889
890
891
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemmaForCausalLM,
                revision=revision,
892
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
893
                speculator=speculator,
894
                dtype=dtype,
895
                kv_cache_dtype=kv_cache_dtype,
896
897
                # Works better for these models
                default_dtype=torch.bfloat16,
898
                trust_remote_code=trust_remote_code,
899
                lora_adapter_ids=lora_adapter_ids,
900
901
            )
        elif sharded:
OlivierDehaene's avatar
OlivierDehaene committed
902
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
903
        else:
904
            return CausalLM.fallback(
905
906
907
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
908
                speculator=speculator,
909
910
911
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
Nicolas Patry's avatar
Nicolas Patry committed
912
913
    elif model_type == GEMMA2:
        if FLASH_ATTENTION:
914
915
916
917
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemma2ForCausalLM,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
918
919
920
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
921
                kv_cache_dtype=kv_cache_dtype,
922
923
                # Works better for these models
                default_dtype=torch.bfloat16,
Nicolas Patry's avatar
Nicolas Patry committed
924
                trust_remote_code=trust_remote_code,
925
                lora_adapter_ids=lora_adapter_ids,
Nicolas Patry's avatar
Nicolas Patry committed
926
927
928
929
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma2"))
        else:
930
            return CausalLM.fallback(
Nicolas Patry's avatar
Nicolas Patry committed
931
932
933
934
935
936
937
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
938

939
    if model_type == COHERE:
OlivierDehaene's avatar
OlivierDehaene committed
940
        if FLASH_ATTENTION:
941
942
943
944
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashCohereForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
945
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
946
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
947
                dtype=dtype,
948
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
949
                trust_remote_code=trust_remote_code,
950
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
951
952
953
954
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
        else:
955
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
956
957
958
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
959
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
960
961
962
963
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

964
    if model_type == DBRX:
965
        if FLASH_ATTENTION:
966
967
968
969
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDbrxForCausalLM,
                revision=revision,
970
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
971
                speculator=speculator,
972
                dtype=dtype,
973
                kv_cache_dtype=kv_cache_dtype,
974
975
                # Dbrx works better in bfloat16.
                default_dtype=torch.bfloat16,
976
                trust_remote_code=trust_remote_code,
977
978
                lora_adapter_ids=lora_adapter_ids,
                config_class=DbrxConfig,
979
980
981
982
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
        else:
983
            return CausalLM.fallback(
984
985
986
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
987
                speculator=speculator,
988
989
990
991
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

992
    if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
993
994
        if sharded:
            if FLASH_ATTENTION:
995
                if config_dict.get("alibi", False):
996
                    raise NotImplementedError("sharded is not supported for this model")
997
998
999
1000
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
1001
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1002
                    speculator=speculator,
1003
                    dtype=dtype,
1004
                    kv_cache_dtype=kv_cache_dtype,
1005
1006
1007
1008
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
1009
                    trust_remote_code=trust_remote_code,
1010
1011
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
1012
                )
1013
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Falcon"))
1014
        else:
1015
            if FLASH_ATTENTION and not config_dict.get("alibi", False):
1016
1017
1018
1019
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
1020
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1021
                    speculator=speculator,
1022
                    dtype=dtype,
1023
                    kv_cache_dtype=kv_cache_dtype,
1024
1025
1026
1027
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
1028
                    trust_remote_code=trust_remote_code,
1029
1030
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
1031
1032
                )
            else:
1033
                return CausalLM.fallback(
1034
1035
1036
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1037
                    speculator=speculator,
1038
                    dtype=dtype,
1039
1040
1041
                    trust_remote_code=trust_remote_code,
                )

1042
    if model_type == MISTRAL:
1043
        if FLASH_ATTENTION:
1044
1045
1046
1047
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMistralForCausalLM,
                revision=revision,
1048
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1049
                speculator=speculator,
1050
                dtype=dtype,
1051
                kv_cache_dtype=kv_cache_dtype,
1052
                trust_remote_code=trust_remote_code,
1053
                lora_adapter_ids=lora_adapter_ids,
1054
            )
OlivierDehaene's avatar
OlivierDehaene committed
1055
1056
1057
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
        else:
1058
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1059
1060
1061
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1062
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1063
1064
1065
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
1066

1067
    if model_type == MIXTRAL:
1068
        if FLASH_ATTENTION:
1069
1070
1071
1072
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMixtralForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1073
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1074
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1075
                dtype=dtype,
1076
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1077
                trust_remote_code=trust_remote_code,
1078
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1079
            )
OlivierDehaene's avatar
OlivierDehaene committed
1080
1081
1082
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
        else:
1083
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1084
1085
1086
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1087
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1088
1089
1090
1091
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1092
    if model_type == STARCODER2:
1093
        if FLASH_ATTENTION:
1094
1095
1096
1097
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashStarcoder2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1098
                quantize=quantize,
1099
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1100
                dtype=dtype,
1101
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1102
                trust_remote_code=trust_remote_code,
1103
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1104
1105
1106
1107
1108
1109
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
            )
        else:
1110
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1111
1112
1113
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1114
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1115
1116
1117
1118
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1119
    if model_type == QWEN2:
1120
        if FLASH_ATTENTION:
1121
1122
1123
1124
            return FlashCausalLM(
                model_id=model_id,
                model_class=Qwen2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1125
                quantize=quantize,
1126
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1127
                dtype=dtype,
1128
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1129
                trust_remote_code=trust_remote_code,
1130
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1131
1132
1133
1134
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
        else:
1135
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1136
1137
1138
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1139
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1140
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1141
1142
                trust_remote_code=trust_remote_code,
            )
1143

1144
    if model_type == OPT:
1145
1146
1147
1148
        return CausalLM(
            model_id=model_id,
            model_class=OPTForCausalLM,
            revision=revision,
1149
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1150
            speculator=speculator,
1151
1152
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1153
        )
1154

1155
    if model_type == T5:
1156
1157
1158
1159
        return Seq2SeqLM(
            model_id=model_id,
            model_class=T5ForConditionalGeneration,
            revision=revision,
1160
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1161
            speculator=speculator,
1162
            dtype=dtype,
1163
            trust_remote_code=trust_remote_code,
1164
1165
1166
1167
1168
1169
            aliases={
                "shared.weight": [
                    "encoder.embed_tokens.weight",
                    "decoder.embed_tokens.weight",
                ]
            },
1170
        )
1171
    if model_type == IDEFICS:
1172
        if FLASH_ATTENTION:
Nicolas Patry's avatar
Nicolas Patry committed
1173
            return IdeficsCausalLM(
OlivierDehaene's avatar
OlivierDehaene committed
1174
1175
1176
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1177
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1178
1179
1180
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
1181
1182
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
drbh's avatar
drbh committed
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
    if model_type == QWEN2_VL:
        return VlmCausalLM(
            model_id=model_id,
            model_class=Qwen2VLForConditionalGeneration,
            revision=revision,
            quantize=quantize,
            speculator=speculator,
            dtype=dtype,
            kv_cache_dtype=kv_cache_dtype,
            trust_remote_code=trust_remote_code,
            lora_adapter_ids=lora_adapter_ids,
        )
Nicolas Patry's avatar
Nicolas Patry committed
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
    if model_type == MLLAMA:
        if FLASH_ATTENTION:
            return MllamaCausalLM(
                model_id=model_id,
                model_class=MllamaForConditionalGeneration,
                batch_class=MllamaCausalLMBatch,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                default_dtype=torch.bfloat16,
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Mllama"))
1211
    if model_type == IDEFICS2:
Nicolas Patry's avatar
Nicolas Patry committed
1212
        if FLASH_ATTENTION:
1213
1214
1215
1216
            return VlmCausalLM(
                model_id=model_id,
                model_class=Idefics2ForConditionalGeneration,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
1217
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1218
                speculator=speculator,
Nicolas Patry's avatar
Nicolas Patry committed
1219
                dtype=dtype,
1220
                kv_cache_dtype=kv_cache_dtype,
Nicolas Patry's avatar
Nicolas Patry committed
1221
                trust_remote_code=trust_remote_code,
1222
1223
1224
1225
                lora_adapter_ids=lora_adapter_ids,
                # XXX: Extremely important to cap resolution in order to limit
                # VRAM usage.
                processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}},
Nicolas Patry's avatar
Nicolas Patry committed
1226
1227
1228
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1229
    if model_type == PALIGEMMA:
drbh's avatar
drbh committed
1230
        if FLASH_ATTENTION:
1231
1232
1233
1234
            return VlmCausalLM(
                model_id=model_id,
                model_class=PaliGemmaForConditionalGeneration,
                revision=revision,
drbh's avatar
drbh committed
1235
1236
1237
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
1238
                kv_cache_dtype=kv_cache_dtype,
1239
1240
                # Works better for these models
                default_dtype=torch.bfloat16,
drbh's avatar
drbh committed
1241
                trust_remote_code=trust_remote_code,
1242
1243
                lora_adapter_ids=lora_adapter_ids,
                batch_class=PaliGemmaBatch,
drbh's avatar
drbh committed
1244
1245
1246
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1247

1248
    if model_type == LLAVA_NEXT:
1249
        if FLASH_ATTENTION:
1250
1251
1252
1253
            return VlmCausalLM(
                model_class=LlavaNextForConditionalGeneration,
                model_id=model_id,
                revision=revision,
1254
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1255
                speculator=speculator,
1256
                dtype=dtype,
1257
                kv_cache_dtype=kv_cache_dtype,
1258
1259
1260
1261
1262
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext"))

1263
    if sharded:
1264
        raise NotImplementedError("sharded is not supported for AutoModel")
1265
    if quantize == "gptq":
1266
        raise NotImplementedError(
1267
1268
            "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
        )
1269
    if quantize == "awq":
1270
        raise NotImplementedError("awq quantization is not supported for AutoModel")
Nicolas Patry's avatar
Nicolas Patry committed
1271
    elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"):
1272
        raise NotImplementedError("4bit quantization is not supported for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
1273
    elif quantize == "eetq":
1274
        raise NotImplementedError("Eetq quantization is not supported for AutoModel")
1275
1276
    elif quantize == "exl2":
        raise NotImplementedError("exl2 quantization is not supported for AutoModel")
1277
    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
1278
        return CausalLM.fallback(
1279
1280
1281
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1282
            speculator=speculator,
1283
1284
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1285
        )
1286
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
1287
        return Seq2SeqLM.fallback(
1288
1289
1290
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1291
            speculator=speculator,
1292
1293
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1294
1295
        )

1296
    auto_map = config_dict.get("auto_map", None)
1297
1298
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
1299
            return CausalLM.fallback(
1300
1301
1302
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1303
                speculator=speculator,
1304
                dtype=dtype,
1305
1306
                trust_remote_code=trust_remote_code,
            )
1307
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
1308
            return Seq2SeqLM.fallback(
1309
1310
1311
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1312
                speculator=speculator,
1313
                dtype=dtype,
1314
1315
                trust_remote_code=trust_remote_code,
            )
1316
1317

    raise ValueError(f"Unsupported model type {model_type}")
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329


# get_model_with_lora_adapters wraps the internal get_model function and adds support for loading adapters
# this provides a post model loading hook to load adapters into the model after the model has been loaded
def get_model_with_lora_adapters(
    model_id: str,
    lora_adapters: Optional[List[AdapterInfo]],
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
    speculate: Optional[int],
    dtype: Optional[str],
1330
    kv_cache_dtype: Optional[str],
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
    trust_remote_code: bool,
    max_input_tokens: int,
    adapter_to_index: Dict[str, int],
):
    lora_adapter_ids = [adapter.id for adapter in lora_adapters]
    model = get_model(
        model_id,
        lora_adapter_ids,
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
1344
        kv_cache_dtype,
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
        trust_remote_code,
        max_input_tokens,
    )

    if len(lora_adapters) > 0:
        target_to_layer = build_layer_weight_lookup(model.model)

        for index, adapter in enumerate(lora_adapters):
            # The AdapterParameters object allows for merging multiple adapters into a single adapter.
            # At the moment, we only support loading a single adapter into the model, but we keep the
            # AdapterParameters object for easier extension in the future.
            adapter_parameters = AdapterParameters(
                adapter_info=[adapter],
                # when merging multiple adapters we can weight them differently
                # if this is not set, all adapters will be weighted equally
                # see: text_generation_server.utils.merges.strategies for impl
                weights=None,
                merge_strategy=0,
                density=1.0,
                majority_sign_method=0,
            )

            adapter_index = index + 1
            adapter_to_index[adapter.id] = adapter_index

            logger.info(
                f"Loading adapter weights into model: {','.join([adapter.id for adapter in adapter_parameters.adapter_info])}"
            )
            weight_names = tuple([v[0] for v in target_to_layer.values()])
            (
                module_map,
                adapter_config,
                adapter_weight_names,
                adapter_tokenizer,
            ) = load_and_merge_adapters(
                model.model_id,
                adapter_parameters,
                adapter_index,
                weight_names,
                False,
            )

            unused_weight_names = adapter_weight_names.copy()

            adapter_layers = [
                "q_proj",
                "k_proj",
                "v_proj",
                "o_proj",
                "gate_proj",
                "up_proj",
                "down_proj",
1397
                "qkv_proj",
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
            ]

            for layer_name in adapter_layers:
                nlayers = (
                    1 if layer_name == "lm_head" else len(model.model.model.layers)
                )
                adapter_weights = LoraWeights.prepare_weights(
                    config=adapter_config,
                    module_map=module_map,
                    layer_type=layer_name,
                    unused_weight_names=unused_weight_names,
                    nlayers=nlayers,
                    dtype=model.dtype,
                    world_size=model.world_size,
                    process_group=model.process_group,
                    target_to_layer=target_to_layer,
                )

                if adapter_weights is None:
                    continue

                model.layer_to_adapter_weights[layer_name].add_adapter(
                    adapter_index, adapter_weights
                )

            if len(unused_weight_names) > 0:
                logger.warning(
1425
                    f"{','.join([a.id for a in lora_adapters])} unused adapter weights: {unused_weight_names}"
1426
1427
1428
1429
1430
1431
1432
1433
                )

            if adapter_tokenizer is not None:
                model.tokenizers.add_tokenizer(adapter_index, adapter_tokenizer)

            model.loaded_adapters.add(adapter_index)

    return model