"vscode:/vscode.git/clone" did not exist on "6aebf44f47bc73ac34344fb7b5d941790c11d39d"
__init__.py 29.7 KB
Newer Older
1
import torch
2
import enum
Nicolas Patry's avatar
Nicolas Patry committed
3
import os
4

5
from loguru import logger
6
from transformers.configuration_utils import PretrainedConfig
7
from transformers.models.auto import modeling_auto
Nicolas Patry's avatar
Nicolas Patry committed
8
from huggingface_hub import hf_hub_download, HfApi
9
from typing import Optional
10
from pathlib import Path
11

Nicolas Patry's avatar
Nicolas Patry committed
12
from text_generation_server.utils.speculate import get_speculate, set_speculate
13
14
from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM
15
from text_generation_server.models.flash_causal_lm import FlashCausalLM
16
from text_generation_server.models.bloom import BLOOMSharded
17
from text_generation_server.models.mpt import MPTSharded
18
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
19
from text_generation_server.models.rw import RW
20
21
from text_generation_server.models.opt import OPTSharded
from text_generation_server.models.galactica import GalacticaSharded
22
23
from text_generation_server.models.santacoder import SantaCoder
from text_generation_server.models.t5 import T5Sharded
24
from text_generation_server.models.gpt_neox import GPTNeoxSharded
drbh's avatar
drbh committed
25
from text_generation_server.models.phi import Phi
26

27
28
from text_generation_server.utils.import_utils import SYSTEM

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True

# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True

# Disable gradients
torch.set_grad_enabled(False)

__all__ = [
    "Model",
    "BLOOMSharded",
    "CausalLM",
    "GalacticaSharded",
    "Seq2SeqLM",
    "SantaCoder",
    "OPTSharded",
    "T5Sharded",
    "get_model",
]

51
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
52

53
FLASH_ATTENTION = True
54

55
try:
56
    from text_generation_server.models.flash_rw import FlashRWSharded
57
    from text_generation_server.models.flash_gpt2 import FlashGPT2
58
59
60
61
    from text_generation_server.models.flash_neox import FlashNeoXSharded
    from text_generation_server.models.flash_llama import (
        FlashLlama,
    )
OlivierDehaene's avatar
OlivierDehaene committed
62
63
64
    from text_generation_server.models.flash_qwen2 import (
        FlashQwen2,
    )
OlivierDehaene's avatar
OlivierDehaene committed
65
66
67
    from text_generation_server.models.flash_cohere import (
        FlashCohere,
    )
68
69
70
    from text_generation_server.models.flash_gemma import (
        FlashGemma,
    )
drbh's avatar
drbh committed
71
72
73
    from text_generation_server.models.pali_gemma import (
        PaliGemma,
    )
74
75
    from text_generation_server.models.flash_santacoder import (
        FlashSantacoderSharded,
76
    )
77
    from text_generation_server.models.idefics import IDEFICSSharded
78
    from text_generation_server.models.llava_next import LlavaNext
Nicolas Patry's avatar
Nicolas Patry committed
79
    from text_generation_server.models.idefics2 import Idefics2
80
81
    from text_generation_server.models.flash_mistral import FlashMistral
    from text_generation_server.models.flash_mixtral import FlashMixtral
drbh's avatar
drbh committed
82
    from text_generation_server.models.flash_phi import FlashPhi
OlivierDehaene's avatar
OlivierDehaene committed
83
    from text_generation_server.models.flash_starcoder2 import FlashStarcoder2
84
    from text_generation_server.models.flash_dbrx import FlashDbrx
85
    from text_generation_server.layers.attention import SUPPORTS_WINDOWING
86
87
except ImportError as e:
    logger.warning(f"Could not import Flash Attention enabled models: {e}")
88
    SUPPORTS_WINDOWING = False
89
    FLASH_ATTENTION = False
90

91
if FLASH_ATTENTION:
92
    __all__.append(FlashGPT2)
93
    __all__.append(FlashNeoXSharded)
94
    __all__.append(FlashRWSharded)
95
    __all__.append(FlashSantacoderSharded)
96
    __all__.append(FlashLlama)
97
    __all__.append(IDEFICSSharded)
98
    __all__.append(FlashMistral)
OlivierDehaene's avatar
OlivierDehaene committed
99
    __all__.append(FlashMixtral)
100
    __all__.append(FlashDbrx)
drbh's avatar
drbh committed
101
    __all__.append(FlashPhi)
OlivierDehaene's avatar
OlivierDehaene committed
102
    __all__.append(FlashQwen2)
OlivierDehaene's avatar
OlivierDehaene committed
103
    __all__.append(FlashStarcoder2)
OlivierDehaene's avatar
OlivierDehaene committed
104
105
    __all__.append(FlashGemma)
    __all__.append(FlashCohere)
OlivierDehaene's avatar
OlivierDehaene committed
106

drbh's avatar
drbh committed
107
108
109
110
111
112
113
114
115
MAMBA_AVAILABLE = True
try:
    from text_generation_server.models.mamba import Mamba
except ImportError as e:
    logger.warning(f"Could not import Mamba: {e}")
    MAMBA_AVAILABLE = False

if MAMBA_AVAILABLE:
    __all__.append(Mamba)
OlivierDehaene's avatar
OlivierDehaene committed
116

117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
class ModelType(enum.Enum):
    IDEFICS2 = {
        "type": "idefics2",
        "name": "Idefics 2",
        "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
        "multimodal": True,
    }
    LLAVA_NEXT = {
        "type": "llava_next",
        "name": "Llava Next (1.6)",
        "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
        "multimodal": True,
    }
    LLAMA = {
        "type": "llama",
        "name": "Llama",
        "url": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
    }
    PHI3 = {
        "type": "phi3",
        "name": "Phi 3",
        "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
    }
    GEMMA = {
        "type": "gemma",
        "name": "Gemma",
        "url": "https://huggingface.co/google/gemma-7b",
    }
    COHERE = {
        "type": "cohere",
        "name": "Cohere",
        "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    }
    DBRX = {
        "type": "dbrx",
        "name": "Dbrx",
        "url": "https://huggingface.co/databricks/dbrx-instruct",
    }
    MAMBA = {
        "type": "ssm",
        "name": "Mamba",
        "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
    }
    MISTRAL = {
        "type": "mistral",
        "name": "Mistral",
        "url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
    }
    MIXTRAL = {
        "type": "mixtral",
        "name": "Mixtral",
        "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
    }
    GPT_BIGCODE = {
        "type": "gpt_bigcode",
        "name": "Gpt Bigcode",
        "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
    }
    PHI = {
        "type": "phi",
        "name": "Phi",
        "url": "https://huggingface.co/microsoft/phi-1_5",
    }
    BAICHUAN = {
        "type": "baichuan",
        "name": "Baichuan",
        "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
    }
    FALCON = {
        "type": "falcon",
        "name": "Falcon",
        "url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
    }
    STARCODER2 = {
        "type": "starcoder2",
        "name": "StarCoder 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    QWEN2 = {
        "type": "qwen2",
        "name": "Qwen 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    OPT = {
        "type": "opt",
        "name": "Opt",
        "url": "https://huggingface.co/facebook/opt-6.7b",
    }
    T5 = {
        "type": "t5",
        "name": "T5",
        "url": "https://huggingface.co/google/flan-t5-xxl",
    }
    GALACTICA = {
        "type": "galactica",
        "name": "Galactica",
        "url": "https://huggingface.co/facebook/galactica-120b",
    }
    SANTACODER = {
        "type": "santacoder",
        "name": "SantaCoder",
        "url": "https://huggingface.co/bigcode/santacoder",
    }
    BLOOM = {
        "type": "bloom",
        "name": "Bloom",
        "url": "https://huggingface.co/bigscience/bloom-560m",
    }
    MPT = {
        "type": "mpt",
        "name": "Mpt",
        "url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
    }
    GPT2 = {
        "type": "gpt2",
        "name": "Gpt2",
        "url": "https://huggingface.co/openai-community/gpt2",
    }
    GPT_NEOX = {
        "type": "gpt_neox",
        "name": "Gpt Neox",
        "url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
    }
    IDEFICS = {
        "type": "idefics",
        "name": "Idefics",
        "url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
        "multimodal": True,
    }


__GLOBALS = locals()
for data in ModelType:
    __GLOBALS[data.name] = data.value["type"]


254
def get_model(
255
256
257
258
    model_id: str,
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
259
    speculate: Optional[int],
260
    dtype: Optional[str],
261
    trust_remote_code: bool,
262
    max_input_tokens: int,
263
) -> Model:
264
    global FLASH_ATTENTION
265
    if dtype is None:
266
        if quantize in ["awq", "exl2", "gptq", "marlin"]:
267
268
269
270
271
272
            # These quantizers only work with float16 params.
            dtype = torch.float16
        else:
            # Keep it as default for now and let
            # every model resolve their own default dtype.
            dtype = None
273
274
275
276
277
278
279
    elif dtype == "float16":
        dtype = torch.float16
    elif dtype == "bfloat16":
        dtype = torch.bfloat16
    else:
        raise RuntimeError(f"Unknown dtype {dtype}")

Nicolas Patry's avatar
Nicolas Patry committed
280
281
282
283
284
    if speculate is not None:
        set_speculate(speculate)
    else:
        set_speculate(0)

OlivierDehaene's avatar
v0.8.2  
OlivierDehaene committed
285
286
287
    config_dict, _ = PretrainedConfig.get_config_dict(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
Nicolas Patry's avatar
Nicolas Patry committed
288
    model_type = config_dict.get("model_type", None)
Nicolas Patry's avatar
Nicolas Patry committed
289

Nicolas Patry's avatar
Nicolas Patry committed
290
    speculator = None
Nicolas Patry's avatar
Nicolas Patry committed
291
    if "medusa_num_heads" in config_dict:
292
293
        medusa_model_id = model_id
        medusa_revision = revision
Nicolas Patry's avatar
Nicolas Patry committed
294
295
296
297
298
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_medusa = config_dict["medusa_num_heads"]
        if speculate is not None:
            if speculate > speculate_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
299
                raise RuntimeError(
OlivierDehaene's avatar
OlivierDehaene committed
300
                    f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
OlivierDehaene's avatar
OlivierDehaene committed
301
                )
Nicolas Patry's avatar
Nicolas Patry committed
302
303
304
305
306
307
308
309
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_medusa)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
Nicolas Patry's avatar
Nicolas Patry committed
310
311
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
312
313
314
315
316
317
318
319
320
321
        is_local = Path(medusa_model_id).exists()
        if not is_local:
            medusa_config = hf_hub_download(
                medusa_model_id, revision=medusa_revision, filename="config.json"
            )
            hf_hub_download(
                medusa_model_id,
                revision=medusa_revision,
                filename="medusa_lm_head.safetensors",
            )
Nicolas Patry's avatar
Nicolas Patry committed
322
323
324
325
            speculator = {
                "path": Path(medusa_config).parent,
                "model_paths": ["medusa_lm_head.safetensors"],
            }
326
        else:
Nicolas Patry's avatar
Nicolas Patry committed
327
328
329
330
            speculator = {
                "path": Path(medusa_model_id),
                "model_paths": ["medusa_lm_head.safetensors"],
            }
331

Nicolas Patry's avatar
Nicolas Patry committed
332
        method = "medusa"
Nicolas Patry's avatar
Nicolas Patry committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    elif model_type == "mlp_speculator":
        mlp_model_id = model_id
        mlp_revision = revision
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_mlp = config_dict["n_predict"]
        if speculate is not None:
            if speculate > speculate_mlp:
                raise RuntimeError(
                    f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
                )
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_mlp)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
        is_local = Path(mlp_model_id).exists()
        extension = ".safetensors"
        if not is_local:
            mlp_speculator_config = hf_hub_download(
                mlp_model_id, revision=mlp_revision, filename="config.json"
            )
            api = HfApi()
            info = api.model_info(mlp_model_id, revision=mlp_revision)
            filenames = [
                s.rfilename
                for s in info.siblings
                if s.rfilename.endswith(extension)
                and len(s.rfilename.split("/")) == 1
                and "arguments" not in s.rfilename
                and "args" not in s.rfilename
                and "training" not in s.rfilename
            ]
            for filename in filenames:
                hf_hub_download(
                    mlp_model_id,
                    revision=mlp_revision,
                    filename=filename,
                )
            speculator = {
                "path": Path(mlp_speculator_config).parent,
                "model_paths": filenames,
            }
        else:
            speculator = Path(mlp_model_id)
            filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
            speculator = {"path": speculator, "model_paths": filenames}
        method = "mlp_speculator"
Nicolas Patry's avatar
Nicolas Patry committed
386
387
388
389
390
391
392
    else:
        method = "n-gram"

    speculate = get_speculate()
    if speculate > 0:
        logger.info(f"Using speculation {method} with {speculate} input ids.")

drbh's avatar
drbh committed
393
394
395
396
397
398
399
400
401
    if model_type is None:
        # TODO: fix how we determine model type for Mamba
        if "ssm_cfg" in config_dict:
            # *only happens in Mamba case
            model_type = "ssm"
        else:
            raise RuntimeError(
                f"Could not determine model type for {model_id} revision {revision}"
            )
402
403
404
    quantization_config = config_dict.get("quantization_config", None)
    if quantization_config is not None and quantize is None:
        method = quantization_config.get("quant_method", None)
405
        if method in {"gptq", "awq", "exl2"}:
406
407
408
409
            logger.info(f"Auto selecting quantization method {method}")
            quantize = method
        else:
            logger.info(f"Unknown quantization method {method}")
drbh's avatar
drbh committed
410

411
412
413
414
    if quantize == "exl2" and sharded:
        raise RuntimeError(
            "Sharding is currently not supported with `exl2` quantization"
        )
415
    sliding_window = config_dict.get("sliding_window", -1)
416
417
418
419
420
421
422
423

    if (
        (sliding_window is not None and sliding_window != -1)
        and not SUPPORTS_WINDOWING
        and max_input_tokens > sliding_window
    ):
        raise ValueError(
            f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
424
        )
425

426
    if model_type == MAMBA:
drbh's avatar
drbh committed
427
428
429
430
        return Mamba(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
431
            speculator=speculator,
drbh's avatar
drbh committed
432
433
434
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )
435

OlivierDehaene's avatar
OlivierDehaene committed
436
437
438
439
440
    if model_id.startswith("facebook/galactica"):
        return GalacticaSharded(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
441
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
442
443
444
445
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )

446
    if (
447
448
        model_type == GPT_BIGCODE
        or model_type == GPT2
449
450
        and model_id.startswith("bigcode/")
    ):
451
        if FLASH_ATTENTION:
452
453
454
455
            return FlashSantacoderSharded(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
456
                speculator=speculator,
457
                dtype=dtype,
458
459
                trust_remote_code=trust_remote_code,
            )
460
461
462
463
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder")
            )
464
        else:
465
            return SantaCoder(
466
467
468
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
469
                speculator=speculator,
470
                dtype=dtype,
471
472
                trust_remote_code=trust_remote_code,
            )
473

474
    if model_type == BLOOM:
475
        return BLOOMSharded(
476
477
478
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
479
            speculator=speculator,
480
481
            dtype=dtype,
            trust_remote_code=trust_remote_code,
482
        )
483
    elif model_type == MPT:
484
        return MPTSharded(
OlivierDehaene's avatar
OlivierDehaene committed
485
486
487
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
488
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
489
490
            dtype=dtype,
            trust_remote_code=trust_remote_code,
491
        )
492
    elif model_type == GPT2:
493
        if FLASH_ATTENTION:
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
            try:
                return FlashGPT2(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
                logger.warning(f"Couldn't load flash gpt2 variant: {e}")
                return CausalLM(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
514
515
516
517
518
519
520
521
522
523
524
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
525
    elif model_type == GPT_NEOX:
526
527
528
529
530
        if FLASH_ATTENTION:
            return FlashNeoXSharded(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
531
                speculator=speculator,
532
                dtype=dtype,
533
534
535
536
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            return GPTNeoxSharded(
537
538
539
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
540
                speculator=speculator,
541
                dtype=dtype,
542
543
                trust_remote_code=trust_remote_code,
            )
544
        else:
545
            return CausalLM(
546
547
548
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
549
                speculator=speculator,
550
                dtype=dtype,
551
552
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
553

554
    elif model_type == PHI:
drbh's avatar
drbh committed
555
556
557
558
559
        if FLASH_ATTENTION:
            return FlashPhi(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
560
                speculator=speculator,
drbh's avatar
drbh committed
561
562
563
564
565
566
567
568
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
569
                speculator=speculator,
drbh's avatar
drbh committed
570
571
572
573
574
575
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

    elif model_type == "phi-msft":
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
576
577
578
            raise NotImplementedError(
                "Legacy phi-msft is not supported with Flash Attention"
            )
drbh's avatar
drbh committed
579
580
581
582
583
        else:
            return Phi(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
584
                speculator=speculator,
drbh's avatar
drbh committed
585
586
587
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
588

589
    elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
590
591
        if FLASH_ATTENTION:
            return FlashLlama(
592
593
594
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
595
                speculator=speculator,
596
                dtype=dtype,
597
598
                trust_remote_code=trust_remote_code,
            )
599
600
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama"))
601
        else:
602
            return CausalLM(
603
604
605
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
606
                speculator=speculator,
607
                dtype=dtype,
608
609
                trust_remote_code=trust_remote_code,
            )
610
    if model_type == GEMMA:
611
612
613
614
615
        if FLASH_ATTENTION:
            return FlashGemma(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
616
                speculator=speculator,
617
618
619
620
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
OlivierDehaene's avatar
OlivierDehaene committed
621
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
622
623
624
625
626
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
627
                speculator=speculator,
628
629
630
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
631

632
    if model_type == COHERE:
OlivierDehaene's avatar
OlivierDehaene committed
633
634
635
636
637
        if FLASH_ATTENTION:
            return FlashCohere(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
638
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
639
640
641
642
643
644
645
646
647
648
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
649
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
650
651
652
653
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

654
    if model_type == DBRX:
655
656
657
658
659
        if FLASH_ATTENTION:
            return FlashDbrx(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
660
                speculator=speculator,
661
662
663
664
665
666
667
668
669
670
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
671
                speculator=speculator,
672
673
674
675
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

676
    if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
677
678
        if sharded:
            if FLASH_ATTENTION:
679
                if config_dict.get("alibi", False):
680
681
682
683
684
                    raise NotImplementedError("sharded is not supported for this model")
                return FlashRWSharded(
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
685
                    speculator=speculator,
686
                    dtype=dtype,
687
688
                    trust_remote_code=trust_remote_code,
                )
689
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Falcon"))
690
        else:
691
            if FLASH_ATTENTION and not config_dict.get("alibi", False):
692
                return FlashRWSharded(
693
694
695
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
696
                    speculator=speculator,
697
                    dtype=dtype,
698
699
700
701
702
703
704
                    trust_remote_code=trust_remote_code,
                )
            else:
                return RW(
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
705
                    speculator=speculator,
706
                    dtype=dtype,
707
708
709
                    trust_remote_code=trust_remote_code,
                )

710
    if model_type == MISTRAL:
711
        if FLASH_ATTENTION:
712
713
714
715
            return FlashMistral(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
716
                speculator=speculator,
717
718
719
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
720
721
722
723
724
725
726
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
727
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
728
729
730
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
731

732
    if model_type == MIXTRAL:
733
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
734
735
736
737
            return FlashMixtral(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
738
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
739
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
740
741
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
742
743
744
745
746
747
748
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
749
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
750
751
752
753
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

754
    if model_type == STARCODER2:
755
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
756
757
758
759
760
            return FlashStarcoder2(
                model_id,
                revision,
                quantize=quantize,
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
761
762
763
764
765
766
767
768
769
770
771
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
            )
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
772
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
773
774
775
776
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

777
    if model_type == QWEN2:
778
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
779
780
781
782
783
784
785
786
787
788
789
790
791
792
            return FlashQwen2(
                model_id,
                revision,
                quantize=quantize,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
793
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
794
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
795
796
                trust_remote_code=trust_remote_code,
            )
797

798
    if model_type == OPT:
799
        return OPTSharded(
800
801
802
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
803
            speculator=speculator,
804
805
            dtype=dtype,
            trust_remote_code=trust_remote_code,
806
        )
807

808
    if model_type == T5:
809
810
811
812
        return T5Sharded(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
813
            speculator=speculator,
814
            dtype=dtype,
815
816
            trust_remote_code=trust_remote_code,
        )
817
    if model_type == IDEFICS:
818
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
819
820
821
822
            return IDEFICSSharded(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
823
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
824
825
826
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
827
828
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
829
    if model_type == IDEFICS2:
Nicolas Patry's avatar
Nicolas Patry committed
830
831
832
833
834
        if FLASH_ATTENTION:
            return Idefics2(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
835
                speculator=speculator,
Nicolas Patry's avatar
Nicolas Patry committed
836
837
838
839
840
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
drbh's avatar
drbh committed
841
842
843
844
845
846
847
848
849
850
851
852
    if model_type == "paligemma":
        if FLASH_ATTENTION:
            return PaliGemma(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
853

854
    if model_type == LLAVA_NEXT:
855
856
857
858
859
        if FLASH_ATTENTION:
            return LlavaNext(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
860
                speculator=speculator,
861
862
863
864
865
866
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext"))

867
    if sharded:
868
        raise NotImplementedError("sharded is not supported for AutoModel")
869
    if quantize == "gptq":
870
        raise NotImplementedError(
871
872
            "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
        )
873
    if quantize == "awq":
874
        raise NotImplementedError("awq quantization is not supported for AutoModel")
Nicolas Patry's avatar
Nicolas Patry committed
875
    elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"):
876
        raise NotImplementedError("4bit quantization is not supported for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
877
    elif quantize == "eetq":
878
        raise NotImplementedError("Eetq quantization is not supported for AutoModel")
879
880
    elif quantize == "exl2":
        raise NotImplementedError("exl2 quantization is not supported for AutoModel")
881
    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
882
        return CausalLM(
883
884
885
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
886
            speculator=speculator,
887
888
            dtype=dtype,
            trust_remote_code=trust_remote_code,
889
        )
890
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
891
        return Seq2SeqLM(
892
893
894
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
895
            speculator=speculator,
896
897
            dtype=dtype,
            trust_remote_code=trust_remote_code,
898
899
        )

900
    auto_map = config_dict.get("auto_map", None)
901
902
903
904
905
906
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
907
                speculator=speculator,
908
                dtype=dtype,
909
910
                trust_remote_code=trust_remote_code,
            )
911
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
912
913
914
915
            return Seq2SeqLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
916
                speculator=speculator,
917
                dtype=dtype,
918
919
                trust_remote_code=trust_remote_code,
            )
920
921

    raise ValueError(f"Unsupported model type {model_type}")