"doc/vscode:/vscode.git/clone" did not exist on "09f0ddc00bb384232ed45d815b4aa5febdcc8469"
__init__.py 38 KB
Newer Older
1
import torch
2
import enum
Nicolas Patry's avatar
Nicolas Patry committed
3
import os
4

5
from loguru import logger
6
from transformers.configuration_utils import PretrainedConfig
7
from transformers.models.auto import modeling_auto
Nicolas Patry's avatar
Nicolas Patry committed
8
from huggingface_hub import hf_hub_download, HfApi
drbh's avatar
drbh committed
9
from typing import Optional, List
10
from pathlib import Path
11

Nicolas Patry's avatar
Nicolas Patry committed
12
from text_generation_server.utils.speculate import get_speculate, set_speculate
13
from text_generation_server.models.model import Model
14
15
16
17
18
from text_generation_server.models.causal_lm import CausalLM, CausalLMBatchKeysLast
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
from text_generation_server.models.custom_modeling.mpt_modeling import (
    MPTForCausalLM,
)
19
from text_generation_server.models.bloom import BloomCausalLMBatch
20
21
22
from text_generation_server.models.custom_modeling.bloom_modeling import (
    BloomForCausalLM,
)
23
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
24
25
26
27
28
29
30
31
32
33
34
from text_generation_server.models.galactica import GalacticaCausalLMBatch
from text_generation_server.models.custom_modeling.neox_modeling import (
    GPTNeoxForCausalLM,
)
from text_generation_server.models.custom_modeling.phi_modeling import (
    PhiConfig,
    PhiForCausalLM,
)
from text_generation_server.models.custom_modeling.t5_modeling import (
    T5ForConditionalGeneration,
)
35

36
from text_generation_server.utils.import_utils import SYSTEM
37
from text_generation_server.utils.log import log_master
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True

# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True

# Disable gradients
torch.set_grad_enabled(False)

__all__ = [
    "Model",
    "CausalLM",
    "Seq2SeqLM",
    "get_model",
]

56
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
57

58
FLASH_ATTENTION = True
59

60
try:
61
    from text_generation_server.models.flash_causal_lm import FlashCausalLM
62
    from text_generation_server.models.vlm_causal_lm import VlmCausalLM
63
64
65
66
    from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
        FlashDeepseekV2ForCausalLM,
        DeepseekV2Config,
    )
67
68
    from text_generation_server.models.custom_modeling.flash_llama_modeling import (
        FlashLlamaForCausalLM,
69
    )
70
71
    from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
        FlashCohereForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
72
    )
73
74
    from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
        FlashGemmaForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
75
    )
76
77
    from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
        FlashGemma2ForCausalLM,
78
    )
79
80
81
82
83
84
85
86
87
88
    from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
        FlashDbrxForCausalLM,
        DbrxConfig,
    )
    from text_generation_server.models.custom_modeling.flash_rw_modeling import (
        RWConfig,
        FlashRWForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_neox_modeling import (
        FlashGPTNeoXForCausalLM,
Nicolas Patry's avatar
Nicolas Patry committed
89
    )
drbh's avatar
drbh committed
90
    from text_generation_server.models.pali_gemma import (
91
        PaliGemmaBatch,
drbh's avatar
drbh committed
92
    )
93
94
95
96
97
    from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
        PaliGemmaForConditionalGeneration,
    )
    from text_generation_server.models.custom_modeling.flash_phi_modeling import (
        FlashPhiForCausalLM,
98
    )
99
    from text_generation_server.models.idefics import IDEFICSSharded
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    from text_generation_server.models.custom_modeling.llava_next import (
        LlavaNextForConditionalGeneration,
    )

    from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
        FlashSantacoderForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import (
        FlashStarcoder2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
        Qwen2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
        FlashMistralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mixtral_modeling import (
        FlashMixtralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
        FlashGPT2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.idefics2 import (
        Idefics2ForConditionalGeneration,
    )
125
    from text_generation_server.layers.attention import SUPPORTS_WINDOWING
126
except ImportError as e:
127
    log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
128
    SUPPORTS_WINDOWING = False
129
    FLASH_ATTENTION = False
130

131
if FLASH_ATTENTION:
132
    __all__.append(FlashCausalLM)
133
    __all__.append(IDEFICSSharded)
OlivierDehaene's avatar
OlivierDehaene committed
134

drbh's avatar
drbh committed
135
136
137
138
MAMBA_AVAILABLE = True
try:
    from text_generation_server.models.mamba import Mamba
except ImportError as e:
139
    log_master(logger.warning, f"Could not import Mamba: {e}")
drbh's avatar
drbh committed
140
141
142
143
    MAMBA_AVAILABLE = False

if MAMBA_AVAILABLE:
    __all__.append(Mamba)
OlivierDehaene's avatar
OlivierDehaene committed
144

145

146
class ModelType(enum.Enum):
147
148
149
150
151
    DEEPSEEK_V2 = {
        "type": "deepseek_v2",
        "name": "Deepseek V2",
        "url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
    }
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    IDEFICS2 = {
        "type": "idefics2",
        "name": "Idefics 2",
        "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
        "multimodal": True,
    }
    LLAVA_NEXT = {
        "type": "llava_next",
        "name": "Llava Next (1.6)",
        "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
        "multimodal": True,
    }
    LLAMA = {
        "type": "llama",
        "name": "Llama",
        "url": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
    }
    PHI3 = {
        "type": "phi3",
        "name": "Phi 3",
        "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
    }
    GEMMA = {
        "type": "gemma",
        "name": "Gemma",
        "url": "https://huggingface.co/google/gemma-7b",
    }
179
180
181
182
183
    PALIGEMMA = {
        "type": "paligemma",
        "name": "PaliGemma",
        "url": "https://huggingface.co/google/paligemma-3b-pt-224",
    }
Nicolas Patry's avatar
Nicolas Patry committed
184
185
186
187
188
    GEMMA2 = {
        "type": "gemma2",
        "name": "Gemma2",
        "url": "https://huggingface.co/google/gemma2-9b",
    }
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    COHERE = {
        "type": "cohere",
        "name": "Cohere",
        "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    }
    DBRX = {
        "type": "dbrx",
        "name": "Dbrx",
        "url": "https://huggingface.co/databricks/dbrx-instruct",
    }
    MAMBA = {
        "type": "ssm",
        "name": "Mamba",
        "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
    }
    MISTRAL = {
        "type": "mistral",
        "name": "Mistral",
        "url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
    }
    MIXTRAL = {
        "type": "mixtral",
        "name": "Mixtral",
        "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
    }
    GPT_BIGCODE = {
        "type": "gpt_bigcode",
        "name": "Gpt Bigcode",
        "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
    }
    PHI = {
        "type": "phi",
        "name": "Phi",
        "url": "https://huggingface.co/microsoft/phi-1_5",
    }
    BAICHUAN = {
        "type": "baichuan",
        "name": "Baichuan",
        "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
    }
    FALCON = {
        "type": "falcon",
        "name": "Falcon",
        "url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
    }
    STARCODER2 = {
        "type": "starcoder2",
        "name": "StarCoder 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    QWEN2 = {
        "type": "qwen2",
        "name": "Qwen 2",
242
        "url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f",
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    }
    OPT = {
        "type": "opt",
        "name": "Opt",
        "url": "https://huggingface.co/facebook/opt-6.7b",
    }
    T5 = {
        "type": "t5",
        "name": "T5",
        "url": "https://huggingface.co/google/flan-t5-xxl",
    }
    GALACTICA = {
        "type": "galactica",
        "name": "Galactica",
        "url": "https://huggingface.co/facebook/galactica-120b",
    }
    SANTACODER = {
        "type": "santacoder",
        "name": "SantaCoder",
        "url": "https://huggingface.co/bigcode/santacoder",
    }
    BLOOM = {
        "type": "bloom",
        "name": "Bloom",
        "url": "https://huggingface.co/bigscience/bloom-560m",
    }
    MPT = {
        "type": "mpt",
        "name": "Mpt",
        "url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
    }
    GPT2 = {
        "type": "gpt2",
        "name": "Gpt2",
        "url": "https://huggingface.co/openai-community/gpt2",
    }
    GPT_NEOX = {
        "type": "gpt_neox",
        "name": "Gpt Neox",
        "url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
    }
    IDEFICS = {
        "type": "idefics",
        "name": "Idefics",
        "url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
        "multimodal": True,
    }


__GLOBALS = locals()
for data in ModelType:
    __GLOBALS[data.name] = data.value["type"]


297
def get_model(
298
    model_id: str,
drbh's avatar
drbh committed
299
    lora_adapter_ids: Optional[List[str]],
300
301
302
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
303
    speculate: Optional[int],
304
    dtype: Optional[str],
305
    trust_remote_code: bool,
306
    max_input_tokens: int,
307
) -> Model:
308
    global FLASH_ATTENTION
309
    if dtype is None:
310
        if quantize in ["awq", "exl2", "gptq", "marlin"]:
311
312
            # These quantizers only work with float16 params.
            dtype = torch.float16
313
314
315
316
317
318
        elif quantize == "fp8":
            from text_generation_server.layers.fp8 import FBGEMM_MM_AVAILABLE

            if FBGEMM_MM_AVAILABLE:
                # fbgemm kernels are fp8xfp8->bf16
                dtype = torch.bfloat16
319
320
321
322
        else:
            # Keep it as default for now and let
            # every model resolve their own default dtype.
            dtype = None
323
324
325
326
327
328
329
    elif dtype == "float16":
        dtype = torch.float16
    elif dtype == "bfloat16":
        dtype = torch.bfloat16
    else:
        raise RuntimeError(f"Unknown dtype {dtype}")

Nicolas Patry's avatar
Nicolas Patry committed
330
331
332
333
334
    if speculate is not None:
        set_speculate(speculate)
    else:
        set_speculate(0)

OlivierDehaene's avatar
v0.8.2  
OlivierDehaene committed
335
336
337
    config_dict, _ = PretrainedConfig.get_config_dict(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
Nicolas Patry's avatar
Nicolas Patry committed
338
    model_type = config_dict.get("model_type", None)
Nicolas Patry's avatar
Nicolas Patry committed
339

Nicolas Patry's avatar
Nicolas Patry committed
340
    speculator = None
Nicolas Patry's avatar
Nicolas Patry committed
341
    if "medusa_num_heads" in config_dict:
342
343
        medusa_model_id = model_id
        medusa_revision = revision
Nicolas Patry's avatar
Nicolas Patry committed
344
345
346
347
348
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_medusa = config_dict["medusa_num_heads"]
        if speculate is not None:
            if speculate > speculate_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
349
                raise RuntimeError(
OlivierDehaene's avatar
OlivierDehaene committed
350
                    f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
OlivierDehaene's avatar
OlivierDehaene committed
351
                )
Nicolas Patry's avatar
Nicolas Patry committed
352
353
354
355
356
357
358
359
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_medusa)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
Nicolas Patry's avatar
Nicolas Patry committed
360
361
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
362
363
364
365
366
367
368
369
370
371
        is_local = Path(medusa_model_id).exists()
        if not is_local:
            medusa_config = hf_hub_download(
                medusa_model_id, revision=medusa_revision, filename="config.json"
            )
            hf_hub_download(
                medusa_model_id,
                revision=medusa_revision,
                filename="medusa_lm_head.safetensors",
            )
Nicolas Patry's avatar
Nicolas Patry committed
372
373
374
375
            speculator = {
                "path": Path(medusa_config).parent,
                "model_paths": ["medusa_lm_head.safetensors"],
            }
376
        else:
Nicolas Patry's avatar
Nicolas Patry committed
377
378
379
380
            speculator = {
                "path": Path(medusa_model_id),
                "model_paths": ["medusa_lm_head.safetensors"],
            }
381

Nicolas Patry's avatar
Nicolas Patry committed
382
        method = "medusa"
Nicolas Patry's avatar
Nicolas Patry committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    elif model_type == "mlp_speculator":
        mlp_model_id = model_id
        mlp_revision = revision
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_mlp = config_dict["n_predict"]
        if speculate is not None:
            if speculate > speculate_mlp:
                raise RuntimeError(
                    f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
                )
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_mlp)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
        is_local = Path(mlp_model_id).exists()
        extension = ".safetensors"
        if not is_local:
            mlp_speculator_config = hf_hub_download(
                mlp_model_id, revision=mlp_revision, filename="config.json"
            )
            api = HfApi()
            info = api.model_info(mlp_model_id, revision=mlp_revision)
            filenames = [
                s.rfilename
                for s in info.siblings
                if s.rfilename.endswith(extension)
                and len(s.rfilename.split("/")) == 1
                and "arguments" not in s.rfilename
                and "args" not in s.rfilename
                and "training" not in s.rfilename
            ]
            for filename in filenames:
                hf_hub_download(
                    mlp_model_id,
                    revision=mlp_revision,
                    filename=filename,
                )
            speculator = {
                "path": Path(mlp_speculator_config).parent,
                "model_paths": filenames,
            }
        else:
            speculator = Path(mlp_model_id)
            filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
            speculator = {"path": speculator, "model_paths": filenames}
        method = "mlp_speculator"
Nicolas Patry's avatar
Nicolas Patry committed
436
437
438
439
440
    else:
        method = "n-gram"

    speculate = get_speculate()
    if speculate > 0:
441
442
443
        log_master(
            logger.info, f"Using speculation {method} with {speculate} input ids."
        )
Nicolas Patry's avatar
Nicolas Patry committed
444

drbh's avatar
drbh committed
445
446
447
448
449
450
451
452
453
    if model_type is None:
        # TODO: fix how we determine model type for Mamba
        if "ssm_cfg" in config_dict:
            # *only happens in Mamba case
            model_type = "ssm"
        else:
            raise RuntimeError(
                f"Could not determine model type for {model_id} revision {revision}"
            )
454
455
456
    quantization_config = config_dict.get("quantization_config", None)
    if quantization_config is not None and quantize is None:
        method = quantization_config.get("quant_method", None)
457
        if method in {"gptq", "awq", "exl2"}:
458
            log_master(logger.info, f"Auto selecting quantization method {method}")
459
460
            quantize = method
        else:
461
            log_master(logger.warning, f"Unknown quantization method {method}")
drbh's avatar
drbh committed
462

463
464
465
466
    if quantize == "exl2" and sharded:
        raise RuntimeError(
            "Sharding is currently not supported with `exl2` quantization"
        )
467
    sliding_window = config_dict.get("sliding_window", -1)
468
469
470
471
472
473
474
475

    if (
        (sliding_window is not None and sliding_window != -1)
        and not SUPPORTS_WINDOWING
        and max_input_tokens > sliding_window
    ):
        raise ValueError(
            f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
476
        )
477

478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
    if model_type == DEEPSEEK_V2:
        if FLASH_ATTENTION:
            head_size = max(
                config_dict.get("qk_nope_dim", 128)
                + config_dict.get("qk_rope_dim", 64),
                config_dict.get("v_head_dim", 128),
            )
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDeepseekV2ForCausalLM,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                default_dtype=torch.bfloat16,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
                config_class=DeepseekV2Config,
                head_size=head_size,
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Deepseek V2")
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
    elif model_type == MAMBA:
drbh's avatar
drbh committed
512
513
514
515
        return Mamba(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
516
            speculator=speculator,
drbh's avatar
drbh committed
517
518
519
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )
520

OlivierDehaene's avatar
OlivierDehaene committed
521
    if model_id.startswith("facebook/galactica"):
522
523
524
525
526
        return CausalLM(
            model_id=model_id,
            # Yes galactica is just an OPT model.
            model_class=OPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
527
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
528
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
529
530
            dtype=dtype,
            trust_remote_code=trust_remote_code,
531
            batch_class=GalacticaCausalLMBatch,
OlivierDehaene's avatar
OlivierDehaene committed
532
533
        )

534
    if (
535
536
        model_type == GPT_BIGCODE
        or model_type == GPT2
537
538
        and model_id.startswith("bigcode/")
    ):
539
        if FLASH_ATTENTION:
540
541
542
543
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashSantacoderForCausalLM,
                revision=revision,
544
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
545
                speculator=speculator,
546
                dtype=dtype,
547
                trust_remote_code=trust_remote_code,
548
549
550
                lora_adapter_ids=lora_adapter_ids,
                aliases={"transformer.wte.weight": ["lm_head.weight"]},
                num_kv_heads=1,
551
            )
552
553
554
555
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder")
            )
556
        else:
557
558
559
            return CausalLM.fallback(
                model_id=model_id,
                revision=revision,
560
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
561
                speculator=speculator,
562
                dtype=dtype,
563
564
                trust_remote_code=trust_remote_code,
            )
565

566
    if model_type == BLOOM:
567
568
569
570
        return CausalLM(
            model_id=model_id,
            model_class=BloomForCausalLM,
            revision=revision,
571
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
572
            speculator=speculator,
573
574
            dtype=dtype,
            trust_remote_code=trust_remote_code,
575
            batch_class=BloomCausalLMBatch,
576
        )
577
    elif model_type == MPT:
578
579
580
581
        return CausalLM(
            model_id=model_id,
            model_class=MPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
582
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
583
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
584
585
            dtype=dtype,
            trust_remote_code=trust_remote_code,
586
            batch_class=CausalLMBatchKeysLast,
587
        )
588
    elif model_type == GPT2:
589
        if FLASH_ATTENTION:
590
            try:
591
592
593
594
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPT2ForCausalLM,
                    revision=revision,
595
596
597
598
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
599
                    lora_adapter_ids=lora_adapter_ids,
600
601
602
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
603
                log_master(logger.warning, f"Couldn't load flash gpt2 variant: {e}")
604
                return CausalLM.fallback(
605
606
607
608
609
610
611
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
612
613
614
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
        else:
615
            return CausalLM.fallback(
616
617
618
619
620
621
622
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
623
    elif model_type == GPT_NEOX:
624
        if FLASH_ATTENTION:
625
626
627
628
            from text_generation_server.models.custom_modeling.flash_neox_modeling import (
                GPTNeoXConfig,
            )

629
630
631
632
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGPTNeoXForCausalLM,
                revision=revision,
633
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
634
                speculator=speculator,
635
                dtype=dtype,
636
                trust_remote_code=trust_remote_code,
637
                lora_adapter_ids=lora_adapter_ids,
638
                config_class=GPTNeoXConfig,
639
640
            )
        elif sharded:
641
642
643
644
            return CausalLM(
                model_id=model_id,
                model_class=GPTNeoxForCausalLM,
                revision=revision,
645
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
646
                speculator=speculator,
647
                dtype=dtype,
648
649
                trust_remote_code=trust_remote_code,
            )
650
        else:
651
            return CausalLM.fallback(
652
653
654
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
655
                speculator=speculator,
656
                dtype=dtype,
657
658
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
659

660
    elif model_type == PHI:
drbh's avatar
drbh committed
661
        if FLASH_ATTENTION:
662
663
664
665
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashPhiForCausalLM,
                revision=revision,
drbh's avatar
drbh committed
666
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
667
                speculator=speculator,
drbh's avatar
drbh committed
668
669
                dtype=dtype,
                trust_remote_code=trust_remote_code,
670
                lora_adapter_ids=lora_adapter_ids,
drbh's avatar
drbh committed
671
672
            )
        else:
673
            return CausalLM.fallback(
drbh's avatar
drbh committed
674
675
676
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
677
                speculator=speculator,
drbh's avatar
drbh committed
678
679
680
681
682
683
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

    elif model_type == "phi-msft":
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
684
685
686
            raise NotImplementedError(
                "Legacy phi-msft is not supported with Flash Attention"
            )
drbh's avatar
drbh committed
687
        else:
688
689
690
691
692
            return CausalLM(
                model_id=model_id,
                model_class=PhiForCausalLM,
                config_class=PhiConfig,
                revision=revision,
drbh's avatar
drbh committed
693
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
694
                speculator=speculator,
drbh's avatar
drbh committed
695
696
697
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
698

699
    elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
700
        if FLASH_ATTENTION:
701
702
703
704
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                revision=revision,
705
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
706
                speculator=speculator,
707
                dtype=dtype,
708
                trust_remote_code=trust_remote_code,
drbh's avatar
drbh committed
709
                lora_adapter_ids=lora_adapter_ids,
710
            )
711
712
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama"))
713
        else:
714
            return CausalLM.fallback(
715
716
717
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
718
                speculator=speculator,
719
                dtype=dtype,
720
721
                trust_remote_code=trust_remote_code,
            )
722
    if model_type == GEMMA:
723
        if FLASH_ATTENTION:
724
725
726
727
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemmaForCausalLM,
                revision=revision,
728
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
729
                speculator=speculator,
730
                dtype=dtype,
731
732
                # Works better for these models
                default_dtype=torch.bfloat16,
733
                trust_remote_code=trust_remote_code,
734
                lora_adapter_ids=lora_adapter_ids,
735
736
            )
        elif sharded:
OlivierDehaene's avatar
OlivierDehaene committed
737
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
738
        else:
739
            return CausalLM.fallback(
740
741
742
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
743
                speculator=speculator,
744
745
746
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
Nicolas Patry's avatar
Nicolas Patry committed
747
748
    elif model_type == GEMMA2:
        if FLASH_ATTENTION:
749
750
751
752
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemma2ForCausalLM,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
753
754
755
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
756
757
                # Works better for these models
                default_dtype=torch.bfloat16,
Nicolas Patry's avatar
Nicolas Patry committed
758
                trust_remote_code=trust_remote_code,
759
                lora_adapter_ids=lora_adapter_ids,
Nicolas Patry's avatar
Nicolas Patry committed
760
761
762
763
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma2"))
        else:
764
            return CausalLM.fallback(
Nicolas Patry's avatar
Nicolas Patry committed
765
766
767
768
769
770
771
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
772

773
    if model_type == COHERE:
OlivierDehaene's avatar
OlivierDehaene committed
774
        if FLASH_ATTENTION:
775
776
777
778
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashCohereForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
779
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
780
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
781
782
                dtype=dtype,
                trust_remote_code=trust_remote_code,
783
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
784
785
786
787
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
        else:
788
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
789
790
791
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
792
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
793
794
795
796
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

797
    if model_type == DBRX:
798
        if FLASH_ATTENTION:
799
800
801
802
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDbrxForCausalLM,
                revision=revision,
803
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
804
                speculator=speculator,
805
                dtype=dtype,
806
807
                # Dbrx works better in bfloat16.
                default_dtype=torch.bfloat16,
808
                trust_remote_code=trust_remote_code,
809
810
                lora_adapter_ids=lora_adapter_ids,
                config_class=DbrxConfig,
811
812
813
814
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
        else:
815
            return CausalLM.fallback(
816
817
818
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
819
                speculator=speculator,
820
821
822
823
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

824
    if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
825
826
        if sharded:
            if FLASH_ATTENTION:
827
                if config_dict.get("alibi", False):
828
                    raise NotImplementedError("sharded is not supported for this model")
829
830
831
832
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
833
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
834
                    speculator=speculator,
835
                    dtype=dtype,
836
837
838
839
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
840
                    trust_remote_code=trust_remote_code,
841
842
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
843
                )
844
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Falcon"))
845
        else:
846
            if FLASH_ATTENTION and not config_dict.get("alibi", False):
847
848
849
850
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
851
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
852
                    speculator=speculator,
853
                    dtype=dtype,
854
855
856
857
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
858
                    trust_remote_code=trust_remote_code,
859
860
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
861
862
                )
            else:
863
                return CausalLM.fallback(
864
865
866
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
867
                    speculator=speculator,
868
                    dtype=dtype,
869
870
871
                    trust_remote_code=trust_remote_code,
                )

872
    if model_type == MISTRAL:
873
        if FLASH_ATTENTION:
874
875
876
877
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMistralForCausalLM,
                revision=revision,
878
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
879
                speculator=speculator,
880
881
                dtype=dtype,
                trust_remote_code=trust_remote_code,
882
                lora_adapter_ids=lora_adapter_ids,
883
            )
OlivierDehaene's avatar
OlivierDehaene committed
884
885
886
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
        else:
887
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
888
889
890
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
891
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
892
893
894
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
895

896
    if model_type == MIXTRAL:
897
        if FLASH_ATTENTION:
898
899
900
901
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMixtralForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
902
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
903
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
904
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
905
                trust_remote_code=trust_remote_code,
906
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
907
            )
OlivierDehaene's avatar
OlivierDehaene committed
908
909
910
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
        else:
911
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
912
913
914
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
915
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
916
917
918
919
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

920
    if model_type == STARCODER2:
921
        if FLASH_ATTENTION:
922
923
924
925
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashStarcoder2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
926
                quantize=quantize,
927
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
928
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
929
                trust_remote_code=trust_remote_code,
930
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
931
932
933
934
935
936
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
            )
        else:
937
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
938
939
940
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
941
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
942
943
944
945
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

946
    if model_type == QWEN2:
947
        if FLASH_ATTENTION:
948
949
950
951
            return FlashCausalLM(
                model_id=model_id,
                model_class=Qwen2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
952
                quantize=quantize,
953
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
954
955
                dtype=dtype,
                trust_remote_code=trust_remote_code,
956
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
957
958
959
960
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
        else:
961
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
962
963
964
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
965
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
966
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
967
968
                trust_remote_code=trust_remote_code,
            )
969

970
    if model_type == OPT:
971
972
973
974
        return CausalLM(
            model_id=model_id,
            model_class=OPTForCausalLM,
            revision=revision,
975
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
976
            speculator=speculator,
977
978
            dtype=dtype,
            trust_remote_code=trust_remote_code,
979
        )
980

981
    if model_type == T5:
982
983
984
985
        return Seq2SeqLM(
            model_id=model_id,
            model_class=T5ForConditionalGeneration,
            revision=revision,
986
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
987
            speculator=speculator,
988
            dtype=dtype,
989
            trust_remote_code=trust_remote_code,
990
991
992
993
994
995
            aliases={
                "shared.weight": [
                    "encoder.embed_tokens.weight",
                    "decoder.embed_tokens.weight",
                ]
            },
996
        )
997
    if model_type == IDEFICS:
998
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
999
1000
1001
1002
            return IDEFICSSharded(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1003
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1004
1005
1006
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
1007
1008
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1009
    if model_type == IDEFICS2:
Nicolas Patry's avatar
Nicolas Patry committed
1010
        if FLASH_ATTENTION:
1011
1012
1013
1014
            return VlmCausalLM(
                model_id=model_id,
                model_class=Idefics2ForConditionalGeneration,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
1015
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1016
                speculator=speculator,
Nicolas Patry's avatar
Nicolas Patry committed
1017
1018
                dtype=dtype,
                trust_remote_code=trust_remote_code,
1019
1020
1021
1022
                lora_adapter_ids=lora_adapter_ids,
                # XXX: Extremely important to cap resolution in order to limit
                # VRAM usage.
                processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}},
Nicolas Patry's avatar
Nicolas Patry committed
1023
1024
1025
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1026
    if model_type == PALIGEMMA:
drbh's avatar
drbh committed
1027
        if FLASH_ATTENTION:
1028
1029
1030
1031
            return VlmCausalLM(
                model_id=model_id,
                model_class=PaliGemmaForConditionalGeneration,
                revision=revision,
drbh's avatar
drbh committed
1032
1033
1034
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
1035
1036
                # Works better for these models
                default_dtype=torch.bfloat16,
drbh's avatar
drbh committed
1037
                trust_remote_code=trust_remote_code,
1038
1039
                lora_adapter_ids=lora_adapter_ids,
                batch_class=PaliGemmaBatch,
drbh's avatar
drbh committed
1040
1041
1042
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1043

1044
    if model_type == LLAVA_NEXT:
1045
        if FLASH_ATTENTION:
1046
1047
1048
1049
            return VlmCausalLM(
                model_class=LlavaNextForConditionalGeneration,
                model_id=model_id,
                revision=revision,
1050
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1051
                speculator=speculator,
1052
1053
1054
1055
1056
1057
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext"))

1058
    if sharded:
1059
        raise NotImplementedError("sharded is not supported for AutoModel")
1060
    if quantize == "gptq":
1061
        raise NotImplementedError(
1062
1063
            "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
        )
1064
    if quantize == "awq":
1065
        raise NotImplementedError("awq quantization is not supported for AutoModel")
Nicolas Patry's avatar
Nicolas Patry committed
1066
    elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"):
1067
        raise NotImplementedError("4bit quantization is not supported for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
1068
    elif quantize == "eetq":
1069
        raise NotImplementedError("Eetq quantization is not supported for AutoModel")
1070
1071
    elif quantize == "exl2":
        raise NotImplementedError("exl2 quantization is not supported for AutoModel")
1072
    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
1073
        return CausalLM.fallback(
1074
1075
1076
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1077
            speculator=speculator,
1078
1079
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1080
        )
1081
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
1082
        return Seq2SeqLM.fallback(
1083
1084
1085
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1086
            speculator=speculator,
1087
1088
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1089
1090
        )

1091
    auto_map = config_dict.get("auto_map", None)
1092
1093
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
1094
            return CausalLM.fallback(
1095
1096
1097
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1098
                speculator=speculator,
1099
                dtype=dtype,
1100
1101
                trust_remote_code=trust_remote_code,
            )
1102
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
1103
            return Seq2SeqLM.fallback(
1104
1105
1106
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1107
                speculator=speculator,
1108
                dtype=dtype,
1109
1110
                trust_remote_code=trust_remote_code,
            )
1111
1112

    raise ValueError(f"Unsupported model type {model_type}")