"tests/vscode:/vscode.git/clone" did not exist on "103d33c115a5ae16d2f533989bfc5bf4acd994f1"
__init__.py 50 KB
Newer Older
1
2
3
# ruff: noqa: F821
# the above line disables the `undefined-name` rule for the model type variables

4
import torch
5
import enum
Nicolas Patry's avatar
Nicolas Patry committed
6
import os
7

8
from loguru import logger
9
from transformers.configuration_utils import PretrainedConfig
10
from transformers.models.auto import modeling_auto
Nicolas Patry's avatar
Nicolas Patry committed
11
from huggingface_hub import hf_hub_download, HfApi
12
from typing import Optional, List, Dict
13
from pathlib import Path
14

Nicolas Patry's avatar
Nicolas Patry committed
15
from text_generation_server.utils.speculate import get_speculate, set_speculate
16
from text_generation_server.models.model import Model
17
18
19
20
21
from text_generation_server.models.causal_lm import CausalLM, CausalLMBatchKeysLast
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
from text_generation_server.models.custom_modeling.mpt_modeling import (
    MPTForCausalLM,
)
22
from text_generation_server.models.bloom import BloomCausalLMBatch
23
24
25
from text_generation_server.models.custom_modeling.bloom_modeling import (
    BloomForCausalLM,
)
26
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
27
28
29
30
31
32
33
34
from text_generation_server.models.galactica import GalacticaCausalLMBatch
from text_generation_server.models.custom_modeling.neox_modeling import (
    GPTNeoxForCausalLM,
)
from text_generation_server.models.custom_modeling.phi_modeling import (
    PhiConfig,
    PhiForCausalLM,
)
drbh's avatar
drbh committed
35
36
37
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
    PhiMoEConfig,
)
38
39
40
from text_generation_server.models.custom_modeling.t5_modeling import (
    T5ForConditionalGeneration,
)
41

42
43
44
45
46
47
48
49
50
51

from text_generation_server.utils.adapter import (
    AdapterParameters,
    build_layer_weight_lookup,
    load_and_merge_adapters,
    AdapterInfo,
)
from text_generation_server.adapters.lora import LoraWeights


52
from text_generation_server.utils.import_utils import SYSTEM
53
from text_generation_server.utils.log import log_master
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True

# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True

# Disable gradients
torch.set_grad_enabled(False)

__all__ = [
    "Model",
    "CausalLM",
    "Seq2SeqLM",
69
    "get_model_with_lora_adapters",
70
71
]

72
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
73

74
FLASH_ATTENTION = True
75

76
try:
77
    from text_generation_server.models.flash_causal_lm import FlashCausalLM
78
    from text_generation_server.models.vlm_causal_lm import VlmCausalLM
Nicolas Patry's avatar
Nicolas Patry committed
79
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLM
80
81
82
83
    from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
        FlashDeepseekV2ForCausalLM,
        DeepseekV2Config,
    )
84
85
    from text_generation_server.models.custom_modeling.flash_llama_modeling import (
        FlashLlamaForCausalLM,
86
    )
87
88
    from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
        FlashCohereForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
89
    )
90
91
    from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
        FlashGemmaForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
92
    )
93
94
    from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
        FlashGemma2ForCausalLM,
95
    )
96
97
98
99
100
101
102
103
104
105
    from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
        FlashDbrxForCausalLM,
        DbrxConfig,
    )
    from text_generation_server.models.custom_modeling.flash_rw_modeling import (
        RWConfig,
        FlashRWForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_neox_modeling import (
        FlashGPTNeoXForCausalLM,
Nicolas Patry's avatar
Nicolas Patry committed
106
    )
drbh's avatar
drbh committed
107
    from text_generation_server.models.pali_gemma import (
108
        PaliGemmaBatch,
drbh's avatar
drbh committed
109
    )
110
111
112
113
114
    from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
        PaliGemmaForConditionalGeneration,
    )
    from text_generation_server.models.custom_modeling.flash_phi_modeling import (
        FlashPhiForCausalLM,
115
    )
Nicolas Patry's avatar
Nicolas Patry committed
116
117
118
119
120
    from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
    from text_generation_server.models.custom_modeling.mllama import (
        MllamaForConditionalGeneration,
    )
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    from text_generation_server.models.custom_modeling.llava_next import (
        LlavaNextForConditionalGeneration,
    )

    from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
        FlashSantacoderForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import (
        FlashStarcoder2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
        Qwen2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
        FlashMistralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mixtral_modeling import (
        FlashMixtralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
        FlashGPT2ForCausalLM,
    )
143
144
145
    from text_generation_server.models.custom_modeling.flash_gptj_modeling import (
        FlashGPTJForCausalLM,
    )
146
147
148
    from text_generation_server.models.custom_modeling.idefics2 import (
        Idefics2ForConditionalGeneration,
    )
149
    from text_generation_server.layers.attention import SUPPORTS_WINDOWING
150
except ImportError as e:
151
    log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
152
    SUPPORTS_WINDOWING = False
153
    FLASH_ATTENTION = False
154

155
if FLASH_ATTENTION:
156
    __all__.append(FlashCausalLM)
Nicolas Patry's avatar
Nicolas Patry committed
157
    __all__.append(IdeficsCausalLM)
OlivierDehaene's avatar
OlivierDehaene committed
158

drbh's avatar
drbh committed
159
160
161
162
MAMBA_AVAILABLE = True
try:
    from text_generation_server.models.mamba import Mamba
except ImportError as e:
163
    log_master(logger.warning, f"Could not import Mamba: {e}")
drbh's avatar
drbh committed
164
165
166
167
    MAMBA_AVAILABLE = False

if MAMBA_AVAILABLE:
    __all__.append(Mamba)
OlivierDehaene's avatar
OlivierDehaene committed
168

169

170
class ModelType(enum.Enum):
171
172
173
174
175
    DEEPSEEK_V2 = {
        "type": "deepseek_v2",
        "name": "Deepseek V2",
        "url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
    }
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    IDEFICS2 = {
        "type": "idefics2",
        "name": "Idefics 2",
        "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
        "multimodal": True,
    }
    LLAVA_NEXT = {
        "type": "llava_next",
        "name": "Llava Next (1.6)",
        "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
        "multimodal": True,
    }
    LLAMA = {
        "type": "llama",
        "name": "Llama",
191
        "url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
192
193
194
195
196
197
    }
    PHI3 = {
        "type": "phi3",
        "name": "Phi 3",
        "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
    }
198
199
200
201
202
    GRANITE = {
        "type": "granite",
        "name": "Granite",
        "url": "https://huggingface.co/ibm-granite/granite-3.0-8b-instruct",
    }
203
204
205
206
207
    GEMMA = {
        "type": "gemma",
        "name": "Gemma",
        "url": "https://huggingface.co/google/gemma-7b",
    }
208
209
210
211
212
    PALIGEMMA = {
        "type": "paligemma",
        "name": "PaliGemma",
        "url": "https://huggingface.co/google/paligemma-3b-pt-224",
    }
Nicolas Patry's avatar
Nicolas Patry committed
213
214
215
    GEMMA2 = {
        "type": "gemma2",
        "name": "Gemma2",
216
        "url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315",
Nicolas Patry's avatar
Nicolas Patry committed
217
    }
218
219
220
221
222
223
224
225
226
227
228
    COHERE = {
        "type": "cohere",
        "name": "Cohere",
        "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    }
    DBRX = {
        "type": "dbrx",
        "name": "Dbrx",
        "url": "https://huggingface.co/databricks/dbrx-instruct",
    }
    MAMBA = {
229
        "type": "mamba",
230
231
232
233
234
235
        "name": "Mamba",
        "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
    }
    MISTRAL = {
        "type": "mistral",
        "name": "Mistral",
236
        "url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
    }
    MIXTRAL = {
        "type": "mixtral",
        "name": "Mixtral",
        "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
    }
    GPT_BIGCODE = {
        "type": "gpt_bigcode",
        "name": "Gpt Bigcode",
        "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
    }
    PHI = {
        "type": "phi",
        "name": "Phi",
        "url": "https://huggingface.co/microsoft/phi-1_5",
    }
drbh's avatar
drbh committed
253
254
255
256
257
    PHI_MOE = {
        "type": "phimoe",
        "name": "PhiMoe",
        "url": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct",
    }
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    BAICHUAN = {
        "type": "baichuan",
        "name": "Baichuan",
        "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
    }
    FALCON = {
        "type": "falcon",
        "name": "Falcon",
        "url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
    }
    STARCODER2 = {
        "type": "starcoder2",
        "name": "StarCoder 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    QWEN2 = {
        "type": "qwen2",
        "name": "Qwen 2",
276
        "url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f",
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    }
    OPT = {
        "type": "opt",
        "name": "Opt",
        "url": "https://huggingface.co/facebook/opt-6.7b",
    }
    T5 = {
        "type": "t5",
        "name": "T5",
        "url": "https://huggingface.co/google/flan-t5-xxl",
    }
    GALACTICA = {
        "type": "galactica",
        "name": "Galactica",
        "url": "https://huggingface.co/facebook/galactica-120b",
    }
    SANTACODER = {
        "type": "santacoder",
        "name": "SantaCoder",
        "url": "https://huggingface.co/bigcode/santacoder",
    }
    BLOOM = {
        "type": "bloom",
        "name": "Bloom",
        "url": "https://huggingface.co/bigscience/bloom-560m",
    }
    MPT = {
        "type": "mpt",
        "name": "Mpt",
        "url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
    }
    GPT2 = {
        "type": "gpt2",
        "name": "Gpt2",
        "url": "https://huggingface.co/openai-community/gpt2",
    }
    GPT_NEOX = {
        "type": "gpt_neox",
        "name": "Gpt Neox",
        "url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
    }
318
319
320
321
322
    GPTJ = {
        "type": "gptj",
        "name": "Gptj",
        "url": "https://huggingface.co/EleutherAI/gpt-j-6b",
    }
323
324
325
326
327
328
    IDEFICS = {
        "type": "idefics",
        "name": "Idefics",
        "url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
        "multimodal": True,
    }
Nicolas Patry's avatar
Nicolas Patry committed
329
330
331
332
333
334
    MLLAMA = {
        "type": "mllama",
        "name": "Mllama",
        "url": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct",
        "multimodal": True,
    }
335
336
337
338
339
340
341


__GLOBALS = locals()
for data in ModelType:
    __GLOBALS[data.name] = data.value["type"]


342
def get_model(
343
    model_id: str,
drbh's avatar
drbh committed
344
    lora_adapter_ids: Optional[List[str]],
345
346
347
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
348
    speculate: Optional[int],
349
    dtype: Optional[str],
350
    kv_cache_dtype: Optional[str],
351
    trust_remote_code: bool,
352
    max_input_tokens: int,
353
) -> Model:
354
    global FLASH_ATTENTION
355
356
357
358
359
360
361

    config_dict, _ = PretrainedConfig.get_config_dict(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
    model_type = config_dict.get("model_type", None)

    quantization_config = config_dict.get("quantization_config", None)
362
    compression_config = config_dict.get("compression_config", None)
363
364
    if quantization_config is not None and quantize is None:
        method = quantization_config.get("quant_method", None)
365
        config_groups = quantization_config.get("config_groups", None)
366
367
368
        if method in {"gptq", "awq", "exl2"}:
            log_master(logger.info, f"Auto selecting quantization method {method}")
            quantize = method
369
        elif method == "fbgemm_fp8" or method == "fp8":
370
371
            log_master(logger.info, "Auto selecting quantization method fp8")
            quantize = "fp8"
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        elif config_groups is not None:
            # TODO: at some point we should probably fully parse the compression
            # configuration to know which parameters are compressed.
            for _, group in config_groups.items():
                weights_config = group.get("weights")
                if weights_config is not None:
                    if (
                        weights_config["type"] == "float"
                        and weights_config["num_bits"] == 8
                    ):
                        log_master(
                            logger.info, "Auto selecting quantization method fp8"
                        )
                        quantize = "fp8"
                        break
387
388
        else:
            log_master(logger.warning, f"Unknown quantization method {method}")
389
    elif compression_config is not None:
390
        # `compression_config` renamed to `quantization_config`; support retained for backward compatibility.
391
392
393
394
395
396
397
398
399
400
401
402
403
404
        config_groups = compression_config.get("config_groups")
        if config_groups is not None:
            for _, group in config_groups.items():
                weights_config = group.get("weights")
                if weights_config is not None:
                    if (
                        weights_config["type"] == "float"
                        and weights_config["num_bits"] == 8
                    ):
                        log_master(
                            logger.info, "Auto selecting quantization method fp8"
                        )
                        quantize = "fp8"
                        break
405

406
    if dtype is None:
407
        if quantize in ["awq", "exl2", "gptq", "marlin"]:
Nicolas Patry's avatar
Nicolas Patry committed
408
409
410
411
412
            if SYSTEM == "ipex" and not hasattr(torch, "xpu"):
                dtype = torch.bfloat16
            else:
                # These quantizers only work with float16 params.
                dtype = torch.float16
413
414
415
416
        else:
            # Keep it as default for now and let
            # every model resolve their own default dtype.
            dtype = None
417
418
419
420
421
422
423
    elif dtype == "float16":
        dtype = torch.float16
    elif dtype == "bfloat16":
        dtype = torch.bfloat16
    else:
        raise RuntimeError(f"Unknown dtype {dtype}")

424
425
    if kv_cache_dtype is None:
        kv_cache_dtype = dtype
426
427
    elif kv_cache_dtype == "fp8_e4m3fn":
        kv_cache_dtype = torch.float8_e4m3fn
428
429
430
431
432
    elif kv_cache_dtype == "fp8_e5m2":
        kv_cache_dtype = torch.float8_e5m2
    else:
        raise RuntimeError(f"Unknown kv_cache_dtype: {kv_cache_dtype}")

Nicolas Patry's avatar
Nicolas Patry committed
433
434
435
436
437
    if speculate is not None:
        set_speculate(speculate)
    else:
        set_speculate(0)

Nicolas Patry's avatar
Nicolas Patry committed
438
    speculator = None
Nicolas Patry's avatar
Nicolas Patry committed
439
    if "medusa_num_heads" in config_dict:
440
441
        medusa_model_id = model_id
        medusa_revision = revision
Nicolas Patry's avatar
Nicolas Patry committed
442
443
444
445
446
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_medusa = config_dict["medusa_num_heads"]
        if speculate is not None:
            if speculate > speculate_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
447
                raise RuntimeError(
OlivierDehaene's avatar
OlivierDehaene committed
448
                    f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
OlivierDehaene's avatar
OlivierDehaene committed
449
                )
Nicolas Patry's avatar
Nicolas Patry committed
450
451
452
453
454
455
456
457
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_medusa)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
Nicolas Patry's avatar
Nicolas Patry committed
458
459
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
460
461
462
463
464
465
466
467
468
469
        is_local = Path(medusa_model_id).exists()
        if not is_local:
            medusa_config = hf_hub_download(
                medusa_model_id, revision=medusa_revision, filename="config.json"
            )
            hf_hub_download(
                medusa_model_id,
                revision=medusa_revision,
                filename="medusa_lm_head.safetensors",
            )
Nicolas Patry's avatar
Nicolas Patry committed
470
471
472
473
            speculator = {
                "path": Path(medusa_config).parent,
                "model_paths": ["medusa_lm_head.safetensors"],
            }
474
        else:
Nicolas Patry's avatar
Nicolas Patry committed
475
476
477
478
            speculator = {
                "path": Path(medusa_model_id),
                "model_paths": ["medusa_lm_head.safetensors"],
            }
479

Nicolas Patry's avatar
Nicolas Patry committed
480
        method = "medusa"
Nicolas Patry's avatar
Nicolas Patry committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    elif model_type == "mlp_speculator":
        mlp_model_id = model_id
        mlp_revision = revision
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_mlp = config_dict["n_predict"]
        if speculate is not None:
            if speculate > speculate_mlp:
                raise RuntimeError(
                    f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
                )
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_mlp)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
        is_local = Path(mlp_model_id).exists()
        extension = ".safetensors"
        if not is_local:
            mlp_speculator_config = hf_hub_download(
                mlp_model_id, revision=mlp_revision, filename="config.json"
            )
            api = HfApi()
            info = api.model_info(mlp_model_id, revision=mlp_revision)
            filenames = [
                s.rfilename
                for s in info.siblings
                if s.rfilename.endswith(extension)
                and len(s.rfilename.split("/")) == 1
                and "arguments" not in s.rfilename
                and "args" not in s.rfilename
                and "training" not in s.rfilename
            ]
            for filename in filenames:
                hf_hub_download(
                    mlp_model_id,
                    revision=mlp_revision,
                    filename=filename,
                )
525
526
527
528
529
            speculator_dir_path = Path(mlp_speculator_config).parent
            # if these are downloaded, they get converted to safetensors
            filenames.extend(
                [p for p in os.listdir(speculator_dir_path) if p.endswith(extension)]
            )
Nicolas Patry's avatar
Nicolas Patry committed
530
531
532
533
534
535
536
537
538
            speculator = {
                "path": Path(mlp_speculator_config).parent,
                "model_paths": filenames,
            }
        else:
            speculator = Path(mlp_model_id)
            filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
            speculator = {"path": speculator, "model_paths": filenames}
        method = "mlp_speculator"
Nicolas Patry's avatar
Nicolas Patry committed
539
540
541
542
543
    else:
        method = "n-gram"

    speculate = get_speculate()
    if speculate > 0:
544
545
546
        log_master(
            logger.info, f"Using speculation {method} with {speculate} input ids."
        )
Nicolas Patry's avatar
Nicolas Patry committed
547

drbh's avatar
drbh committed
548
549
550
551
552
553
554
555
556
557
    if model_type is None:
        # TODO: fix how we determine model type for Mamba
        if "ssm_cfg" in config_dict:
            # *only happens in Mamba case
            model_type = "ssm"
        else:
            raise RuntimeError(
                f"Could not determine model type for {model_id} revision {revision}"
            )

558
559
560
561
    if quantize == "exl2" and sharded:
        raise RuntimeError(
            "Sharding is currently not supported with `exl2` quantization"
        )
drbh's avatar
drbh committed
562
563
564
565
566
567

    sliding_window = (
        config_dict.get("sliding_window")
        if config_dict.get("sliding_window") is not None
        else -1
    )
568

569
570
571
    use_sliding_window = sliding_window is not None and sliding_window != -1
    needs_sliding_window = (
        max_input_tokens is not None and max_input_tokens > sliding_window
572
    )
573
574
575
576
    if use_sliding_window and needs_sliding_window and not SUPPORTS_WINDOWING:
        raise ValueError(
            f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
        )
577

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
    if model_type == DEEPSEEK_V2:
        if FLASH_ATTENTION:
            head_size = max(
                config_dict.get("qk_nope_dim", 128)
                + config_dict.get("qk_rope_dim", 64),
                config_dict.get("v_head_dim", 128),
            )
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDeepseekV2ForCausalLM,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                default_dtype=torch.bfloat16,
                dtype=dtype,
593
                kv_cache_dtype=kv_cache_dtype,
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
                config_class=DeepseekV2Config,
                head_size=head_size,
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Deepseek V2")
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
    elif model_type == MAMBA:
drbh's avatar
drbh committed
613
614
615
616
        return Mamba(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
617
            speculator=speculator,
drbh's avatar
drbh committed
618
619
620
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )
621
622
623
624
    elif model_type == "ssm":
        raise RuntimeError(
            "`ssm` models have been deprecated in favor of `mamba` models, which follow standard HF formats. Check out a list here: https://huggingface.co/models?search=mamba%20-hf"
        )
625

OlivierDehaene's avatar
OlivierDehaene committed
626
    if model_id.startswith("facebook/galactica"):
627
628
629
630
631
        return CausalLM(
            model_id=model_id,
            # Yes galactica is just an OPT model.
            model_class=OPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
632
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
633
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
634
635
            dtype=dtype,
            trust_remote_code=trust_remote_code,
636
            batch_class=GalacticaCausalLMBatch,
OlivierDehaene's avatar
OlivierDehaene committed
637
638
        )

639
    if (
640
641
        model_type == GPT_BIGCODE
        or model_type == GPT2
642
643
        and model_id.startswith("bigcode/")
    ):
644
        if FLASH_ATTENTION:
645
646
647
648
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashSantacoderForCausalLM,
                revision=revision,
649
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
650
                speculator=speculator,
651
                dtype=dtype,
652
                kv_cache_dtype=kv_cache_dtype,
653
                trust_remote_code=trust_remote_code,
654
655
656
                lora_adapter_ids=lora_adapter_ids,
                aliases={"transformer.wte.weight": ["lm_head.weight"]},
                num_kv_heads=1,
657
            )
658
659
660
661
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder")
            )
662
        else:
663
664
665
            return CausalLM.fallback(
                model_id=model_id,
                revision=revision,
666
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
667
                speculator=speculator,
668
                dtype=dtype,
669
670
                trust_remote_code=trust_remote_code,
            )
671

672
    if model_type == BLOOM:
673
674
675
676
        return CausalLM(
            model_id=model_id,
            model_class=BloomForCausalLM,
            revision=revision,
677
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
678
            speculator=speculator,
679
680
            dtype=dtype,
            trust_remote_code=trust_remote_code,
681
            batch_class=BloomCausalLMBatch,
682
        )
683
    elif model_type == MPT:
684
685
686
687
        return CausalLM(
            model_id=model_id,
            model_class=MPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
688
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
689
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
690
691
            dtype=dtype,
            trust_remote_code=trust_remote_code,
692
            batch_class=CausalLMBatchKeysLast,
693
        )
694
    elif model_type == GPT2:
695
        if FLASH_ATTENTION:
696
            try:
697
698
699
700
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPT2ForCausalLM,
                    revision=revision,
701
702
703
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
704
                    kv_cache_dtype=kv_cache_dtype,
705
                    trust_remote_code=trust_remote_code,
706
                    lora_adapter_ids=lora_adapter_ids,
707
708
709
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
710
                log_master(logger.warning, f"Couldn't load flash gpt2 variant: {e}")
711
                return CausalLM.fallback(
712
713
714
715
716
717
718
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
719
720
721
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
        else:
722
            return CausalLM.fallback(
723
724
725
726
727
728
729
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
730
731
732
733
734
735
736
737
738
739
    elif model_type == GPTJ:
        if FLASH_ATTENTION:
            try:
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPTJForCausalLM,
                    revision=revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
740
                    kv_cache_dtype=kv_cache_dtype,
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
                    trust_remote_code=trust_remote_code,
                    lora_adapter_ids=lora_adapter_ids,
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
                log_master(logger.warning, f"Couldn't load flash gptj variant: {e}")
                return CausalLM.fallback(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-J"))
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
766
    elif model_type == GPT_NEOX:
767
        if FLASH_ATTENTION:
768
769
770
771
            from text_generation_server.models.custom_modeling.flash_neox_modeling import (
                GPTNeoXConfig,
            )

772
773
774
775
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGPTNeoXForCausalLM,
                revision=revision,
776
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
777
                speculator=speculator,
778
                dtype=dtype,
779
                kv_cache_dtype=kv_cache_dtype,
780
                trust_remote_code=trust_remote_code,
781
                lora_adapter_ids=lora_adapter_ids,
782
                config_class=GPTNeoXConfig,
783
784
            )
        elif sharded:
785
786
787
788
            return CausalLM(
                model_id=model_id,
                model_class=GPTNeoxForCausalLM,
                revision=revision,
789
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
790
                speculator=speculator,
791
                dtype=dtype,
792
793
                trust_remote_code=trust_remote_code,
            )
794
        else:
795
            return CausalLM.fallback(
796
797
798
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
799
                speculator=speculator,
800
                dtype=dtype,
801
802
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
803

804
    elif model_type == PHI:
drbh's avatar
drbh committed
805
        if FLASH_ATTENTION:
806
807
808
809
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashPhiForCausalLM,
                revision=revision,
drbh's avatar
drbh committed
810
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
811
                speculator=speculator,
drbh's avatar
drbh committed
812
                dtype=dtype,
813
                kv_cache_dtype=kv_cache_dtype,
drbh's avatar
drbh committed
814
                trust_remote_code=trust_remote_code,
815
                lora_adapter_ids=lora_adapter_ids,
drbh's avatar
drbh committed
816
817
            )
        else:
818
            return CausalLM.fallback(
drbh's avatar
drbh committed
819
820
821
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
822
                speculator=speculator,
drbh's avatar
drbh committed
823
824
825
826
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
827
828
829
830
831
832
833
834
835
836
    elif model_type == PHI_MOE:
        if FLASH_ATTENTION:
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                config_class=PhiMoEConfig,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
837
                kv_cache_dtype=kv_cache_dtype,
drbh's avatar
drbh committed
838
839
840
841
842
843
844
845
846
847
848
849
850
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
851
852
    elif model_type == "phi-msft":
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
853
854
855
            raise NotImplementedError(
                "Legacy phi-msft is not supported with Flash Attention"
            )
drbh's avatar
drbh committed
856
        else:
857
858
859
860
861
            return CausalLM(
                model_id=model_id,
                model_class=PhiForCausalLM,
                config_class=PhiConfig,
                revision=revision,
drbh's avatar
drbh committed
862
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
863
                speculator=speculator,
drbh's avatar
drbh committed
864
865
866
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
867

868
869
870
871
872
873
    elif (
        model_type == LLAMA
        or model_type == BAICHUAN
        or model_type == PHI3
        or model_type == GRANITE
    ):
874
        if FLASH_ATTENTION:
875
876
877
878
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                revision=revision,
879
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
880
                speculator=speculator,
881
                dtype=dtype,
882
                kv_cache_dtype=kv_cache_dtype,
883
                trust_remote_code=trust_remote_code,
drbh's avatar
drbh committed
884
                lora_adapter_ids=lora_adapter_ids,
885
            )
886
        elif sharded:
887
888
889
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format(f"Sharded {model_type}")
            )
890
        else:
891
            return CausalLM.fallback(
892
893
894
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
895
                speculator=speculator,
896
                dtype=dtype,
897
898
                trust_remote_code=trust_remote_code,
            )
899
    if model_type == GEMMA:
900
        if FLASH_ATTENTION:
901
902
903
904
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemmaForCausalLM,
                revision=revision,
905
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
906
                speculator=speculator,
907
                dtype=dtype,
908
                kv_cache_dtype=kv_cache_dtype,
909
910
                # Works better for these models
                default_dtype=torch.bfloat16,
911
                trust_remote_code=trust_remote_code,
912
                lora_adapter_ids=lora_adapter_ids,
913
914
            )
        elif sharded:
OlivierDehaene's avatar
OlivierDehaene committed
915
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
916
        else:
917
            return CausalLM.fallback(
918
919
920
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
921
                speculator=speculator,
922
923
924
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
Nicolas Patry's avatar
Nicolas Patry committed
925
926
    elif model_type == GEMMA2:
        if FLASH_ATTENTION:
927
928
929
930
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemma2ForCausalLM,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
931
932
933
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
934
                kv_cache_dtype=kv_cache_dtype,
935
936
                # Works better for these models
                default_dtype=torch.bfloat16,
Nicolas Patry's avatar
Nicolas Patry committed
937
                trust_remote_code=trust_remote_code,
938
                lora_adapter_ids=lora_adapter_ids,
Nicolas Patry's avatar
Nicolas Patry committed
939
940
941
942
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma2"))
        else:
943
            return CausalLM.fallback(
Nicolas Patry's avatar
Nicolas Patry committed
944
945
946
947
948
949
950
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
951

952
    if model_type == COHERE:
OlivierDehaene's avatar
OlivierDehaene committed
953
        if FLASH_ATTENTION:
954
955
956
957
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashCohereForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
958
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
959
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
960
                dtype=dtype,
961
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
962
                trust_remote_code=trust_remote_code,
963
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
964
965
966
967
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
        else:
968
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
969
970
971
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
972
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
973
974
975
976
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

977
    if model_type == DBRX:
978
        if FLASH_ATTENTION:
979
980
981
982
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDbrxForCausalLM,
                revision=revision,
983
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
984
                speculator=speculator,
985
                dtype=dtype,
986
                kv_cache_dtype=kv_cache_dtype,
987
988
                # Dbrx works better in bfloat16.
                default_dtype=torch.bfloat16,
989
                trust_remote_code=trust_remote_code,
990
991
                lora_adapter_ids=lora_adapter_ids,
                config_class=DbrxConfig,
992
993
994
995
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
        else:
996
            return CausalLM.fallback(
997
998
999
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1000
                speculator=speculator,
1001
1002
1003
1004
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1005
    if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
1006
1007
        if sharded:
            if FLASH_ATTENTION:
1008
                if config_dict.get("alibi", False):
1009
                    raise NotImplementedError("sharded is not supported for this model")
1010
1011
1012
1013
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
1014
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1015
                    speculator=speculator,
1016
                    dtype=dtype,
1017
                    kv_cache_dtype=kv_cache_dtype,
1018
1019
1020
1021
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
1022
                    trust_remote_code=trust_remote_code,
1023
1024
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
1025
                )
1026
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Falcon"))
1027
        else:
1028
            if FLASH_ATTENTION and not config_dict.get("alibi", False):
1029
1030
1031
1032
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
1033
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1034
                    speculator=speculator,
1035
                    dtype=dtype,
1036
                    kv_cache_dtype=kv_cache_dtype,
1037
1038
1039
1040
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
1041
                    trust_remote_code=trust_remote_code,
1042
1043
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
1044
1045
                )
            else:
1046
                return CausalLM.fallback(
1047
1048
1049
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1050
                    speculator=speculator,
1051
                    dtype=dtype,
1052
1053
1054
                    trust_remote_code=trust_remote_code,
                )

1055
    if model_type == MISTRAL:
1056
        if FLASH_ATTENTION:
1057
1058
1059
1060
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMistralForCausalLM,
                revision=revision,
1061
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1062
                speculator=speculator,
1063
                dtype=dtype,
1064
                kv_cache_dtype=kv_cache_dtype,
1065
                trust_remote_code=trust_remote_code,
1066
                lora_adapter_ids=lora_adapter_ids,
1067
            )
OlivierDehaene's avatar
OlivierDehaene committed
1068
1069
1070
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
        else:
1071
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1072
1073
1074
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1075
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1076
1077
1078
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
1079

1080
    if model_type == MIXTRAL:
1081
        if FLASH_ATTENTION:
1082
1083
1084
1085
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMixtralForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1086
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1087
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1088
                dtype=dtype,
1089
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1090
                trust_remote_code=trust_remote_code,
1091
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1092
            )
OlivierDehaene's avatar
OlivierDehaene committed
1093
1094
1095
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
        else:
1096
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1097
1098
1099
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1100
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1101
1102
1103
1104
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1105
    if model_type == STARCODER2:
1106
        if FLASH_ATTENTION:
1107
1108
1109
1110
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashStarcoder2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1111
                quantize=quantize,
1112
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1113
                dtype=dtype,
1114
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1115
                trust_remote_code=trust_remote_code,
1116
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1117
1118
1119
1120
1121
1122
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
            )
        else:
1123
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1124
1125
1126
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1127
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1128
1129
1130
1131
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1132
    if model_type == QWEN2:
1133
        if FLASH_ATTENTION:
1134
1135
1136
1137
            return FlashCausalLM(
                model_id=model_id,
                model_class=Qwen2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1138
                quantize=quantize,
1139
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1140
                dtype=dtype,
1141
                kv_cache_dtype=kv_cache_dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1142
                trust_remote_code=trust_remote_code,
1143
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1144
1145
1146
1147
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
        else:
1148
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1149
1150
1151
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1152
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1153
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1154
1155
                trust_remote_code=trust_remote_code,
            )
1156

1157
    if model_type == OPT:
1158
1159
1160
1161
        return CausalLM(
            model_id=model_id,
            model_class=OPTForCausalLM,
            revision=revision,
1162
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1163
            speculator=speculator,
1164
1165
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1166
        )
1167

1168
    if model_type == T5:
1169
1170
1171
1172
        return Seq2SeqLM(
            model_id=model_id,
            model_class=T5ForConditionalGeneration,
            revision=revision,
1173
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1174
            speculator=speculator,
1175
            dtype=dtype,
1176
            trust_remote_code=trust_remote_code,
1177
1178
1179
1180
1181
1182
            aliases={
                "shared.weight": [
                    "encoder.embed_tokens.weight",
                    "decoder.embed_tokens.weight",
                ]
            },
1183
        )
1184
    if model_type == IDEFICS:
1185
        if FLASH_ATTENTION:
Nicolas Patry's avatar
Nicolas Patry committed
1186
            return IdeficsCausalLM(
OlivierDehaene's avatar
OlivierDehaene committed
1187
1188
1189
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1190
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1191
1192
1193
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
1194
1195
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
Nicolas Patry's avatar
Nicolas Patry committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
    if model_type == MLLAMA:
        if FLASH_ATTENTION:
            return MllamaCausalLM(
                model_id=model_id,
                model_class=MllamaForConditionalGeneration,
                batch_class=MllamaCausalLMBatch,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                default_dtype=torch.bfloat16,
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Mllama"))
1212
    if model_type == IDEFICS2:
Nicolas Patry's avatar
Nicolas Patry committed
1213
        if FLASH_ATTENTION:
1214
1215
1216
1217
            return VlmCausalLM(
                model_id=model_id,
                model_class=Idefics2ForConditionalGeneration,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
1218
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1219
                speculator=speculator,
Nicolas Patry's avatar
Nicolas Patry committed
1220
                dtype=dtype,
1221
                kv_cache_dtype=kv_cache_dtype,
Nicolas Patry's avatar
Nicolas Patry committed
1222
                trust_remote_code=trust_remote_code,
1223
1224
1225
1226
                lora_adapter_ids=lora_adapter_ids,
                # XXX: Extremely important to cap resolution in order to limit
                # VRAM usage.
                processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}},
Nicolas Patry's avatar
Nicolas Patry committed
1227
1228
1229
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1230
    if model_type == PALIGEMMA:
drbh's avatar
drbh committed
1231
        if FLASH_ATTENTION:
1232
1233
1234
1235
            return VlmCausalLM(
                model_id=model_id,
                model_class=PaliGemmaForConditionalGeneration,
                revision=revision,
drbh's avatar
drbh committed
1236
1237
1238
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
1239
                kv_cache_dtype=kv_cache_dtype,
1240
1241
                # Works better for these models
                default_dtype=torch.bfloat16,
drbh's avatar
drbh committed
1242
                trust_remote_code=trust_remote_code,
1243
1244
                lora_adapter_ids=lora_adapter_ids,
                batch_class=PaliGemmaBatch,
drbh's avatar
drbh committed
1245
1246
1247
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1248

1249
    if model_type == LLAVA_NEXT:
1250
        if FLASH_ATTENTION:
1251
1252
1253
1254
            return VlmCausalLM(
                model_class=LlavaNextForConditionalGeneration,
                model_id=model_id,
                revision=revision,
1255
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1256
                speculator=speculator,
1257
                dtype=dtype,
1258
                kv_cache_dtype=kv_cache_dtype,
1259
1260
1261
1262
1263
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext"))

1264
    if sharded:
1265
        raise NotImplementedError("sharded is not supported for AutoModel")
1266
    if quantize == "gptq":
1267
        raise NotImplementedError(
1268
1269
            "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
        )
1270
    if quantize == "awq":
1271
        raise NotImplementedError("awq quantization is not supported for AutoModel")
Nicolas Patry's avatar
Nicolas Patry committed
1272
    elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"):
1273
        raise NotImplementedError("4bit quantization is not supported for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
1274
    elif quantize == "eetq":
1275
        raise NotImplementedError("Eetq quantization is not supported for AutoModel")
1276
1277
    elif quantize == "exl2":
        raise NotImplementedError("exl2 quantization is not supported for AutoModel")
1278
    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
1279
        return CausalLM.fallback(
1280
1281
1282
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1283
            speculator=speculator,
1284
1285
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1286
        )
1287
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
1288
        return Seq2SeqLM.fallback(
1289
1290
1291
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1292
            speculator=speculator,
1293
1294
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1295
1296
        )

1297
    auto_map = config_dict.get("auto_map", None)
1298
1299
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
1300
            return CausalLM.fallback(
1301
1302
1303
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1304
                speculator=speculator,
1305
                dtype=dtype,
1306
1307
                trust_remote_code=trust_remote_code,
            )
1308
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
1309
            return Seq2SeqLM.fallback(
1310
1311
1312
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1313
                speculator=speculator,
1314
                dtype=dtype,
1315
1316
                trust_remote_code=trust_remote_code,
            )
1317
1318

    raise ValueError(f"Unsupported model type {model_type}")
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330


# get_model_with_lora_adapters wraps the internal get_model function and adds support for loading adapters
# this provides a post model loading hook to load adapters into the model after the model has been loaded
def get_model_with_lora_adapters(
    model_id: str,
    lora_adapters: Optional[List[AdapterInfo]],
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
    speculate: Optional[int],
    dtype: Optional[str],
1331
    kv_cache_dtype: Optional[str],
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
    trust_remote_code: bool,
    max_input_tokens: int,
    adapter_to_index: Dict[str, int],
):
    lora_adapter_ids = [adapter.id for adapter in lora_adapters]
    model = get_model(
        model_id,
        lora_adapter_ids,
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
1345
        kv_cache_dtype,
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
        trust_remote_code,
        max_input_tokens,
    )

    if len(lora_adapters) > 0:
        target_to_layer = build_layer_weight_lookup(model.model)

        for index, adapter in enumerate(lora_adapters):
            # The AdapterParameters object allows for merging multiple adapters into a single adapter.
            # At the moment, we only support loading a single adapter into the model, but we keep the
            # AdapterParameters object for easier extension in the future.
            adapter_parameters = AdapterParameters(
                adapter_info=[adapter],
                # when merging multiple adapters we can weight them differently
                # if this is not set, all adapters will be weighted equally
                # see: text_generation_server.utils.merges.strategies for impl
                weights=None,
                merge_strategy=0,
                density=1.0,
                majority_sign_method=0,
            )

            adapter_index = index + 1
            adapter_to_index[adapter.id] = adapter_index

            logger.info(
                f"Loading adapter weights into model: {','.join([adapter.id for adapter in adapter_parameters.adapter_info])}"
            )
            weight_names = tuple([v[0] for v in target_to_layer.values()])
            (
                module_map,
                adapter_config,
                adapter_weight_names,
                adapter_tokenizer,
            ) = load_and_merge_adapters(
                model.model_id,
                adapter_parameters,
                adapter_index,
                weight_names,
                False,
            )

            unused_weight_names = adapter_weight_names.copy()

            adapter_layers = [
                "q_proj",
                "k_proj",
                "v_proj",
                "o_proj",
                "gate_proj",
                "up_proj",
                "down_proj",
1398
                "qkv_proj",
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
            ]

            for layer_name in adapter_layers:
                nlayers = (
                    1 if layer_name == "lm_head" else len(model.model.model.layers)
                )
                adapter_weights = LoraWeights.prepare_weights(
                    config=adapter_config,
                    module_map=module_map,
                    layer_type=layer_name,
                    unused_weight_names=unused_weight_names,
                    nlayers=nlayers,
                    dtype=model.dtype,
                    world_size=model.world_size,
                    process_group=model.process_group,
                    target_to_layer=target_to_layer,
                )

                if adapter_weights is None:
                    continue

                model.layer_to_adapter_weights[layer_name].add_adapter(
                    adapter_index, adapter_weights
                )

            if len(unused_weight_names) > 0:
                logger.warning(
1426
                    f"{','.join([a.id for a in lora_adapters])} unused adapter weights: {unused_weight_names}"
1427
1428
1429
1430
1431
1432
1433
1434
                )

            if adapter_tokenizer is not None:
                model.tokenizers.add_tokenizer(adapter_index, adapter_tokenizer)

            model.loaded_adapters.add(adapter_index)

    return model