__init__.py 47.5 KB
Newer Older
1
2
3
# ruff: noqa: F821
# the above line disables the `undefined-name` rule for the model type variables

4
import torch
5
import enum
Nicolas Patry's avatar
Nicolas Patry committed
6
import os
7

8
from loguru import logger
9
from transformers.configuration_utils import PretrainedConfig
10
from transformers.models.auto import modeling_auto
Nicolas Patry's avatar
Nicolas Patry committed
11
from huggingface_hub import hf_hub_download, HfApi
12
from typing import Optional, List, Dict
13
from pathlib import Path
14

Nicolas Patry's avatar
Nicolas Patry committed
15
from text_generation_server.utils.speculate import get_speculate, set_speculate
16
from text_generation_server.models.model import Model
17
18
19
20
21
from text_generation_server.models.causal_lm import CausalLM, CausalLMBatchKeysLast
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
from text_generation_server.models.custom_modeling.mpt_modeling import (
    MPTForCausalLM,
)
22
from text_generation_server.models.bloom import BloomCausalLMBatch
23
24
25
from text_generation_server.models.custom_modeling.bloom_modeling import (
    BloomForCausalLM,
)
26
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
27
28
29
30
31
32
33
34
from text_generation_server.models.galactica import GalacticaCausalLMBatch
from text_generation_server.models.custom_modeling.neox_modeling import (
    GPTNeoxForCausalLM,
)
from text_generation_server.models.custom_modeling.phi_modeling import (
    PhiConfig,
    PhiForCausalLM,
)
drbh's avatar
drbh committed
35
36
37
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
    PhiMoEConfig,
)
38
39
40
from text_generation_server.models.custom_modeling.t5_modeling import (
    T5ForConditionalGeneration,
)
41

42
43
44
45
46
47
48
49
50
51

from text_generation_server.utils.adapter import (
    AdapterParameters,
    build_layer_weight_lookup,
    load_and_merge_adapters,
    AdapterInfo,
)
from text_generation_server.adapters.lora import LoraWeights


52
from text_generation_server.utils.import_utils import SYSTEM
53
from text_generation_server.utils.log import log_master
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True

# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True

# Disable gradients
torch.set_grad_enabled(False)

__all__ = [
    "Model",
    "CausalLM",
    "Seq2SeqLM",
69
    "get_model_with_lora_adapters",
70
71
]

72
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
73

74
FLASH_ATTENTION = True
75

76
try:
77
    from text_generation_server.models.flash_causal_lm import FlashCausalLM
78
    from text_generation_server.models.vlm_causal_lm import VlmCausalLM
Nicolas Patry's avatar
Nicolas Patry committed
79
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLM
80
81
82
83
    from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
        FlashDeepseekV2ForCausalLM,
        DeepseekV2Config,
    )
84
85
    from text_generation_server.models.custom_modeling.flash_llama_modeling import (
        FlashLlamaForCausalLM,
86
    )
87
88
    from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
        FlashCohereForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
89
    )
90
91
    from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
        FlashGemmaForCausalLM,
OlivierDehaene's avatar
OlivierDehaene committed
92
    )
93
94
    from text_generation_server.models.custom_modeling.flash_gemma2_modeling import (
        FlashGemma2ForCausalLM,
95
    )
96
97
98
99
100
101
102
103
104
105
    from text_generation_server.models.custom_modeling.flash_dbrx_modeling import (
        FlashDbrxForCausalLM,
        DbrxConfig,
    )
    from text_generation_server.models.custom_modeling.flash_rw_modeling import (
        RWConfig,
        FlashRWForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_neox_modeling import (
        FlashGPTNeoXForCausalLM,
Nicolas Patry's avatar
Nicolas Patry committed
106
    )
drbh's avatar
drbh committed
107
    from text_generation_server.models.pali_gemma import (
108
        PaliGemmaBatch,
drbh's avatar
drbh committed
109
    )
110
111
112
113
114
    from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
        PaliGemmaForConditionalGeneration,
    )
    from text_generation_server.models.custom_modeling.flash_phi_modeling import (
        FlashPhiForCausalLM,
115
    )
Nicolas Patry's avatar
Nicolas Patry committed
116
117
118
119
120
    from text_generation_server.models.idefics_causal_lm import IdeficsCausalLM
    from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
    from text_generation_server.models.custom_modeling.mllama import (
        MllamaForConditionalGeneration,
    )
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    from text_generation_server.models.custom_modeling.llava_next import (
        LlavaNextForConditionalGeneration,
    )

    from text_generation_server.models.custom_modeling.flash_santacoder_modeling import (
        FlashSantacoderForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_starcoder2_modeling import (
        FlashStarcoder2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
        Qwen2ForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
        FlashMistralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_mixtral_modeling import (
        FlashMixtralForCausalLM,
    )
    from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
        FlashGPT2ForCausalLM,
    )
143
144
145
    from text_generation_server.models.custom_modeling.flash_gptj_modeling import (
        FlashGPTJForCausalLM,
    )
146
147
148
    from text_generation_server.models.custom_modeling.idefics2 import (
        Idefics2ForConditionalGeneration,
    )
149
    from text_generation_server.layers.attention import SUPPORTS_WINDOWING
150
except ImportError as e:
151
    log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
152
    SUPPORTS_WINDOWING = False
153
    FLASH_ATTENTION = False
154

155
if FLASH_ATTENTION:
156
    __all__.append(FlashCausalLM)
Nicolas Patry's avatar
Nicolas Patry committed
157
    __all__.append(IdeficsCausalLM)
OlivierDehaene's avatar
OlivierDehaene committed
158

drbh's avatar
drbh committed
159
160
161
162
MAMBA_AVAILABLE = True
try:
    from text_generation_server.models.mamba import Mamba
except ImportError as e:
163
    log_master(logger.warning, f"Could not import Mamba: {e}")
drbh's avatar
drbh committed
164
165
166
167
    MAMBA_AVAILABLE = False

if MAMBA_AVAILABLE:
    __all__.append(Mamba)
OlivierDehaene's avatar
OlivierDehaene committed
168

169

170
class ModelType(enum.Enum):
171
172
173
174
175
    DEEPSEEK_V2 = {
        "type": "deepseek_v2",
        "name": "Deepseek V2",
        "url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
    }
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    IDEFICS2 = {
        "type": "idefics2",
        "name": "Idefics 2",
        "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
        "multimodal": True,
    }
    LLAVA_NEXT = {
        "type": "llava_next",
        "name": "Llava Next (1.6)",
        "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
        "multimodal": True,
    }
    LLAMA = {
        "type": "llama",
        "name": "Llama",
191
        "url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
192
193
194
195
196
197
198
199
200
201
202
    }
    PHI3 = {
        "type": "phi3",
        "name": "Phi 3",
        "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
    }
    GEMMA = {
        "type": "gemma",
        "name": "Gemma",
        "url": "https://huggingface.co/google/gemma-7b",
    }
203
204
205
206
207
    PALIGEMMA = {
        "type": "paligemma",
        "name": "PaliGemma",
        "url": "https://huggingface.co/google/paligemma-3b-pt-224",
    }
Nicolas Patry's avatar
Nicolas Patry committed
208
209
210
    GEMMA2 = {
        "type": "gemma2",
        "name": "Gemma2",
211
        "url": "https://huggingface.co/collections/google/gemma-2-release-667d6600fd5220e7b967f315",
Nicolas Patry's avatar
Nicolas Patry committed
212
    }
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
    COHERE = {
        "type": "cohere",
        "name": "Cohere",
        "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    }
    DBRX = {
        "type": "dbrx",
        "name": "Dbrx",
        "url": "https://huggingface.co/databricks/dbrx-instruct",
    }
    MAMBA = {
        "type": "ssm",
        "name": "Mamba",
        "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
    }
    MISTRAL = {
        "type": "mistral",
        "name": "Mistral",
231
        "url": "https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407",
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    }
    MIXTRAL = {
        "type": "mixtral",
        "name": "Mixtral",
        "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
    }
    GPT_BIGCODE = {
        "type": "gpt_bigcode",
        "name": "Gpt Bigcode",
        "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
    }
    PHI = {
        "type": "phi",
        "name": "Phi",
        "url": "https://huggingface.co/microsoft/phi-1_5",
    }
drbh's avatar
drbh committed
248
249
250
251
252
    PHI_MOE = {
        "type": "phimoe",
        "name": "PhiMoe",
        "url": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct",
    }
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
    BAICHUAN = {
        "type": "baichuan",
        "name": "Baichuan",
        "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
    }
    FALCON = {
        "type": "falcon",
        "name": "Falcon",
        "url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
    }
    STARCODER2 = {
        "type": "starcoder2",
        "name": "StarCoder 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    QWEN2 = {
        "type": "qwen2",
        "name": "Qwen 2",
271
        "url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f",
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    }
    OPT = {
        "type": "opt",
        "name": "Opt",
        "url": "https://huggingface.co/facebook/opt-6.7b",
    }
    T5 = {
        "type": "t5",
        "name": "T5",
        "url": "https://huggingface.co/google/flan-t5-xxl",
    }
    GALACTICA = {
        "type": "galactica",
        "name": "Galactica",
        "url": "https://huggingface.co/facebook/galactica-120b",
    }
    SANTACODER = {
        "type": "santacoder",
        "name": "SantaCoder",
        "url": "https://huggingface.co/bigcode/santacoder",
    }
    BLOOM = {
        "type": "bloom",
        "name": "Bloom",
        "url": "https://huggingface.co/bigscience/bloom-560m",
    }
    MPT = {
        "type": "mpt",
        "name": "Mpt",
        "url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
    }
    GPT2 = {
        "type": "gpt2",
        "name": "Gpt2",
        "url": "https://huggingface.co/openai-community/gpt2",
    }
    GPT_NEOX = {
        "type": "gpt_neox",
        "name": "Gpt Neox",
        "url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
    }
313
314
315
316
317
    GPTJ = {
        "type": "gptj",
        "name": "Gptj",
        "url": "https://huggingface.co/EleutherAI/gpt-j-6b",
    }
318
319
320
321
322
323
    IDEFICS = {
        "type": "idefics",
        "name": "Idefics",
        "url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
        "multimodal": True,
    }
Nicolas Patry's avatar
Nicolas Patry committed
324
325
326
327
328
329
    MLLAMA = {
        "type": "mllama",
        "name": "Mllama",
        "url": "https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct",
        "multimodal": True,
    }
330
331
332
333
334
335
336


__GLOBALS = locals()
for data in ModelType:
    __GLOBALS[data.name] = data.value["type"]


337
def get_model(
338
    model_id: str,
drbh's avatar
drbh committed
339
    lora_adapter_ids: Optional[List[str]],
340
341
342
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
343
    speculate: Optional[int],
344
    dtype: Optional[str],
345
    trust_remote_code: bool,
346
    max_input_tokens: int,
347
) -> Model:
348
    global FLASH_ATTENTION
349
350
351
352
353
354
355

    config_dict, _ = PretrainedConfig.get_config_dict(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
    model_type = config_dict.get("model_type", None)

    quantization_config = config_dict.get("quantization_config", None)
356
    compression_config = config_dict.get("compression_config", None)
357
358
359
360
361
362
363
364
365
366
    if quantization_config is not None and quantize is None:
        method = quantization_config.get("quant_method", None)
        if method in {"gptq", "awq", "exl2"}:
            log_master(logger.info, f"Auto selecting quantization method {method}")
            quantize = method
        elif method == "fbgemm_fp8":
            log_master(logger.info, "Auto selecting quantization method fp8")
            quantize = "fp8"
        else:
            log_master(logger.warning, f"Unknown quantization method {method}")
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
    elif compression_config is not None:
        # TODO: at some point we should probably fully parse the compression
        # configuration to know which parameters are compressed.
        config_groups = compression_config.get("config_groups")
        if config_groups is not None:
            for _, group in config_groups.items():
                weights_config = group.get("weights")
                if weights_config is not None:
                    if (
                        weights_config["type"] == "float"
                        and weights_config["num_bits"] == 8
                    ):
                        log_master(
                            logger.info, "Auto selecting quantization method fp8"
                        )
                        quantize = "fp8"
                        break
384

385
    if dtype is None:
386
        if quantize in ["awq", "exl2", "gptq", "marlin"]:
387
388
            # These quantizers only work with float16 params.
            dtype = torch.float16
389
        elif quantize == "fp8":
390
            from text_generation_server.layers.fp8 import FBGEMM_DYN_AVAILABLE
391

392
            if FBGEMM_DYN_AVAILABLE:
393
394
                # fbgemm kernels are fp8xfp8->bf16
                dtype = torch.bfloat16
395
396
397
398
        else:
            # Keep it as default for now and let
            # every model resolve their own default dtype.
            dtype = None
399
400
401
402
403
404
405
    elif dtype == "float16":
        dtype = torch.float16
    elif dtype == "bfloat16":
        dtype = torch.bfloat16
    else:
        raise RuntimeError(f"Unknown dtype {dtype}")

Nicolas Patry's avatar
Nicolas Patry committed
406
407
408
409
410
    if speculate is not None:
        set_speculate(speculate)
    else:
        set_speculate(0)

Nicolas Patry's avatar
Nicolas Patry committed
411
    speculator = None
Nicolas Patry's avatar
Nicolas Patry committed
412
    if "medusa_num_heads" in config_dict:
413
414
        medusa_model_id = model_id
        medusa_revision = revision
Nicolas Patry's avatar
Nicolas Patry committed
415
416
417
418
419
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_medusa = config_dict["medusa_num_heads"]
        if speculate is not None:
            if speculate > speculate_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
420
                raise RuntimeError(
OlivierDehaene's avatar
OlivierDehaene committed
421
                    f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
OlivierDehaene's avatar
OlivierDehaene committed
422
                )
Nicolas Patry's avatar
Nicolas Patry committed
423
424
425
426
427
428
429
430
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_medusa)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
Nicolas Patry's avatar
Nicolas Patry committed
431
432
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
433
434
435
436
437
438
439
440
441
442
        is_local = Path(medusa_model_id).exists()
        if not is_local:
            medusa_config = hf_hub_download(
                medusa_model_id, revision=medusa_revision, filename="config.json"
            )
            hf_hub_download(
                medusa_model_id,
                revision=medusa_revision,
                filename="medusa_lm_head.safetensors",
            )
Nicolas Patry's avatar
Nicolas Patry committed
443
444
445
446
            speculator = {
                "path": Path(medusa_config).parent,
                "model_paths": ["medusa_lm_head.safetensors"],
            }
447
        else:
Nicolas Patry's avatar
Nicolas Patry committed
448
449
450
451
            speculator = {
                "path": Path(medusa_model_id),
                "model_paths": ["medusa_lm_head.safetensors"],
            }
452

Nicolas Patry's avatar
Nicolas Patry committed
453
        method = "medusa"
Nicolas Patry's avatar
Nicolas Patry committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    elif model_type == "mlp_speculator":
        mlp_model_id = model_id
        mlp_revision = revision
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_mlp = config_dict["n_predict"]
        if speculate is not None:
            if speculate > speculate_mlp:
                raise RuntimeError(
                    f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
                )
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_mlp)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
        is_local = Path(mlp_model_id).exists()
        extension = ".safetensors"
        if not is_local:
            mlp_speculator_config = hf_hub_download(
                mlp_model_id, revision=mlp_revision, filename="config.json"
            )
            api = HfApi()
            info = api.model_info(mlp_model_id, revision=mlp_revision)
            filenames = [
                s.rfilename
                for s in info.siblings
                if s.rfilename.endswith(extension)
                and len(s.rfilename.split("/")) == 1
                and "arguments" not in s.rfilename
                and "args" not in s.rfilename
                and "training" not in s.rfilename
            ]
            for filename in filenames:
                hf_hub_download(
                    mlp_model_id,
                    revision=mlp_revision,
                    filename=filename,
                )
498
499
500
501
502
            speculator_dir_path = Path(mlp_speculator_config).parent
            # if these are downloaded, they get converted to safetensors
            filenames.extend(
                [p for p in os.listdir(speculator_dir_path) if p.endswith(extension)]
            )
Nicolas Patry's avatar
Nicolas Patry committed
503
504
505
506
507
508
509
510
511
            speculator = {
                "path": Path(mlp_speculator_config).parent,
                "model_paths": filenames,
            }
        else:
            speculator = Path(mlp_model_id)
            filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
            speculator = {"path": speculator, "model_paths": filenames}
        method = "mlp_speculator"
Nicolas Patry's avatar
Nicolas Patry committed
512
513
514
515
516
    else:
        method = "n-gram"

    speculate = get_speculate()
    if speculate > 0:
517
518
519
        log_master(
            logger.info, f"Using speculation {method} with {speculate} input ids."
        )
Nicolas Patry's avatar
Nicolas Patry committed
520

drbh's avatar
drbh committed
521
522
523
524
525
526
527
528
529
530
    if model_type is None:
        # TODO: fix how we determine model type for Mamba
        if "ssm_cfg" in config_dict:
            # *only happens in Mamba case
            model_type = "ssm"
        else:
            raise RuntimeError(
                f"Could not determine model type for {model_id} revision {revision}"
            )

531
532
533
534
    if quantize == "exl2" and sharded:
        raise RuntimeError(
            "Sharding is currently not supported with `exl2` quantization"
        )
drbh's avatar
drbh committed
535
536
537
538
539
540

    sliding_window = (
        config_dict.get("sliding_window")
        if config_dict.get("sliding_window") is not None
        else -1
    )
541

542
543
544
    use_sliding_window = sliding_window is not None and sliding_window != -1
    needs_sliding_window = (
        max_input_tokens is not None and max_input_tokens > sliding_window
545
    )
546
547
548
549
    if use_sliding_window and needs_sliding_window and not SUPPORTS_WINDOWING:
        raise ValueError(
            f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
        )
550

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    if model_type == DEEPSEEK_V2:
        if FLASH_ATTENTION:
            head_size = max(
                config_dict.get("qk_nope_dim", 128)
                + config_dict.get("qk_rope_dim", 64),
                config_dict.get("v_head_dim", 128),
            )
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDeepseekV2ForCausalLM,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                default_dtype=torch.bfloat16,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
                config_class=DeepseekV2Config,
                head_size=head_size,
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Deepseek V2")
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
    elif model_type == MAMBA:
drbh's avatar
drbh committed
585
586
587
588
        return Mamba(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
589
            speculator=speculator,
drbh's avatar
drbh committed
590
591
592
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )
593

OlivierDehaene's avatar
OlivierDehaene committed
594
    if model_id.startswith("facebook/galactica"):
595
596
597
598
599
        return CausalLM(
            model_id=model_id,
            # Yes galactica is just an OPT model.
            model_class=OPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
600
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
601
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
602
603
            dtype=dtype,
            trust_remote_code=trust_remote_code,
604
            batch_class=GalacticaCausalLMBatch,
OlivierDehaene's avatar
OlivierDehaene committed
605
606
        )

607
    if (
608
609
        model_type == GPT_BIGCODE
        or model_type == GPT2
610
611
        and model_id.startswith("bigcode/")
    ):
612
        if FLASH_ATTENTION:
613
614
615
616
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashSantacoderForCausalLM,
                revision=revision,
617
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
618
                speculator=speculator,
619
                dtype=dtype,
620
                trust_remote_code=trust_remote_code,
621
622
623
                lora_adapter_ids=lora_adapter_ids,
                aliases={"transformer.wte.weight": ["lm_head.weight"]},
                num_kv_heads=1,
624
            )
625
626
627
628
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder")
            )
629
        else:
630
631
632
            return CausalLM.fallback(
                model_id=model_id,
                revision=revision,
633
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
634
                speculator=speculator,
635
                dtype=dtype,
636
637
                trust_remote_code=trust_remote_code,
            )
638

639
    if model_type == BLOOM:
640
641
642
643
        return CausalLM(
            model_id=model_id,
            model_class=BloomForCausalLM,
            revision=revision,
644
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
645
            speculator=speculator,
646
647
            dtype=dtype,
            trust_remote_code=trust_remote_code,
648
            batch_class=BloomCausalLMBatch,
649
        )
650
    elif model_type == MPT:
651
652
653
654
        return CausalLM(
            model_id=model_id,
            model_class=MPTForCausalLM,
            revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
655
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
656
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
657
658
            dtype=dtype,
            trust_remote_code=trust_remote_code,
659
            batch_class=CausalLMBatchKeysLast,
660
        )
661
    elif model_type == GPT2:
662
        if FLASH_ATTENTION:
663
            try:
664
665
666
667
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPT2ForCausalLM,
                    revision=revision,
668
669
670
671
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
672
                    lora_adapter_ids=lora_adapter_ids,
673
674
675
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
676
                log_master(logger.warning, f"Couldn't load flash gpt2 variant: {e}")
677
                return CausalLM.fallback(
678
679
680
681
682
683
684
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
685
686
687
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
        else:
688
            return CausalLM.fallback(
689
690
691
692
693
694
695
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
    elif model_type == GPTJ:
        if FLASH_ATTENTION:
            try:
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashGPTJForCausalLM,
                    revision=revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                    lora_adapter_ids=lora_adapter_ids,
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
                log_master(logger.warning, f"Couldn't load flash gptj variant: {e}")
                return CausalLM.fallback(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-J"))
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
731
    elif model_type == GPT_NEOX:
732
        if FLASH_ATTENTION:
733
734
735
736
            from text_generation_server.models.custom_modeling.flash_neox_modeling import (
                GPTNeoXConfig,
            )

737
738
739
740
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGPTNeoXForCausalLM,
                revision=revision,
741
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
742
                speculator=speculator,
743
                dtype=dtype,
744
                trust_remote_code=trust_remote_code,
745
                lora_adapter_ids=lora_adapter_ids,
746
                config_class=GPTNeoXConfig,
747
748
            )
        elif sharded:
749
750
751
752
            return CausalLM(
                model_id=model_id,
                model_class=GPTNeoxForCausalLM,
                revision=revision,
753
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
754
                speculator=speculator,
755
                dtype=dtype,
756
757
                trust_remote_code=trust_remote_code,
            )
758
        else:
759
            return CausalLM.fallback(
760
761
762
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
763
                speculator=speculator,
764
                dtype=dtype,
765
766
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
767

768
    elif model_type == PHI:
drbh's avatar
drbh committed
769
        if FLASH_ATTENTION:
770
771
772
773
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashPhiForCausalLM,
                revision=revision,
drbh's avatar
drbh committed
774
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
775
                speculator=speculator,
drbh's avatar
drbh committed
776
777
                dtype=dtype,
                trust_remote_code=trust_remote_code,
778
                lora_adapter_ids=lora_adapter_ids,
drbh's avatar
drbh committed
779
780
            )
        else:
781
            return CausalLM.fallback(
drbh's avatar
drbh committed
782
783
784
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
785
                speculator=speculator,
drbh's avatar
drbh committed
786
787
788
789
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    elif model_type == PHI_MOE:
        if FLASH_ATTENTION:
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                config_class=PhiMoEConfig,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            return CausalLM.fallback(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

drbh's avatar
drbh committed
813
814
    elif model_type == "phi-msft":
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
815
816
817
            raise NotImplementedError(
                "Legacy phi-msft is not supported with Flash Attention"
            )
drbh's avatar
drbh committed
818
        else:
819
820
821
822
823
            return CausalLM(
                model_id=model_id,
                model_class=PhiForCausalLM,
                config_class=PhiConfig,
                revision=revision,
drbh's avatar
drbh committed
824
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
825
                speculator=speculator,
drbh's avatar
drbh committed
826
827
828
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
829

830
    elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
831
        if FLASH_ATTENTION:
832
833
834
835
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashLlamaForCausalLM,
                revision=revision,
836
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
837
                speculator=speculator,
838
                dtype=dtype,
839
                trust_remote_code=trust_remote_code,
drbh's avatar
drbh committed
840
                lora_adapter_ids=lora_adapter_ids,
841
            )
842
843
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama"))
844
        else:
845
            return CausalLM.fallback(
846
847
848
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
849
                speculator=speculator,
850
                dtype=dtype,
851
852
                trust_remote_code=trust_remote_code,
            )
853
    if model_type == GEMMA:
854
        if FLASH_ATTENTION:
855
856
857
858
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemmaForCausalLM,
                revision=revision,
859
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
860
                speculator=speculator,
861
                dtype=dtype,
862
863
                # Works better for these models
                default_dtype=torch.bfloat16,
864
                trust_remote_code=trust_remote_code,
865
                lora_adapter_ids=lora_adapter_ids,
866
867
            )
        elif sharded:
OlivierDehaene's avatar
OlivierDehaene committed
868
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
869
        else:
870
            return CausalLM.fallback(
871
872
873
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
874
                speculator=speculator,
875
876
877
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
Nicolas Patry's avatar
Nicolas Patry committed
878
879
    elif model_type == GEMMA2:
        if FLASH_ATTENTION:
880
881
882
883
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashGemma2ForCausalLM,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
884
885
886
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
887
888
                # Works better for these models
                default_dtype=torch.bfloat16,
Nicolas Patry's avatar
Nicolas Patry committed
889
                trust_remote_code=trust_remote_code,
890
                lora_adapter_ids=lora_adapter_ids,
Nicolas Patry's avatar
Nicolas Patry committed
891
892
893
894
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma2"))
        else:
895
            return CausalLM.fallback(
Nicolas Patry's avatar
Nicolas Patry committed
896
897
898
899
900
901
902
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
903

904
    if model_type == COHERE:
OlivierDehaene's avatar
OlivierDehaene committed
905
        if FLASH_ATTENTION:
906
907
908
909
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashCohereForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
910
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
911
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
912
913
                dtype=dtype,
                trust_remote_code=trust_remote_code,
914
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
915
916
917
918
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
        else:
919
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
920
921
922
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
923
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
924
925
926
927
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

928
    if model_type == DBRX:
929
        if FLASH_ATTENTION:
930
931
932
933
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashDbrxForCausalLM,
                revision=revision,
934
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
935
                speculator=speculator,
936
                dtype=dtype,
937
938
                # Dbrx works better in bfloat16.
                default_dtype=torch.bfloat16,
939
                trust_remote_code=trust_remote_code,
940
941
                lora_adapter_ids=lora_adapter_ids,
                config_class=DbrxConfig,
942
943
944
945
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
        else:
946
            return CausalLM.fallback(
947
948
949
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
950
                speculator=speculator,
951
952
953
954
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

955
    if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
956
957
        if sharded:
            if FLASH_ATTENTION:
958
                if config_dict.get("alibi", False):
959
                    raise NotImplementedError("sharded is not supported for this model")
960
961
962
963
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
964
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
965
                    speculator=speculator,
966
                    dtype=dtype,
967
968
969
970
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
971
                    trust_remote_code=trust_remote_code,
972
973
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
974
                )
975
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Falcon"))
976
        else:
977
            if FLASH_ATTENTION and not config_dict.get("alibi", False):
978
979
980
981
                return FlashCausalLM(
                    model_id=model_id,
                    model_class=FlashRWForCausalLM,
                    revision=revision,
982
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
983
                    speculator=speculator,
984
                    dtype=dtype,
985
986
987
988
                    aliases={
                        "lm_head.weight": ["transformer.word_embeddings.weight"],
                        "transformer.word_embeddings.weight": ["lm_head.weight"],
                    },
989
                    trust_remote_code=trust_remote_code,
990
991
                    lora_adapter_ids=lora_adapter_ids,
                    config_class=RWConfig,
992
993
                )
            else:
994
                return CausalLM.fallback(
995
996
997
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
998
                    speculator=speculator,
999
                    dtype=dtype,
1000
1001
1002
                    trust_remote_code=trust_remote_code,
                )

1003
    if model_type == MISTRAL:
1004
        if FLASH_ATTENTION:
1005
1006
1007
1008
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMistralForCausalLM,
                revision=revision,
1009
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1010
                speculator=speculator,
1011
1012
                dtype=dtype,
                trust_remote_code=trust_remote_code,
1013
                lora_adapter_ids=lora_adapter_ids,
1014
            )
OlivierDehaene's avatar
OlivierDehaene committed
1015
1016
1017
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
        else:
1018
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1019
1020
1021
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1022
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1023
1024
1025
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
1026

1027
    if model_type == MIXTRAL:
1028
        if FLASH_ATTENTION:
1029
1030
1031
1032
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashMixtralForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1033
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1034
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1035
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1036
                trust_remote_code=trust_remote_code,
1037
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1038
            )
OlivierDehaene's avatar
OlivierDehaene committed
1039
1040
1041
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
        else:
1042
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1043
1044
1045
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1046
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1047
1048
1049
1050
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1051
    if model_type == STARCODER2:
1052
        if FLASH_ATTENTION:
1053
1054
1055
1056
            return FlashCausalLM(
                model_id=model_id,
                model_class=FlashStarcoder2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1057
                quantize=quantize,
1058
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1059
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1060
                trust_remote_code=trust_remote_code,
1061
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1062
1063
1064
1065
1066
1067
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
            )
        else:
1068
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1069
1070
1071
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1072
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1073
1074
1075
1076
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

1077
    if model_type == QWEN2:
1078
        if FLASH_ATTENTION:
1079
1080
1081
1082
            return FlashCausalLM(
                model_id=model_id,
                model_class=Qwen2ForCausalLM,
                revision=revision,
OlivierDehaene's avatar
OlivierDehaene committed
1083
                quantize=quantize,
1084
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1085
1086
                dtype=dtype,
                trust_remote_code=trust_remote_code,
1087
                lora_adapter_ids=lora_adapter_ids,
OlivierDehaene's avatar
OlivierDehaene committed
1088
1089
1090
1091
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
        else:
1092
            return CausalLM.fallback(
OlivierDehaene's avatar
OlivierDehaene committed
1093
1094
1095
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1096
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1097
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
1098
1099
                trust_remote_code=trust_remote_code,
            )
1100

1101
    if model_type == OPT:
1102
1103
1104
1105
        return CausalLM(
            model_id=model_id,
            model_class=OPTForCausalLM,
            revision=revision,
1106
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1107
            speculator=speculator,
1108
1109
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1110
        )
1111

1112
    if model_type == T5:
1113
1114
1115
1116
        return Seq2SeqLM(
            model_id=model_id,
            model_class=T5ForConditionalGeneration,
            revision=revision,
1117
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1118
            speculator=speculator,
1119
            dtype=dtype,
1120
            trust_remote_code=trust_remote_code,
1121
1122
1123
1124
1125
1126
            aliases={
                "shared.weight": [
                    "encoder.embed_tokens.weight",
                    "decoder.embed_tokens.weight",
                ]
            },
1127
        )
1128
    if model_type == IDEFICS:
1129
        if FLASH_ATTENTION:
Nicolas Patry's avatar
Nicolas Patry committed
1130
            return IdeficsCausalLM(
OlivierDehaene's avatar
OlivierDehaene committed
1131
1132
1133
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1134
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
1135
1136
1137
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
1138
1139
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
Nicolas Patry's avatar
Nicolas Patry committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
    if model_type == MLLAMA:
        if FLASH_ATTENTION:
            return MllamaCausalLM(
                model_id=model_id,
                model_class=MllamaForConditionalGeneration,
                batch_class=MllamaCausalLMBatch,
                revision=revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                default_dtype=torch.bfloat16,
                trust_remote_code=trust_remote_code,
                lora_adapter_ids=lora_adapter_ids,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Mllama"))
1156
    if model_type == IDEFICS2:
Nicolas Patry's avatar
Nicolas Patry committed
1157
        if FLASH_ATTENTION:
1158
1159
1160
1161
            return VlmCausalLM(
                model_id=model_id,
                model_class=Idefics2ForConditionalGeneration,
                revision=revision,
Nicolas Patry's avatar
Nicolas Patry committed
1162
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1163
                speculator=speculator,
Nicolas Patry's avatar
Nicolas Patry committed
1164
1165
                dtype=dtype,
                trust_remote_code=trust_remote_code,
1166
1167
1168
1169
                lora_adapter_ids=lora_adapter_ids,
                # XXX: Extremely important to cap resolution in order to limit
                # VRAM usage.
                processor_kwargs={"size": {"longest_edge": 448, "shortest_edge": 378}},
Nicolas Patry's avatar
Nicolas Patry committed
1170
1171
1172
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1173
    if model_type == PALIGEMMA:
drbh's avatar
drbh committed
1174
        if FLASH_ATTENTION:
1175
1176
1177
1178
            return VlmCausalLM(
                model_id=model_id,
                model_class=PaliGemmaForConditionalGeneration,
                revision=revision,
drbh's avatar
drbh committed
1179
1180
1181
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
1182
1183
                # Works better for these models
                default_dtype=torch.bfloat16,
drbh's avatar
drbh committed
1184
                trust_remote_code=trust_remote_code,
1185
1186
                lora_adapter_ids=lora_adapter_ids,
                batch_class=PaliGemmaBatch,
drbh's avatar
drbh committed
1187
1188
1189
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
1190

1191
    if model_type == LLAVA_NEXT:
1192
        if FLASH_ATTENTION:
1193
1194
1195
1196
            return VlmCausalLM(
                model_class=LlavaNextForConditionalGeneration,
                model_id=model_id,
                revision=revision,
1197
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1198
                speculator=speculator,
1199
1200
1201
1202
1203
1204
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext"))

1205
    if sharded:
1206
        raise NotImplementedError("sharded is not supported for AutoModel")
1207
    if quantize == "gptq":
1208
        raise NotImplementedError(
1209
1210
            "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
        )
1211
    if quantize == "awq":
1212
        raise NotImplementedError("awq quantization is not supported for AutoModel")
Nicolas Patry's avatar
Nicolas Patry committed
1213
    elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"):
1214
        raise NotImplementedError("4bit quantization is not supported for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
1215
    elif quantize == "eetq":
1216
        raise NotImplementedError("Eetq quantization is not supported for AutoModel")
1217
1218
    elif quantize == "exl2":
        raise NotImplementedError("exl2 quantization is not supported for AutoModel")
1219
    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
1220
        return CausalLM.fallback(
1221
1222
1223
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1224
            speculator=speculator,
1225
1226
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1227
        )
1228
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
1229
        return Seq2SeqLM.fallback(
1230
1231
1232
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1233
            speculator=speculator,
1234
1235
            dtype=dtype,
            trust_remote_code=trust_remote_code,
1236
1237
        )

1238
    auto_map = config_dict.get("auto_map", None)
1239
1240
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
1241
            return CausalLM.fallback(
1242
1243
1244
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1245
                speculator=speculator,
1246
                dtype=dtype,
1247
1248
                trust_remote_code=trust_remote_code,
            )
1249
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
1250
            return Seq2SeqLM.fallback(
1251
1252
1253
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
1254
                speculator=speculator,
1255
                dtype=dtype,
1256
1257
                trust_remote_code=trust_remote_code,
            )
1258
1259

    raise ValueError(f"Unsupported model type {model_type}")
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336


# get_model_with_lora_adapters wraps the internal get_model function and adds support for loading adapters
# this provides a post model loading hook to load adapters into the model after the model has been loaded
def get_model_with_lora_adapters(
    model_id: str,
    lora_adapters: Optional[List[AdapterInfo]],
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
    speculate: Optional[int],
    dtype: Optional[str],
    trust_remote_code: bool,
    max_input_tokens: int,
    adapter_to_index: Dict[str, int],
):
    lora_adapter_ids = [adapter.id for adapter in lora_adapters]
    model = get_model(
        model_id,
        lora_adapter_ids,
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
        trust_remote_code,
        max_input_tokens,
    )

    if len(lora_adapters) > 0:
        target_to_layer = build_layer_weight_lookup(model.model)

        for index, adapter in enumerate(lora_adapters):
            # The AdapterParameters object allows for merging multiple adapters into a single adapter.
            # At the moment, we only support loading a single adapter into the model, but we keep the
            # AdapterParameters object for easier extension in the future.
            adapter_parameters = AdapterParameters(
                adapter_info=[adapter],
                # when merging multiple adapters we can weight them differently
                # if this is not set, all adapters will be weighted equally
                # see: text_generation_server.utils.merges.strategies for impl
                weights=None,
                merge_strategy=0,
                density=1.0,
                majority_sign_method=0,
            )

            adapter_index = index + 1
            adapter_to_index[adapter.id] = adapter_index

            logger.info(
                f"Loading adapter weights into model: {','.join([adapter.id for adapter in adapter_parameters.adapter_info])}"
            )
            weight_names = tuple([v[0] for v in target_to_layer.values()])
            (
                module_map,
                adapter_config,
                adapter_weight_names,
                adapter_tokenizer,
            ) = load_and_merge_adapters(
                model.model_id,
                adapter_parameters,
                adapter_index,
                weight_names,
                False,
            )

            unused_weight_names = adapter_weight_names.copy()

            adapter_layers = [
                "q_proj",
                "k_proj",
                "v_proj",
                "o_proj",
                "gate_proj",
                "up_proj",
                "down_proj",
1337
                "qkv_proj",
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
            ]

            for layer_name in adapter_layers:
                nlayers = (
                    1 if layer_name == "lm_head" else len(model.model.model.layers)
                )
                adapter_weights = LoraWeights.prepare_weights(
                    config=adapter_config,
                    module_map=module_map,
                    layer_type=layer_name,
                    unused_weight_names=unused_weight_names,
                    nlayers=nlayers,
                    dtype=model.dtype,
                    world_size=model.world_size,
                    process_group=model.process_group,
                    target_to_layer=target_to_layer,
                )

                if adapter_weights is None:
                    continue

                model.layer_to_adapter_weights[layer_name].add_adapter(
                    adapter_index, adapter_weights
                )

            if len(unused_weight_names) > 0:
                logger.warning(
1365
                    f"{','.join([a.id for a in lora_adapters])} unused adapter weights: {unused_weight_names}"
1366
1367
1368
1369
1370
1371
1372
1373
                )

            if adapter_tokenizer is not None:
                model.tokenizers.add_tokenizer(adapter_index, adapter_tokenizer)

            model.loaded_adapters.add(adapter_index)

    return model