base.py 10.5 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
from typing import Optional, Callable, Dict, Any
rusty1s's avatar
rusty1s committed
2
3
4
5
6
7
8

import warnings

import torch
from torch import Tensor
from torch_sparse import SparseTensor

rusty1s's avatar
rusty1s committed
9
10
from torch_geometric_autoscale import History, AsyncIOPool
from torch_geometric_autoscale import SubgraphLoader, EvalSubgraphLoader
rusty1s's avatar
rusty1s committed
11
12
13


class ScalableGNN(torch.nn.Module):
rusty1s's avatar
rusty1s committed
14
15
16
17
    r"""An abstract class for implementing scalable GNNs via historical
    embeddings.
    This class will take care of initializing :obj:`num_layers - 1` historical
    embeddings, and provides a convenient interface to push recent node
rusty1s's avatar
rusty1s committed
18
19
    embeddings to the history, and to pull previous embeddings from the
    history.
rusty1s's avatar
rusty1s committed
20
    In case historical embeddings are stored on the CPU, they will reside
rusty1s's avatar
rusty1s committed
21
22
    inside pinned memory, which allows for asynchronous memory transfers of
    historical embeddings.
rusty1s's avatar
rusty1s committed
23
    For this, this class maintains a :class:`AsyncIOPool` object that
rusty1s's avatar
rusty1s committed
24
25
    implements the underlying mechanisms of asynchronous memory transfers as
    described in our paper.
rusty1s's avatar
rusty1s committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

    Args:
        num_nodes (int): The number of nodes in the graph.
        hidden_channels (int): The number of hidden channels of the model.
            As a current restriction, all intermediate node embeddings need to
            utilize the same number of features.
        num_layers (int): The number of layers of the model.
        pool_size (int, optional): The number of pinned CPU buffers for pulling
            histories and transfering them to GPU.
            Needs to be set in order to make use of asynchronous memory
            transfers. (default: :obj:`None`)
        buffer_size (int, optional): The size of pinned CPU buffers, i.e. the
            maximum number of out-of-mini-batch nodes pulled at once.
            Needs to be set in order to make use of asynchronous memory
            transfers. (default: :obj:`None`)
    """
rusty1s's avatar
rusty1s committed
42
43
44
    def __init__(self, num_nodes: int, hidden_channels: int, num_layers: int,
                 pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
rusty1s's avatar
rusty1s committed
45
        super().__init__()
rusty1s's avatar
rusty1s committed
46
47
48
49

        self.num_nodes = num_nodes
        self.hidden_channels = hidden_channels
        self.num_layers = num_layers
rusty1s's avatar
rusty1s committed
50
        self.pool_size = num_layers - 1 if pool_size is None else pool_size
rusty1s's avatar
rusty1s committed
51
52
53
54
55
56
57
        self.buffer_size = buffer_size

        self.histories = torch.nn.ModuleList([
            History(num_nodes, hidden_channels, device)
            for _ in range(num_layers - 1)
        ])

rusty1s's avatar
rusty1s committed
58
        self.pool: Optional[AsyncIOPool] = None
rusty1s's avatar
rusty1s committed
59
        self._async = False
rusty1s's avatar
doc  
rusty1s committed
60
        self.__out: Optional[Tensor] = None
rusty1s's avatar
rusty1s committed
61
62
63
64
65
66
67
68
69
70

    @property
    def emb_device(self):
        return self.histories[0].emb.device

    @property
    def device(self):
        return self.histories[0]._device

    def _apply(self, fn: Callable) -> None:
rusty1s's avatar
rusty1s committed
71
        super()._apply(fn)
rusty1s's avatar
rusty1s committed
72
        # We only initialize the AsyncIOPool in case histories are on CPU:
rusty1s's avatar
rusty1s committed
73
74
75
76
77
78
79
80
81
82
83
84
        if (str(self.emb_device) == 'cpu' and str(self.device)[:4] == 'cuda'
                and self.pool_size is not None
                and self.buffer_size is not None):
            self.pool = AsyncIOPool(self.pool_size, self.buffer_size,
                                    self.histories[0].embedding_dim)
            self.pool.to(self.device)
        return self

    def reset_parameters(self):
        for history in self.histories:
            history.reset_parameters()

rusty1s's avatar
rusty1s committed
85
86
87
88
89
90
91
92
    def __call__(
        self,
        x: Optional[Tensor] = None,
        adj_t: Optional[SparseTensor] = None,
        batch_size: Optional[int] = None,
        n_id: Optional[Tensor] = None,
        offset: Optional[Tensor] = None,
        count: Optional[Tensor] = None,
rusty1s's avatar
rusty1s committed
93
        loader: EvalSubgraphLoader = None,
rusty1s's avatar
rusty1s committed
94
95
        **kwargs,
    ) -> Tensor:
rusty1s's avatar
rusty1s committed
96
97
98
99
        r"""Enhances the call of forward propagation by immediately start
        pulling historical embeddings for all layers asynchronously.
        After forward propogation is completed, the push of node embeddings to
        the histories will be synchronized.
rusty1s's avatar
rusty1s committed
100

rusty1s's avatar
rusty1s committed
101
        For example, given a mini-batch with node indices
rusty1s's avatar
rusty1s committed
102
103
104
105
        :obj:`n_id = [0, 1, 5, 6, 7, 3, 4]`, where the first 5 nodes
        represent the mini-batched nodes, and nodes :obj:`3` and :obj:`4`
        denote out-of-mini-batched nodes (i.e. the 1-hop neighbors of the
        mini-batch that are not included in the current mini-batch), then
rusty1s's avatar
rusty1s committed
106
        other input arguments should be given as:
rusty1s's avatar
rusty1s committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

        .. code-block:: python

            batch_size = 5
            offset = [0, 2, 5]
            count = [2, 3]

        Args:
            x (Tensor, optional): Node feature matrix. (default: :obj:`None`)
            adj_t (SparseTensor, optional) The sparse adjacency matrix.
                (default: :obj:`None`)
            batch_size (int, optional): The in-mini-batch size of nodes.
                (default: :obj:`None`)
            n_id (Tensor, optional): The global indices of mini-batched and
                out-of-mini-batched nodes. (default: :obj:`None`)
            offset (Tensor, optional): The offset of mini-batched nodes inside
                a utilize a contiguous memory layout. (default: :obj:`None`)
            count (Tensor, optional): The number of mini-batched nodes inside a
                contiguous memory layout. (default: :obj:`None`)
            loader (EvalSubgraphLoader, optional): A subgraph loader used for
                evaluating the given GNN in a layer-wise fashsion.
        """
rusty1s's avatar
rusty1s committed
129
130
131
132

        if loader is not None:
            return self.mini_inference(loader)

rusty1s's avatar
rusty1s committed
133
134
        # We only perform asynchronous history transfer in case the following
        # conditions are met:
rusty1s's avatar
rusty1s committed
135
136
137
138
        self._async = (self.pool is not None and batch_size is not None
                       and n_id is not None and offset is not None
                       and count is not None)

rusty1s's avatar
rusty1s committed
139
140
141
        if (batch_size is not None and not self._async
                and str(self.emb_device) == 'cpu'
                and str(self.device)[:4] == 'cuda'):
rusty1s's avatar
rusty1s committed
142
143
144
145
146
147
148
            warnings.warn('Asynchronous I/O disabled, although history and '
                          'model sit on different devices.')

        if self._async:
            for hist in self.histories:
                self.pool.async_pull(hist.emb, None, None, n_id[batch_size:])

rusty1s's avatar
rusty1s committed
149
        out = self.forward(x, adj_t, batch_size, n_id, offset, count, **kwargs)
rusty1s's avatar
rusty1s committed
150
151
152
153
154
155
156
157
158
159
160
161
162
163

        if self._async:
            for hist in self.histories:
                self.pool.synchronize_push()

        self._async = False

        return out

    def push_and_pull(self, history, x: Tensor,
                      batch_size: Optional[int] = None,
                      n_id: Optional[Tensor] = None,
                      offset: Optional[Tensor] = None,
                      count: Optional[Tensor] = None) -> Tensor:
rusty1s's avatar
rusty1s committed
164
165
        r"""Pushes and pulls information from :obj:`x` to :obj:`history` and
        vice versa."""
rusty1s's avatar
rusty1s committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

        if n_id is None and x.size(0) != self.num_nodes:
            return x  # Do nothing...

        if n_id is None and x.size(0) == self.num_nodes:
            history.push(x)
            return x

        assert n_id is not None

        if batch_size is None:
            history.push(x, n_id)
            return x

        if not self._async:
            history.push(x[:batch_size], n_id[:batch_size], offset, count)
            h = history.pull(n_id[batch_size:])
            return torch.cat([x[:batch_size], h], dim=0)

rusty1s's avatar
rusty1s committed
185
186
187
188
189
190
191
192
193
194
195
196
197
        else:
            out = self.pool.synchronize_pull()[:n_id.numel() - batch_size]
            self.pool.async_push(x[:batch_size], offset, count, history.emb)
            out = torch.cat([x[:batch_size], out], dim=0)
            self.pool.free_pull()
            return out

    @property
    def _out(self):
        if self.__out is None:
            self.__out = torch.empty(self.num_nodes, self.out_channels,
                                     pin_memory=True)
        return self.__out
rusty1s's avatar
rusty1s committed
198
199

    @torch.no_grad()
rusty1s's avatar
rusty1s committed
200
    def mini_inference(self, loader: SubgraphLoader) -> Tensor:
rusty1s's avatar
rusty1s committed
201
202
203
204
205
        r"""An implementation of layer-wise evaluation of GNNs.
        For each individual layer and mini-batch, :meth:`forward_layer` takes
        care of computing the next state of node embeddings.
        Additional state (such as residual connections) can be stored in
        a `state` directory."""
rusty1s's avatar
rusty1s committed
206

rusty1s's avatar
doc  
rusty1s committed
207
208
209
        # We iterate over the loader in a layer-wise fashsion.
        # In order to re-use some intermediate representations, we maintain a
        # `state` dictionary for each individual mini-batch.
rusty1s's avatar
rusty1s committed
210

rusty1s's avatar
doc  
rusty1s committed
211
212
213
214
215
216
        loader = [sub_data + ({}, ) for sub_data in loader]

        # We push the outputs of the first layer to the history:
        for data, batch_size, n_id, offset, count, state in loader:
            x = data.x.to(self.device)
            adj_t = data.adj_t.to(self.device)
rusty1s's avatar
rusty1s committed
217
218
219
220
221
            out = self.forward_layer(0, x, adj_t, state)[:batch_size]
            self.pool.async_push(out, offset, count, self.histories[0].emb)
        self.pool.synchronize_push()

        for i in range(1, len(self.histories)):
rusty1s's avatar
doc  
rusty1s committed
222
            # Pull the complete layer-wise history:
rusty1s's avatar
rusty1s committed
223
224
225
226
            for _, batch_size, n_id, offset, count, _ in loader:
                self.pool.async_pull(self.histories[i - 1].emb, offset, count,
                                     n_id[batch_size:])

rusty1s's avatar
doc  
rusty1s committed
227
228
            # Compute new output embeddings one-by-one and start pushing them
            # to the history.
rusty1s's avatar
rusty1s committed
229
230
231
232
233
234
235
236
            for batch, batch_size, n_id, offset, count, state in loader:
                adj_t = batch.adj_t.to(self.device)
                x = self.pool.synchronize_pull()[:n_id.numel()]
                out = self.forward_layer(i, x, adj_t, state)[:batch_size]
                self.pool.async_push(out, offset, count, self.histories[i].emb)
                self.pool.free_pull()
            self.pool.synchronize_push()

rusty1s's avatar
doc  
rusty1s committed
237
        # We pull the histories from the last layer:
rusty1s's avatar
rusty1s committed
238
239
240
241
        for _, batch_size, n_id, offset, count, _ in loader:
            self.pool.async_pull(self.histories[-1].emb, offset, count,
                                 n_id[batch_size:])

rusty1s's avatar
doc  
rusty1s committed
242
243
        # And compute final output embeddings, which we write into a private
        # output embedding matrix:
rusty1s's avatar
rusty1s committed
244
245
246
247
248
249
250
251
252
253
        for batch, batch_size, n_id, offset, count, state in loader:
            adj_t = batch.adj_t.to(self.device)
            x = self.pool.synchronize_pull()[:n_id.numel()]
            out = self.forward_layer(self.num_layers - 1, x, adj_t,
                                     state)[:batch_size]
            self.pool.async_push(out, offset, count, self._out)
            self.pool.free_pull()
        self.pool.synchronize_push()

        return self._out
rusty1s's avatar
rusty1s committed
254
255
256

    @torch.no_grad()
    def forward_layer(self, layer: int, x: Tensor, adj_t: SparseTensor,
rusty1s's avatar
rusty1s committed
257
                      state: Dict[str, Any]) -> Tensor:
rusty1s's avatar
rusty1s committed
258
        raise NotImplementedError