base.py 10.3 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
from typing import Optional, Callable, Dict, Any
rusty1s's avatar
rusty1s committed
2
3
4
5
6
7
8

import warnings

import torch
from torch import Tensor
from torch_sparse import SparseTensor

rusty1s's avatar
rusty1s committed
9
10
from torch_geometric_autoscale import History, AsyncIOPool
from torch_geometric_autoscale import SubgraphLoader, EvalSubgraphLoader
rusty1s's avatar
rusty1s committed
11
12
13


class ScalableGNN(torch.nn.Module):
rusty1s's avatar
rusty1s committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
    r"""An abstract class for implementing scalable GNNs via historical
    embeddings.
    This class will take care of initializing :obj:`num_layers - 1` historical
    embeddings, and provides a convenient interface to push recent node
    embeddings to the history and pulling embeddings from the history.
    In case historical embeddings are stored on the CPU, they will reside
    inside pinned memory, which allows for an asynchronous memory transfers of
    histories.
    For this, this class maintains a :class:`AsyncIOPool` object that
    implements the underlying mechanisms of asynchronous memory transfers.

    Args:
        num_nodes (int): The number of nodes in the graph.
        hidden_channels (int): The number of hidden channels of the model.
            As a current restriction, all intermediate node embeddings need to
            utilize the same number of features.
        num_layers (int): The number of layers of the model.
        pool_size (int, optional): The number of pinned CPU buffers for pulling
            histories and transfering them to GPU.
            Needs to be set in order to make use of asynchronous memory
            transfers. (default: :obj:`None`)
        buffer_size (int, optional): The size of pinned CPU buffers, i.e. the
            maximum number of out-of-mini-batch nodes pulled at once.
            Needs to be set in order to make use of asynchronous memory
            transfers. (default: :obj:`None`)
    """
rusty1s's avatar
rusty1s committed
40
41
42
    def __init__(self, num_nodes: int, hidden_channels: int, num_layers: int,
                 pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
rusty1s's avatar
rusty1s committed
43
        super().__init__()
rusty1s's avatar
rusty1s committed
44
45
46
47

        self.num_nodes = num_nodes
        self.hidden_channels = hidden_channels
        self.num_layers = num_layers
rusty1s's avatar
rusty1s committed
48
        self.pool_size = num_layers - 1 if pool_size is None else pool_size
rusty1s's avatar
rusty1s committed
49
50
51
52
53
54
55
        self.buffer_size = buffer_size

        self.histories = torch.nn.ModuleList([
            History(num_nodes, hidden_channels, device)
            for _ in range(num_layers - 1)
        ])

rusty1s's avatar
rusty1s committed
56
        self.pool: Optional[AsyncIOPool] = None
rusty1s's avatar
rusty1s committed
57
        self._async = False
rusty1s's avatar
doc  
rusty1s committed
58
        self.__out: Optional[Tensor] = None
rusty1s's avatar
rusty1s committed
59
60
61
62
63
64
65
66
67
68

    @property
    def emb_device(self):
        return self.histories[0].emb.device

    @property
    def device(self):
        return self.histories[0]._device

    def _apply(self, fn: Callable) -> None:
rusty1s's avatar
rusty1s committed
69
        super()._apply(fn)
rusty1s's avatar
rusty1s committed
70
        # We only initialize the AsyncIOPool in case histories are on CPU:
rusty1s's avatar
rusty1s committed
71
72
73
74
75
76
77
78
79
80
81
82
        if (str(self.emb_device) == 'cpu' and str(self.device)[:4] == 'cuda'
                and self.pool_size is not None
                and self.buffer_size is not None):
            self.pool = AsyncIOPool(self.pool_size, self.buffer_size,
                                    self.histories[0].embedding_dim)
            self.pool.to(self.device)
        return self

    def reset_parameters(self):
        for history in self.histories:
            history.reset_parameters()

rusty1s's avatar
rusty1s committed
83
84
85
86
87
88
89
90
    def __call__(
        self,
        x: Optional[Tensor] = None,
        adj_t: Optional[SparseTensor] = None,
        batch_size: Optional[int] = None,
        n_id: Optional[Tensor] = None,
        offset: Optional[Tensor] = None,
        count: Optional[Tensor] = None,
rusty1s's avatar
rusty1s committed
91
        loader: EvalSubgraphLoader = None,
rusty1s's avatar
rusty1s committed
92
93
        **kwargs,
    ) -> Tensor:
rusty1s's avatar
rusty1s committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        r"""Extends the call of forward propagation by immediately start
        pulling historical embeddings for each layer asynchronously.
        After forward propogation, pushing node embeddings to histories will be
        synchronized.

        For example, given a mini-batch with
        :obj:`n_id = [0, 1, 5, 6, 7, 3, 4]`, where the first 5 nodes
        represent the mini-batched nodes, and nodes :obj:`3` and :obj:`4`
        denote out-of-mini-batched nodes (i.e. the 1-hop neighbors of the
        mini-batch that are not included in the current mini-batch), then
        other input arguments are given as:

        .. code-block:: python

            batch_size = 5
            offset = [0, 2, 5]
            count = [2, 3]

        Args:
            x (Tensor, optional): Node feature matrix. (default: :obj:`None`)
            adj_t (SparseTensor, optional) The sparse adjacency matrix.
                (default: :obj:`None`)
            batch_size (int, optional): The in-mini-batch size of nodes.
                (default: :obj:`None`)
            n_id (Tensor, optional): The global indices of mini-batched and
                out-of-mini-batched nodes. (default: :obj:`None`)
            offset (Tensor, optional): The offset of mini-batched nodes inside
                a utilize a contiguous memory layout. (default: :obj:`None`)
            count (Tensor, optional): The number of mini-batched nodes inside a
                contiguous memory layout. (default: :obj:`None`)
            loader (EvalSubgraphLoader, optional): A subgraph loader used for
                evaluating the given GNN in a layer-wise fashsion.
        """
rusty1s's avatar
rusty1s committed
127
128
129
130

        if loader is not None:
            return self.mini_inference(loader)

rusty1s's avatar
rusty1s committed
131
132
        # We only perform asynchronous history transfer in case the following
        # conditions are met:
rusty1s's avatar
rusty1s committed
133
134
135
136
        self._async = (self.pool is not None and batch_size is not None
                       and n_id is not None and offset is not None
                       and count is not None)

rusty1s's avatar
rusty1s committed
137
138
139
        if (batch_size is not None and not self._async
                and str(self.emb_device) == 'cpu'
                and str(self.device)[:4] == 'cuda'):
rusty1s's avatar
rusty1s committed
140
141
142
143
144
145
146
            warnings.warn('Asynchronous I/O disabled, although history and '
                          'model sit on different devices.')

        if self._async:
            for hist in self.histories:
                self.pool.async_pull(hist.emb, None, None, n_id[batch_size:])

rusty1s's avatar
rusty1s committed
147
        out = self.forward(x, adj_t, batch_size, n_id, offset, count, **kwargs)
rusty1s's avatar
rusty1s committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161

        if self._async:
            for hist in self.histories:
                self.pool.synchronize_push()

        self._async = False

        return out

    def push_and_pull(self, history, x: Tensor,
                      batch_size: Optional[int] = None,
                      n_id: Optional[Tensor] = None,
                      offset: Optional[Tensor] = None,
                      count: Optional[Tensor] = None) -> Tensor:
rusty1s's avatar
rusty1s committed
162
163
        r"""Pushes and pulls information from :obj:`x` to :obj:`history` and
        vice versa."""
rusty1s's avatar
rusty1s committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

        if n_id is None and x.size(0) != self.num_nodes:
            return x  # Do nothing...

        if n_id is None and x.size(0) == self.num_nodes:
            history.push(x)
            return x

        assert n_id is not None

        if batch_size is None:
            history.push(x, n_id)
            return x

        if not self._async:
            history.push(x[:batch_size], n_id[:batch_size], offset, count)
            h = history.pull(n_id[batch_size:])
            return torch.cat([x[:batch_size], h], dim=0)

rusty1s's avatar
rusty1s committed
183
184
185
186
187
188
189
190
191
192
193
194
195
        else:
            out = self.pool.synchronize_pull()[:n_id.numel() - batch_size]
            self.pool.async_push(x[:batch_size], offset, count, history.emb)
            out = torch.cat([x[:batch_size], out], dim=0)
            self.pool.free_pull()
            return out

    @property
    def _out(self):
        if self.__out is None:
            self.__out = torch.empty(self.num_nodes, self.out_channels,
                                     pin_memory=True)
        return self.__out
rusty1s's avatar
rusty1s committed
196
197

    @torch.no_grad()
rusty1s's avatar
rusty1s committed
198
    def mini_inference(self, loader: SubgraphLoader) -> Tensor:
rusty1s's avatar
rusty1s committed
199
200
201
        r"""An implementation of a layer-wise evaluation of GNNs.
        For each layer, :meth:`forward_layer` will be called."""

rusty1s's avatar
doc  
rusty1s committed
202
203
204
        # We iterate over the loader in a layer-wise fashsion.
        # In order to re-use some intermediate representations, we maintain a
        # `state` dictionary for each individual mini-batch.
rusty1s's avatar
rusty1s committed
205

rusty1s's avatar
doc  
rusty1s committed
206
207
208
209
210
211
        loader = [sub_data + ({}, ) for sub_data in loader]

        # We push the outputs of the first layer to the history:
        for data, batch_size, n_id, offset, count, state in loader:
            x = data.x.to(self.device)
            adj_t = data.adj_t.to(self.device)
rusty1s's avatar
rusty1s committed
212
213
214
215
216
            out = self.forward_layer(0, x, adj_t, state)[:batch_size]
            self.pool.async_push(out, offset, count, self.histories[0].emb)
        self.pool.synchronize_push()

        for i in range(1, len(self.histories)):
rusty1s's avatar
doc  
rusty1s committed
217
            # Pull the complete layer-wise history:
rusty1s's avatar
rusty1s committed
218
219
220
221
            for _, batch_size, n_id, offset, count, _ in loader:
                self.pool.async_pull(self.histories[i - 1].emb, offset, count,
                                     n_id[batch_size:])

rusty1s's avatar
doc  
rusty1s committed
222
223
            # Compute new output embeddings one-by-one and start pushing them
            # to the history.
rusty1s's avatar
rusty1s committed
224
225
226
227
228
229
230
231
            for batch, batch_size, n_id, offset, count, state in loader:
                adj_t = batch.adj_t.to(self.device)
                x = self.pool.synchronize_pull()[:n_id.numel()]
                out = self.forward_layer(i, x, adj_t, state)[:batch_size]
                self.pool.async_push(out, offset, count, self.histories[i].emb)
                self.pool.free_pull()
            self.pool.synchronize_push()

rusty1s's avatar
doc  
rusty1s committed
232
        # We pull the histories from the last layer:
rusty1s's avatar
rusty1s committed
233
234
235
236
        for _, batch_size, n_id, offset, count, _ in loader:
            self.pool.async_pull(self.histories[-1].emb, offset, count,
                                 n_id[batch_size:])

rusty1s's avatar
doc  
rusty1s committed
237
238
        # And compute final output embeddings, which we write into a private
        # output embedding matrix:
rusty1s's avatar
rusty1s committed
239
240
241
242
243
244
245
246
247
248
        for batch, batch_size, n_id, offset, count, state in loader:
            adj_t = batch.adj_t.to(self.device)
            x = self.pool.synchronize_pull()[:n_id.numel()]
            out = self.forward_layer(self.num_layers - 1, x, adj_t,
                                     state)[:batch_size]
            self.pool.async_push(out, offset, count, self._out)
            self.pool.free_pull()
        self.pool.synchronize_push()

        return self._out
rusty1s's avatar
rusty1s committed
249
250
251

    @torch.no_grad()
    def forward_layer(self, layer: int, x: Tensor, adj_t: SparseTensor,
rusty1s's avatar
rusty1s committed
252
                      state: Dict[str, Any]) -> Tensor:
rusty1s's avatar
rusty1s committed
253
        raise NotImplementedError