base.py 6.46 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
from typing import Optional, Callable, Dict, Any
rusty1s's avatar
rusty1s committed
2
3
4
5
6
7
8

import warnings

import torch
from torch import Tensor
from torch_sparse import SparseTensor

rusty1s's avatar
rusty1s committed
9
10
from torch_geometric_autoscale import History, AsyncIOPool
from torch_geometric_autoscale import SubgraphLoader, EvalSubgraphLoader
rusty1s's avatar
rusty1s committed
11
12
13
14
15
16
17
18
19
20
21


class ScalableGNN(torch.nn.Module):
    def __init__(self, num_nodes: int, hidden_channels: int, num_layers: int,
                 pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
        super(ScalableGNN, self).__init__()

        self.num_nodes = num_nodes
        self.hidden_channels = hidden_channels
        self.num_layers = num_layers
rusty1s's avatar
rusty1s committed
22
        self.pool_size = num_layers - 1 if pool_size is None else pool_size
rusty1s's avatar
rusty1s committed
23
24
25
26
27
28
29
        self.buffer_size = buffer_size

        self.histories = torch.nn.ModuleList([
            History(num_nodes, hidden_channels, device)
            for _ in range(num_layers - 1)
        ])

rusty1s's avatar
rusty1s committed
30
        self.pool: Optional[AsyncIOPool] = None
rusty1s's avatar
rusty1s committed
31
32
33
34
35
36
37
38
39
40
41
42
        self._async = False

    @property
    def emb_device(self):
        return self.histories[0].emb.device

    @property
    def device(self):
        return self.histories[0]._device

    def _apply(self, fn: Callable) -> None:
        super(ScalableGNN, self)._apply(fn)
rusty1s's avatar
rusty1s committed
43
        # We only initialize the AsyncIOPool in case histories are on CPU:
rusty1s's avatar
rusty1s committed
44
45
46
47
48
49
50
51
52
53
54
55
        if (str(self.emb_device) == 'cpu' and str(self.device)[:4] == 'cuda'
                and self.pool_size is not None
                and self.buffer_size is not None):
            self.pool = AsyncIOPool(self.pool_size, self.buffer_size,
                                    self.histories[0].embedding_dim)
            self.pool.to(self.device)
        return self

    def reset_parameters(self):
        for history in self.histories:
            history.reset_parameters()

rusty1s's avatar
rusty1s committed
56
57
58
59
60
61
62
63
    def __call__(
        self,
        x: Optional[Tensor] = None,
        adj_t: Optional[SparseTensor] = None,
        batch_size: Optional[int] = None,
        n_id: Optional[Tensor] = None,
        offset: Optional[Tensor] = None,
        count: Optional[Tensor] = None,
rusty1s's avatar
rusty1s committed
64
        loader: EvalSubgraphLoader = None,
rusty1s's avatar
rusty1s committed
65
66
        **kwargs,
    ) -> Tensor:
rusty1s's avatar
rusty1s committed
67
68
69
70

        if loader is not None:
            return self.mini_inference(loader)

rusty1s's avatar
rusty1s committed
71
72
        # We only perform asynchronous history transfer in case the following
        # conditions are met:
rusty1s's avatar
rusty1s committed
73
74
75
76
        self._async = (self.pool is not None and batch_size is not None
                       and n_id is not None and offset is not None
                       and count is not None)

rusty1s's avatar
rusty1s committed
77
78
79
        if (batch_size is not None and not self._async
                and str(self.emb_device) == 'cpu'
                and str(self.device)[:4] == 'cuda'):
rusty1s's avatar
rusty1s committed
80
81
82
83
84
85
86
            warnings.warn('Asynchronous I/O disabled, although history and '
                          'model sit on different devices.')

        if self._async:
            for hist in self.histories:
                self.pool.async_pull(hist.emb, None, None, n_id[batch_size:])

rusty1s's avatar
rusty1s committed
87
        out = self.forward(x, adj_t, batch_size, n_id, offset, count, **kwargs)
rusty1s's avatar
rusty1s committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101

        if self._async:
            for hist in self.histories:
                self.pool.synchronize_push()

        self._async = False

        return out

    def push_and_pull(self, history, x: Tensor,
                      batch_size: Optional[int] = None,
                      n_id: Optional[Tensor] = None,
                      offset: Optional[Tensor] = None,
                      count: Optional[Tensor] = None) -> Tensor:
rusty1s's avatar
rusty1s committed
102
        r"""Push and pull information from `x` to `history` and vice versa."""
rusty1s's avatar
rusty1s committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

        if n_id is None and x.size(0) != self.num_nodes:
            return x  # Do nothing...

        if n_id is None and x.size(0) == self.num_nodes:
            history.push(x)
            return x

        assert n_id is not None

        if batch_size is None:
            history.push(x, n_id)
            return x

        if not self._async:
            history.push(x[:batch_size], n_id[:batch_size], offset, count)
            h = history.pull(n_id[batch_size:])
            return torch.cat([x[:batch_size], h], dim=0)

rusty1s's avatar
rusty1s committed
122
123
124
125
126
127
128
129
130
131
132
133
134
        else:
            out = self.pool.synchronize_pull()[:n_id.numel() - batch_size]
            self.pool.async_push(x[:batch_size], offset, count, history.emb)
            out = torch.cat([x[:batch_size], out], dim=0)
            self.pool.free_pull()
            return out

    @property
    def _out(self):
        if self.__out is None:
            self.__out = torch.empty(self.num_nodes, self.out_channels,
                                     pin_memory=True)
        return self.__out
rusty1s's avatar
rusty1s committed
135
136

    @torch.no_grad()
rusty1s's avatar
rusty1s committed
137
    def mini_inference(self, loader: SubgraphLoader) -> Tensor:
rusty1s's avatar
rusty1s committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        loader = [data + ({}, ) for data in loader]

        for batch, batch_size, n_id, offset, count, state in loader:
            x = batch.x.to(self.device)
            adj_t = batch.adj_t.to(self.device)
            out = self.forward_layer(0, x, adj_t, state)[:batch_size]
            self.pool.async_push(out, offset, count, self.histories[0].emb)
        self.pool.synchronize_push()

        for i in range(1, len(self.histories)):
            for _, batch_size, n_id, offset, count, _ in loader:
                self.pool.async_pull(self.histories[i - 1].emb, offset, count,
                                     n_id[batch_size:])

            for batch, batch_size, n_id, offset, count, state in loader:
                adj_t = batch.adj_t.to(self.device)
                x = self.pool.synchronize_pull()[:n_id.numel()]
                out = self.forward_layer(i, x, adj_t, state)[:batch_size]
                self.pool.async_push(out, offset, count, self.histories[i].emb)
                self.pool.free_pull()
            self.pool.synchronize_push()

        for _, batch_size, n_id, offset, count, _ in loader:
            self.pool.async_pull(self.histories[-1].emb, offset, count,
                                 n_id[batch_size:])

        for batch, batch_size, n_id, offset, count, state in loader:
            adj_t = batch.adj_t.to(self.device)
            x = self.pool.synchronize_pull()[:n_id.numel()]
            out = self.forward_layer(self.num_layers - 1, x, adj_t,
                                     state)[:batch_size]
            self.pool.async_push(out, offset, count, self._out)
            self.pool.free_pull()
        self.pool.synchronize_push()

        return self._out
rusty1s's avatar
rusty1s committed
174
175
176

    @torch.no_grad()
    def forward_layer(self, layer: int, x: Tensor, adj_t: SparseTensor,
rusty1s's avatar
rusty1s committed
177
                      state: Dict[str, Any]) -> Tensor:
rusty1s's avatar
rusty1s committed
178
        raise NotImplementedError