base.py 6.08 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
from typing import Optional, Callable, Dict, Any
rusty1s's avatar
rusty1s committed
2
3
4
5
6
7
8

import warnings

import torch
from torch import Tensor
from torch_sparse import SparseTensor

rusty1s's avatar
rusty1s committed
9
from torch_geometric_autoscale import History, AsyncIOPool, SubgraphLoader
rusty1s's avatar
rusty1s committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126


class ScalableGNN(torch.nn.Module):
    def __init__(self, num_nodes: int, hidden_channels: int, num_layers: int,
                 pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
        super(ScalableGNN, self).__init__()

        self.num_nodes = num_nodes
        self.hidden_channels = hidden_channels
        self.num_layers = num_layers
        self.pool_size = num_layers if pool_size is None else pool_size
        self.buffer_size = buffer_size

        self.histories = torch.nn.ModuleList([
            History(num_nodes, hidden_channels, device)
            for _ in range(num_layers - 1)
        ])

        self.pool = None
        self._async = False
        self.__out__ = None

    @property
    def emb_device(self):
        return self.histories[0].emb.device

    @property
    def device(self):
        return self.histories[0]._device

    @property
    def _out(self):
        if self.__out__ is None:
            self.__out__ = torch.empty(self.num_nodes, self.out_channels,
                                       pin_memory=True)
        return self.__out__

    def _apply(self, fn: Callable) -> None:
        super(ScalableGNN, self)._apply(fn)
        if (str(self.emb_device) == 'cpu' and str(self.device)[:4] == 'cuda'
                and self.pool_size is not None
                and self.buffer_size is not None):
            self.pool = AsyncIOPool(self.pool_size, self.buffer_size,
                                    self.histories[0].embedding_dim)
            self.pool.to(self.device)
        return self

    def reset_parameters(self):
        for history in self.histories:
            history.reset_parameters()

    def __call__(self, x: Optional[Tensor] = None,
                 adj_t: Optional[SparseTensor] = None,
                 batch_size: Optional[int] = None,
                 n_id: Optional[Tensor] = None,
                 offset: Optional[Tensor] = None,
                 count: Optional[Tensor] = None, loader=None,
                 **kwargs) -> Tensor:

        if loader is not None:
            return self.mini_inference(loader)

        self._async = (self.pool is not None and batch_size is not None
                       and n_id is not None and offset is not None
                       and count is not None)

        if batch_size is not None and not self._async:
            warnings.warn('Asynchronous I/O disabled, although history and '
                          'model sit on different devices.')

        if self._async:
            for hist in self.histories:
                self.pool.async_pull(hist.emb, None, None, n_id[batch_size:])

        out = self.forward(x=x, adj_t=adj_t, batch_size=batch_size, n_id=n_id,
                           offset=offset, count=count, **kwargs)

        if self._async:
            for hist in self.histories:
                self.pool.synchronize_push()

        self._async = False

        return out

    def push_and_pull(self, history, x: Tensor,
                      batch_size: Optional[int] = None,
                      n_id: Optional[Tensor] = None,
                      offset: Optional[Tensor] = None,
                      count: Optional[Tensor] = None) -> Tensor:

        if n_id is None and x.size(0) != self.num_nodes:
            return x  # Do nothing...

        if n_id is None and x.size(0) == self.num_nodes:
            history.push(x)
            return x

        assert n_id is not None

        if batch_size is None:
            history.push(x, n_id)
            return x

        if not self._async:
            history.push(x[:batch_size], n_id[:batch_size], offset, count)
            h = history.pull(n_id[batch_size:])
            return torch.cat([x[:batch_size], h], dim=0)

        out = self.pool.synchronize_pull()[:n_id.numel() - batch_size]
        self.pool.async_push(x[:batch_size], offset, count, history.emb)
        out = torch.cat([x[:batch_size], out], dim=0)
        self.pool.free_pull()
        return out

    @torch.no_grad()
rusty1s's avatar
rusty1s committed
127
    def mini_inference(self, loader: SubgraphLoader) -> Tensor:
rusty1s's avatar
rusty1s committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
        loader = [data + ({}, ) for data in loader]

        for batch, batch_size, n_id, offset, count, state in loader:
            x = batch.x.to(self.device)
            adj_t = batch.adj_t.to(self.device)
            out = self.forward_layer(0, x, adj_t, state)[:batch_size]
            self.pool.async_push(out, offset, count, self.histories[0].emb)
        self.pool.synchronize_push()

        for i in range(1, len(self.histories)):
            for _, batch_size, n_id, offset, count, _ in loader:
                self.pool.async_pull(self.histories[i - 1].emb, offset, count,
                                     n_id[batch_size:])

            for batch, batch_size, n_id, offset, count, state in loader:
                adj_t = batch.adj_t.to(self.device)
                x = self.pool.synchronize_pull()[:n_id.numel()]
                out = self.forward_layer(i, x, adj_t, state)[:batch_size]
                self.pool.async_push(out, offset, count, self.histories[i].emb)
                self.pool.free_pull()
            self.pool.synchronize_push()

        for _, batch_size, n_id, offset, count, _ in loader:
            self.pool.async_pull(self.histories[-1].emb, offset, count,
                                 n_id[batch_size:])

        for batch, batch_size, n_id, offset, count, state in loader:
            adj_t = batch.adj_t.to(self.device)
            x = self.pool.synchronize_pull()[:n_id.numel()]
            out = self.forward_layer(self.num_layers - 1, x, adj_t,
                                     state)[:batch_size]
            self.pool.async_push(out, offset, count, self._out)
            self.pool.free_pull()
        self.pool.synchronize_push()

        return self._out
rusty1s's avatar
rusty1s committed
164
165
166
167
168

    @torch.no_grad()
    def forward_layer(self, layer: int, x: Tensor, adj_t: SparseTensor,
                      state: Dict[Any]) -> Tensor:
        raise NotImplementedError